

SURFACE VEHICLE STANDARD

J2735®

JUL2020

Issued 2006-12
Revised 2020-07

Superseding J2735 MAR2016

(R) V2X Communications Message Set Dictionary

RATIONALE

This standard is the sixth edition of the message set dictionary. The changes made from prior editions are primarily related to creating modules of the ASN.1, separating the ASN.1 file into multiple modules that are organized by message and major topic. The ASN.1 files have been re-organized in a modular fashion for future expandability and growth. While recompiling with these new files is not necessary, it is highly recommended to maintain forward compatibility in the future.

In addition, DE_TimeMark was modified to better support leap seconds; otherwise, there were no changes that affect backward compatibility. Also note that use of SSP indexes has been deprecated, but the fields remain in the ASN.1 definitions to support backward compatibility. Finally, definitions have been updated, descriptions of V2X communications have been generalized, and other minor editorial corrections were made.

TABLE OF CONTENTS

1.	SCOPE	11
1.1	Purpose	11
2.	REFERENCES	11
2.1	Applicable Documents	11
2.1.1	SAE Publications	11
2.1.2	IEEE Publications	11
2.1.3	ISO Publications	11
2.1.4	RTCM Publications	12
2.1.5	NMEA Publication	12
2.2	Related Publications	12
2.2.1	SAE Publications	12
2.2.2	U.S. Dept. of Transportation, National Transportation Library	12
2.2.3	U.S. Department of Transportation, National ITS Architecture	12
2.2.4	ASTM Publications	13
2.2.5	IEEE Publications	13
3.	TERMS AND DEFINITIONS	13
3.1	Definitions	13
3.2	Abbreviations and Acronyms	22

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2020 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: +1 724-776-4970 (outside USA)

Fax: 724-776-0790

Email: CustomerService@sae.org

<http://www.sae.org>

For more information on this standard, visit

https://www.sae.org/standards/content/J2735_202007/

SAE WEB ADDRESS:

4.	THE USE OF V2X MESSAGES IN APPLICATIONS	26
4.1	Introduction to V2X Goals and Objectives (Informative)	26
4.2	V2X Communications Overview (Informative)	27
4.2.1	WAVE Communications Overview	27
4.2.2	Security	28
4.3	Philosophy of Message Design (Informative)	28
4.4	Message Encoding (Normative)	28
4.5	Additional Data Dictionary Constraints (Informative)	28
5.	MESSAGE SET	28
5.1	Message: MSG_MessageFrame (FRAME)	29
5.2	Message: MSG_BasicSafetyMessage (BSM)	31
5.3	Message: MSG_CommonSafetyRequest (CSR)	31
5.4	Message: MSG_EmergencyVehicleAlert (EVA)	32
5.5	Message: MSG_IntersectionCollisionAvoidance (ICA)	33
5.6	Message: MSG_MapData (MAP)	33
5.7	Message: MSG_NMEAcorrections (NMEA)	34
5.8	Message: MSG_PersonalSafetyMessage (PSM)	35
5.9	Message: MSG_ProbeDataManagement (PDM)	36
5.10	Message: MSG_ProbeVehicleData (PVD)	36
5.11	Message: MSG_RoadSideAlert (RSA)	37
5.12	Message: MSG_RTCMcorrections (RTCM)	38
5.13	Message: MSG_SignalPhaseAndTiming Message (SPAT)	39
5.14	Message: MSG_SignalRequestMessage (SRM)	40
5.15	Message: MSG_SignalStatusMessage (SSM)	41
5.16	Message: MSG_TravelerInformation Message (TIM)	41
5.17	Message: MSG_TestMessages	42
6.	DATA FRAMES	43
6.1	Data Frame: DF_AccelerationSet4Way	43
6.2	Data Frame: DF_AccelSteerYawRateConfidence	44
6.3	Data Frame: DF_AdvisorySpeed	44
6.4	Data Frame: DF_AdvisorySpeedList	45
6.5	Data Frame: DF_AntennaOffsetSet	45
6.6	Data Frame: DF_ApproachOrLane	46
6.7	Data Frame: DF_BrakeSystemStatus	46
6.8	Data Frame: DF_BSMooreData	46
6.9	Data Frame: DF_BumperHeights	47
6.10	Data Frame: DF_Circle	47
6.11	Data Frame: DF_ComputedLane	48
6.12	Data Frame: DF_ConfidenceSet	49
6.13	Data Frame: DF_ConnectingLane	50
6.14	Data Frame: DF_Connection	50
6.15	Data Frame: DF_ConnectionManeuverAssist	51
6.16	Data Frame: DF_ConnectsToList	52
6.17	Data Frame: DF_DataParameters	53
6.18	Data Frame: DF_DDate	53
6.19	Data Frame: DF_DDateTime	53
6.20	Data Frame: DF_DFullTime	54
6.21	Data Frame: DF_DMonthDay	54
6.22	Data Frame: DF_DTime	54
6.23	Data Frame: DF_DYearMonth	54
6.24	Data Frame: DF_DisabledVehicle	55
6.25	Data Frame: DF_EmergencyDetails	55
6.26	Data Frame: DF_EnabledLaneList	56
6.27	Data Frame: DF_EventDescription	56
6.28	Data Frame: DF_FullPositionVector	57
6.29	Data Frame: DF_GenericLane	58
6.30	Data Frame: DF_GeographicalPath	60

6.31	Data Frame: DF_GeometricProjection.....	60
6.32	Data Frame: DF_Header.....	61
6.33	Data Frame: DF_IntersectionAccessPoint.....	61
6.34	Data Frame: DF_IntersectionGeometry.....	61
6.35	Data Frame: DF_IntersectionGeometryList.....	62
6.36	Data Frame: DF_IntersectionReferenceID.....	63
6.37	Data Frame: DF_IntersectionState.....	63
6.38	Data Frame: DF_IntersectionStateList.....	64
6.39	Data Frame: DF_ITIS_Phrase_ExitService.....	64
6.40	Data Frame: DF_ITIS_Phrase_GenericSignage.....	65
6.41	Data Frame: DF_ITIS_Phrase_SpeedLimit.....	65
6.42	Data Frame: DF_ITIS_Phrase_WorkZone.....	65
6.43	Data Frame: DF_J1939-Data Items.....	66
6.44	Data Frame: DF_LaneAttributes	67
6.45	Data Frame: DF_LaneDataAttribute	67
6.46	Data Frame: DF_LaneDataAttributeList.....	68
6.47	Data Frame: DF_LaneList.....	69
6.48	Data Frame: DF_LaneTypeAttributes	69
6.49	Data Frame: DF_ManeuverAssistList.....	69
6.50	Data Frame: DF_MovementEventList.....	69
6.51	Data Frame: DF_MovementEvent.....	70
6.52	Data Frame: DF_MovementList.....	70
6.53	Data Frame: DF_MovementState.....	70
6.54	Data Frame: DF_Node_LL_24B	71
6.55	Data Frame: DF_Node_LL_28B	72
6.56	Data Frame: DF_Node_LL_32B	72
6.57	Data Frame: DF_Node_LL_36B	72
6.58	Data Frame: DF_Node_LL_44B	73
6.59	Data Frame: DF_Node_LL_48B	73
6.60	Data Frame: DF_Node_LLmD_64b	73
6.61	Data Frame: DF_Node_XY_20b	73
6.62	Data Frame: DF_Node_XY_22b	74
6.63	Data Frame: DF_Node_XY_24b	74
6.64	Data Frame: DF_Node_XY_26b	74
6.65	Data Frame: DF_Node_XY_28b	74
6.66	Data Frame: DF_Node_XY_32b	75
6.67	Data Frame: DF_NodeAttributeLLLList.....	75
6.68	Data Frame: DF_NodeAttributeSetLL.....	75
6.69	Data Frame: DF_NodeAttributeSetXY.....	76
6.70	Data Frame: DF_NodeAttributeXYList.....	77
6.71	Data Frame: DF_NodeListLL	77
6.72	Data Frame: DF_NodeListXY	78
6.73	Data Frame: DF_NodeLL	79
6.74	Data Frame: DF_NodeOffsetPoint_LL	79
6.75	Data Frame: DF_NodeOffsetPointXY	80
6.76	Data Frame: DF_NodeSetLL	80
6.77	Data Frame: DF_NodeSetXY	81
6.78	Data Frame: DF_NodeXY	81
6.79	Data Frame: DF_ObstacleDetection.....	81
6.80	Data Frame: DF_OffsetSystem.....	82
6.81	Data Frame: DF_OverlayLaneList	82
6.82	Data Frame: DF_PathHistory	82
6.83	Data Frame: DF_PathHistoryPointList	83
6.84	Data Frame: DF_PathHistoryPoint	83
6.85	Data Frame: DF_PathPrediction	84
6.86	Data Frame: DF_PivotPointDescription	84
6.87	Data Frame: DF_Position3D	85
6.88	Data Frame: DF_PositionalAccuracy	86
6.89	Data Frame: DF_PositionConfidenceSet	87
6.90	Data Frame: DF_PreemptPriorityList	87

6.91	Data Frame: DF_PrivilegedEvents	87
6.92	Data Frame: DF_PropelledInformation	88
6.93	Data Frame: DF_RegionList	88
6.94	Data Frame: DF_RegionOffsets	88
6.95	Data Frame: DF_RegionPointSet	89
6.96	Data Frame: DF_RegulatorySpeedLimit.....	89
6.97	Data Frame: DF_RequestedItem.....	89
6.98	Data Frame: DF_RequestorDescription.....	89
6.99	Data Frame: DF_RequestorPositionVector.....	90
6.100	Data Frame: DF_RequestorType.....	91
6.101	Data Frame: DF_RestrictionClassAssignment	91
6.102	Data Frame: DF_RestrictionClassList.....	92
6.103	Data Frame: DF_RestrictionUserTypeList.....	92
6.104	Data Frame: DF_RestrictionUserType.....	92
6.105	Data Frame: DF_RoadLaneSetList.....	93
6.106	Data Frame: DF_RoadSegmentList.....	93
6.107	Data Frame: DF_RoadSegmentReferenceID	93
6.108	Data Frame: DF_RoadSegment	93
6.109	Data Frame: DF_RoadSignID	94
6.110	Data Frame: DF_RTCMheader	94
6.111	Data Frame: DF_RTCMmessageList	95
6.112	Data Frame: DF_RTCMPackage	95
6.113	Data Frame: DF_Sample	96
6.114	Data Frame: DF_SegmentAttributeLLLList	96
6.115	Data Frame: DF_SegmentAttributeXYList	96
6.116	Data Frame: DF_ShapePointSet	96
6.117	Data Frame: DF_SignalRequesterInfo.....	97
6.118	Data Frame: DF_SignalRequestList	97
6.119	Data Frame: DF_SignalRequestPackage	97
6.120	Data Frame: DF_SignalRequest	98
6.121	Data Frame: DF_SignalStatusList	99
6.122	Data Frame: DF_SignalStatusPackageList	99
6.123	Data Frame: DF_SignalStatusPackage	99
6.124	Data Frame: DF_SignalStatus	100
6.125	Data Frame: DF_SnapshotDistance	101
6.126	Data Frame: DF_Snapshot	101
6.127	Data Frame: DF_SnapshotTime	101
6.128	Data Frame: DF_SpecialVehicleExtensions	102
6.129	Data Frame: DF_SpeedHeadingThrottleConfidence	102
6.130	Data Frame: DF_SpeedLimitList	103
6.131	Data Frame: DF_SpeedProfileMeasurementList	103
6.132	Data Frame: DF_SpeedProfile	103
6.133	Data Frame: DF_SupplementalVehicleExtensions	104
6.134	Data Frame: DF_TimeChangeDetails.....	105
6.135	Data Frame: DF_TrailerData	106
6.136	Data Frame: DF_TrailerHistoryPointList	106
6.137	Data Frame: DF_TrailerHistoryPoint.....	106
6.138	Data Frame: DF_TrailerUnitDescriptionList	107
6.139	Data Frame: DF_TrailerUnitDescription.....	107
6.140	Data Frame: DF_TransmissionAndSpeed	108
6.141	Data Frame: DF_TravelerDataFrameList	108
6.142	Data Frame: DF_TravelerDataFrame	109
6.143	Data Frame: DF_ValidRegion	110
6.144	Data Frame: DF_VehicleClassification	110
6.145	Data Frame: DF_VehicleData	111
6.146	Data Frame: DF_VehicleIdent	111
6.147	Data Frame: DF_VehicleID	112
6.148	Data Frame: DF_VehicleSafetyExtensions	112
6.149	Data Frame: DF_VehicleSize	113
6.150	Data Frame: DF_VehicleStatusRequest.....	113

6.151	Data Frame: DF_VehicleStatusRequestList	113
6.152	Data Frame: DF_VehicleStatus	113
6.153	Data Frame: DF_VerticalOffset.....	115
6.154	Data Frame: DF_WeatherProbe	115
6.155	Data Frame: DF_WeatherReport.....	116
6.156	Data Frame: DF_WiperSet.....	116
7.	DATA ELEMENTS	116
7.1	Data Element: DE_Acceleration	116
7.2	Data Element: DE_AccelerationConfidence	117
7.3	Data Element: DE_AdvisorySpeedType	117
7.4	Data Element: DE_AllowedManeuvers	118
7.5	Data Element: DE_AmbientAirPressure (Barometric Pressure).....	119
7.6	Data Element: DE_AmbientAirTemperature	119
7.7	Data Element: DE_Angle	120
7.8	Data Element: DE_AnimalPropelledType	120
7.9	Data Element: DE_AnimalType	121
7.10	Data Element: DE_AntiLockBrakeStatus.....	121
7.11	Data Element: DE_ApproachID	121
7.12	Data Element: DE_Attachment	122
7.13	Data Element: DE_AttachmentRadius.....	122
7.14	Data Element: DE_AuxiliaryBrakeStatus.....	122
7.15	Data Element: DE_BasicVehicleClass.....	122
7.16	Data Element: DE_BasicVehicleRole	124
7.17	Data Element: DE_BrakeAppliedPressure	125
7.18	Data Element: DE_BrakeAppliedStatus.....	126
7.19	Data Element: DE_BrakeBoostApplied.....	126
7.20	Data Element: DE_BumperHeight	127
7.21	Data Element: DE_CoarseHeading	127
7.22	Data Element: DE_CodeWord	127
7.23	Data Element: DE_CoefficientOfFriction.....	127
7.24	Data Element: DE_Confidence	128
7.25	Data Element: DE_Count.....	128
7.26	Data Element: DE_DDay	128
7.27	Data Element: DE_DeltaAngle.....	129
7.28	Data Element: DE_DeltaTime.....	129
7.29	Data Element: DE_DescriptiveName.....	129
7.30	Data Element: DE_DHour	130
7.31	Data Element: DE_DirectionOfUse.....	130
7.32	Data Element: DE_DistanceUnits	131
7.33	Data Element: DE_DMinute	131
7.34	Data Element: DE_DMonth.....	131
7.35	Data Element: DE_DOffset	132
7.36	Data Element: DE_DrivenLineOffsetLarge	132
7.37	Data Element: DE_DrivenLineOffsetSmall	132
7.38	Data Element: DE_DrivingWheelAngle.....	133
7.39	Data Element: DE_DSecond	133
7.40	Data Element: DE_DSRC_MessageID	134
7.41	Data Element: DE_Duration.....	135
7.42	Data Element: DE_DYear	135
7.43	Data Element: DE_ElevationConfidence	136
7.44	Data Element: DE_Elevation	136
7.45	Data Element: DE_Extent	137
7.46	Data Element: DE_ExteriorLights	137
7.47	Data Element: DE_FuelType	138
7.48	Data Element: DE_FurtherInfoID	138
7.49	Data Element: DE_GNSSstatus	139
7.50	Data Element: DE_GrossDistance.....	139
7.51	Data Element: DE_GrossSpeed	140
7.52	Data Element: DE_HeadingConfidence.....	140

7.53	Data Element: DE_Heading	141
7.54	Data Element: DE_HeadingSlice	141
7.55	Data Element: DE_HumanPropelledType	142
7.56	Data Element: DE_IntersectionID	143
7.57	Data Element: DE_IntersectionStatusObject	143
7.58	Data Element: DE_IsDolly	144
7.59	Data Element: DE_Iso3833VehicleType	145
7.60	Data Element: DE_ITIStextPhrase	145
7.61	Data Element: DE_J1939-71-Axle Location	145
7.62	Data Element: DE_J1939-71-Axle Weight	146
7.63	Data Element: DE_J1939-71-Cargo Weight	146
7.64	Data Element: DE_J1939-71-Drive Axle Lift Air Pressure	146
7.65	Data Element: DE_J1939-71-Drive Axle Location	146
7.66	Data Element: DE_J1939-71-Drive Axle Lube Pressure	146
7.67	Data Element: DE_J1939-71-Drive Axle Temperature	147
7.68	Data Element: DE_J1939-71-Steering Axle Lube Pressure	147
7.69	Data Element: DE_J1939-71-Steering Axle Temperature	147
7.70	Data Element: DE_J1939-71-Tire Leakage Rate	147
7.71	Data Element: DE_J1939-71-Tire Location	147
7.72	Data Element: DE_J1939-71-Tire Pressure Threshold Detection	148
7.73	Data Element: DE_J1939-71-Tire Pressure	148
7.74	Data Element: DE_J1939-71-Tire Temp	148
7.75	Data Element: DE_J1939-71-Trailer Weight	148
7.76	Data Element: DE_J1939-71-Wheel End Elect. Fault	149
7.77	Data Element: DE_J1939-71-Wheel Sensor Status	149
7.78	Data Element: DE_LaneAttributes-Barrier	149
7.79	Data Element: DE_LaneAttributes-Bike	150
7.80	Data Element: DE_LaneAttributes-Crosswalk	150
7.81	Data Element: DE_LaneAttributes-ParkingLane	151
7.82	Data Element: DE_LaneAttributes-Sidewalk	152
7.83	Data Element: DE_LaneAttributes-Striping	152
7.84	Data Element: DE_LaneAttributes-TrackedVehicle	153
7.85	Data Element: DE_LaneAttributes-Vehicle	153
7.86	Data Element: DE_LaneConnectionID	154
7.87	Data Element: DE_LaneDirection	154
7.88	Data Element: DE_LaneID	155
7.89	Data Element: DE_LaneSharing	156
7.90	Data Element: DE_LaneWidth	156
7.91	Data Element: DE_Latitude	157
7.92	Data Element: DE_LayerID	157
7.93	Data Element: DE_LayerType	158
7.94	Data Element: DE_LightbarInUse	158
7.95	Data Element: DE_Longitude	158
7.96	Data Element: DE_MAYDAY_Location_quality_code	159
7.97	Data Element: DE_MAYDAY_Location_tech_code	159
7.98	Data Element: DE_MergeDivergeNodeAngle	160
7.99	Data Element: DE_MessageBLOB	160
7.100	Data Element: DE_MinuteOfTheYear	160
7.101	Data Element: DE_MinutesDuration	161
7.102	Data Element: DE_MotorizedPropelledType	161
7.103	Data Element: DE_MovementPhaseState	162
7.104	Data Element: DE_MsgCount	164
7.105	Data Element: DE_MsgCRC	165
7.106	Data Element: DE_MultiVehicleResponse	166
7.107	Data Element: DE_MUTCDCode	166
7.108	Data Element: DE_NMEA_MsgType	166
7.109	Data Element: DE_NMEA_Payload	167
7.110	Data Element: DE_NMEA_Revision	167
7.111	Data Element: DE_NodeAttributeLL	167
7.112	Data Element: DE_NodeAttributeXY	168

7.113	Data Element: DE_NumberOfParticipantsInCluster	169
7.114	Data Element: DE_ObjectCount	170
7.115	Data Element: DE_ObstacleDirection	170
7.116	Data Element: DE_ObstacleDistance	170
7.117	Data Element: DE_Offset_B09	170
7.118	Data Element: DE_Offset_B10	171
7.119	Data Element: DE_Offset_B11	171
7.120	Data Element: DE_Offset_B12	171
7.121	Data Element: DE_Offset_B13	172
7.122	Data Element: DE_Offset_B14	172
7.123	Data Element: DE_Offset_B16	172
7.124	Data Element: DE_OffsetLL-B12	172
7.125	Data Element: DE_OffsetLL-B14	173
7.126	Data Element: DE_OffsetLL-B16	173
7.127	Data Element: DE_OffsetLL-B18	173
7.128	Data Element: DE_OffsetLL-B22	174
7.129	Data Element: DE_OffsetLL-B24	174
7.130	Data Element: DE_PayloadData	174
7.131	Data Element: DE_PedestrianBicycleDetect	174
7.132	Data Element: DE_PersonalAssistive	175
7.133	Data Element: DE_PersonalClusterRadius	175
7.134	Data Element: DE_PersonalCrossingInProgress	175
7.135	Data Element: DE_PersonalCrossingRequest	175
7.136	Data Element: DE_PersonalDeviceUsageState	176
7.137	Data Element: DE_PersonalDeviceUserType	176
7.138	Data Element: DE_PivotingAllowed	176
7.139	Data Element: DE_PositionConfidence	177
7.140	Data Element: DE_PrioritizationResponseStatus	177
7.141	Data Element: DE_Priority	178
7.142	Data Element: DE_PriorityRequestType	179
7.143	Data Element: DE_PrivilegedEventFlags	179
7.144	Data Element: DE_ProbeSegmentNumber	180
7.145	Data Element: DE_PublicSafetyAndRoadWorkerActivity	180
7.146	Data Element: DE_PublicSafetyDirectingTrafficSubType	181
7.147	Data Element: DE_PublicSafetyEventResponderWorkerType	181
7.148	Data Element: DE_RadiusOfCurvature	182
7.149	Data Element: DE_Radius	182
7.150	Data Element: DE_RainSensor	182
7.151	Data Element: DE_RegionId	183
7.152	Data Element: DE_RequestedItem	183
7.153	Data Element: DE_RequestID	185
7.154	Data Element: DE_RequestImportanceLevel	185
7.155	Data Element: DE_RequestSubRole	186
7.156	Data Element: DE_Response-Type	186
7.157	Data Element: DE_RestrictionAppliesTo	187
7.158	Data Element: DE_RestrictionClassID	187
7.159	Data Element: DE_RoadRegulatorID	188
7.160	Data Element: DE_RoadSegmentID	188
7.161	Data Element: DE_RoadwayCrownAngle	188
7.162	Data Element: DE_RTCM_Revision	189
7.163	Data Element: DE_RTCMmessage	189
7.164	Data Element: DE_Scale_B12	189
7.165	Data Element: DE_SecondOfTime	189
7.166	Data Element: DE_SegmentAttributeLL	190
7.167	Data Element: DE_SegmentAttributeXY	191
7.168	Data Element: DE_SemiMajorAxisAccuracy	193
7.169	Data Element: DE_SemiMajorAxisOrientation	193
7.170	Data Element: DE_SemiMinorAxisAccuracy	193
7.171	Data Element: DE_SignalGroupID	194
7.172	Data Element: DE_SignalReqScheme	194

7.173	Data Element: DE_SignPriority	195
7.174	Data Element: DE_SirenInUse	195
7.175	Data Element: DE_SpeedAdvice	195
7.176	Data Element: DE_SpeedConfidence	196
7.177	Data Element: DE_SpeedLimitType	196
7.178	Data Element: DE_SpeedProfileMeasurement	197
7.179	Data Element: DE_Speed	197
7.180	Data Element: DE_SSPindex	197
7.181	Data Element: DE_StabilityControlStatus	198
7.182	Data Element: DE_StationID	198
7.183	Data Element: DE_SteeringWheelAngleConfidence	199
7.184	Data Element: DE_SteeringWheelAngleRateOfChange	199
7.185	Data Element: DE_SteeringWheelAngle	199
7.186	Data Element: DE_SunSensor	200
7.187	Data Element: DE_TemporaryID	200
7.188	Data Element: DE_TerminationDistance	201
7.189	Data Element: DE_TerminationTime	201
7.190	Data Element: DE_ThrottleConfidence	201
7.191	Data Element: DE_ThrottlePosition	201
7.192	Data Element: DE_TimeConfidence	202
7.193	Data Element: DE_TimeIntervalConfidence	203
7.194	Data Element: DE_TimeMark	203
7.195	Data Element: DE_TimeOffset	204
7.196	Data Element: DE_TractionControlStatus	204
7.197	Data Element: DE_TrailerMass	205
7.198	Data Element: DE_TransitStatus	205
7.199	Data Element: DE_TransitVehicleOccupancy	205
7.200	Data Element: DE_TransitVehicleStatus	206
7.201	Data Element: DE_TransmissionState	206
7.202	Data Element: DE_TravelerInfoType	206
7.203	Data Element: DE_UniqueMSG_ID	207
7.204	Data Element: DE_URL_Base	207
7.205	Data Element: DE_URL_Link	207
7.206	Data Element: DE_URL_Short	208
7.207	Data Element: DE_UserSizeAhdBehaviour	208
7.208	Data Element: DE_VehicleEventFlags	208
7.209	Data Element: DE_VehicleHeight	209
7.210	Data Element: DE_VehicleLength	210
7.211	Data Element: DE_VehicleMass	210
7.212	Data Element: DE_VehicleStatusDeviceTypeTag	211
7.213	Data Element: DE_VehicleType	211
7.214	Data Element: DE_VehicleWidth	212
7.215	Data Element: DE_Velocity	212
7.216	Data Element: DE_VerticalAccelerationThreshold	213
7.217	Data Element: DE_VerticalAcceleration	213
7.218	Data Element: DE_VertOffset-B07	214
7.219	Data Element: DE_VertOffset-B08	214
7.220	Data Element: DE_VertOffset-B09	214
7.221	Data Element: DE_VertOffset-B10	215
7.222	Data Element: DE_VertOffset-B11	215
7.223	Data Element: DE_VertOffset-B12	215
7.224	Data Element: DE_VINstring,	216
7.225	Data Element: DE_WaitOnStopline	216
7.226	Data Element: DE_WiperRate	216
7.227	Data Element: DE_WiperStatus	216
7.228	Data Element: DE_YawRateConfidence	217
7.229	Data Element: DE_YawRate	217
7.230	Data Element: DE_ZoneLength	218
7.231	Data Element: DE_Zoom	218

8.	EXTERNAL DATA ENTRIES	218
8.1	Data Element: DE_AltitudeConfidence_EU [ADDGRPC]	218
8.2	Data Element: DE_AltitudeValue_EU [ADDGRPC]	219
8.3	Data Element: DE_Angle_JPN [ADDGRPB]	219
8.4	Data Element: DE_Day_JPN [ADDGRPB]	220
8.5	Data Element: DE_DayOfWeek_JPN [ADDGRPB]	220
8.6	Data Element: DE_DegreesLat_JPN [ADDGRPB]	221
8.7	Data Element: DE_DegreesLong_JPN [ADDGRPB]	221
8.8	Data Element: DE_Elevation_JPN [ADDGRPB]	221
8.9	Data Element: DE_EmissionType_EU [ADDGRPC]	221
8.10	Data Element: DE_GenericLocations [ITIS]	222
8.11	Data Element: DE_Holiday_JPN [ADDGRPB]	224
8.12	Data Element: DE_Hour_JPN [ADDGRPB]	224
8.13	Data Element: DE_Incident Response Equipment [ITIS]	224
8.14	Data Element: DE_ITIS_Text [ITIS]	226
8.15	Data Element: DE_LatitudeDMS [ADDGRPB]	226
8.16	Data Element: DE_LongitudeDMS [ADDGRPB]	227
8.17	Data Element: DE_MaxTimetoChange [ADDGRPB]	227
8.18	Data Element: DE_MinTimetoChange [ADDGRPB]	227
8.19	Data Element: DE_Minute_JPN [ADDGRPB]	228
8.20	Data Element: DE_MinutesAngle_JPN [ADDGRPB]	228
8.21	Data Element: DE_Month_JPN [ADDGRPB]	228
8.22	Data Element: DE_MsgCount_JPN [ADDGRPB]	228
8.23	Data Element: DE_Responder Group Affected [ITIS]	229
8.24	Data Element: DE_Second_JPN [ADDGRPB]	229
8.25	Data Element: DE_SecondsAngle_JPN [ADDGRPB]	229
8.26	Data Element: DE_SummerTime_JPN [ADDGRPB]	230
8.27	Data Element: DE_TenthSecond_JPN [ADDGRPB]	230
8.28	Data Element: DE_TimeRemaining_JPN [ADDGRPB]	230
8.29	Data Element: DE_Vehicle Groups Affected [ITIS]	231
8.30	Data Element: DE_Year_JPN [ADDGRPB]	232
8.31	Data Frame: DF_Altitude_EU [ADDGRPC]	232
8.32	Data Frame: DF_ITIS-Codes_And_Text [ITIS]	232
8.33	Data Frame: DF_LatitudeDMS2 [ADDGRPB]	233
8.34	Data Frame: DF_LongitudeDMS2 [ADDGRPB]	233
8.35	Data Frame: DF_Node_LLdms_48b [ADDGRPB]	233
8.36	Data Frame: DF_Node_LLdms_80b [ADDGRPB]	234
8.37	Data Frame: DF_PrioritizationResponse_EU [ADDGRPC]	234
8.38	Data Frame: DF_PrioritizationResponseList_EU [ADDGRPC]	234
8.39	Data Frame: DF_REG_ConnectionManeuverAssist_EU [ADDGRPC]	234
8.40	Data Frame: DF_REG_IntersectionState_EU [ADDGRPC]	235
8.41	Data Frame: DF_REG_LaneDataAttribute_JPN [ADDGRPB]	235
8.42	Data Frame: DF_REG_MapData_Base_EU [ADDGRPC]	235
8.43	Data Frame: DF_REG_MovementEvent_JPN [ADDGRPB]	235
8.44	Data Frame: DF_REG_NodeOffsetPointXY_JPN [ADDGRPB]	236
8.45	Data Frame: DF_REG_Position3D_EU [ADDGRPC]	236
8.46	Data Frame: DF_REG_Position3D_JPN [ADDGRPB]	236
8.47	Data Frame: DF_REG_RestrictionUserType_EU [ADDGRPC]	236
8.48	Data Frame: DF_SignalHeadLocation_EU [ADDGRPC]	237
8.49	Data Frame: DF_SignalHeadLocationList_EU [ADDGRPC]	237
8.50	Data Frame: DF_TimeMark_JPN [ADDGRPB]	237
8.51	Data Frame: DF_VehicleToLanePosition_EU [ADDGRPC]	238
8.52	Data Frame: DF_VehicleToLanePositionList_EU [ADDGRPC]	238
8.53	Data Element: ESS_EssMobileFriction [NTCIP]	238
8.54	Data Element: ESS_EssPrecipRate_quantity [NTCIP]	238
8.55	Data Element: ESS_EssPrecipSituation_code [NTCIP]	239
8.56	Data Element: ESS_EssPrecipYesNo_code [NTCIP]	239
8.57	Data Element: ESS_EssSolarRadiation_quantity [NTCIP]	239
8.58	Data Element: EXT_ITIS_Codes [ITIS]	240

9.	REGIONAL DATA CONCEPTS	240
9.1	Data Frame: DF_REG_DataFrames [REGION]	241
9.2	Data Frame: DF_REG_MessageExpansionFramework [REGION]	242
9.3	Data Frame: DF_REG_TestMessageExpansionFramework [REGION]	243
10.	CONFORMANCE.....	244
11.	FUNDAMENTAL CONCEPTS USED IN V2X MESSAGES	244
11.1	The Use of ASN.1 Syntax and ASN.1 Encoding	244
11.2	Regional Extensions Used to Add Data Concepts	245
11.2.1	Goals and Objectives	245
11.2.2	Prior Solutions	246
11.2.3	Regional Extension in the ASN Specification	247
11.2.4	A Practical Example	248
11.3	Time Formats Used in Applications	250
11.4	Frames of Reference Between the Vehicles and the Roadway	251
11.5	Position, Velocity, and Acceleration of Vehicles	252
11.6	Methods to Describe Roadway Geometry and Other Map-Like Features	253
11.7	Using Relative Offset Positions and Absolute LLH Positions	255
11.7.1	The XYZ Offset System	255
11.7.2	The LLH Offset System.....	256
11.7.3	On the Use of Zoom and Scales	257
11.7.4	On the Ordering of Offset Points and Lat-Lon Points	258
11.8	Lanes, Objects Defined in Intersections and Elsewhere	258
11.9	Various Vehicle Taxonomies Used in V2X	261
11.10	Object Indexing Methods Used in Maps and Elsewhere	262
12.	COMMENTS ON 2016 REVISION OF SAE J2735 (INFORMATIVE).....	265
13.	NOTES	265
13.1	Revision Indicator.....	265
APPENDIX A	ASN SOURCE CODE	266
APPENDIX B	VARIOUS REGIONAL ID ASSIGNMENTS	267
Figure 1	State diagram.....	162
Figure 2	V2X-equipped platform position reference.....	251
Figure 3	An example of XYZ offsets describing a rectangular polygon	255
Figure 4	An example of LLH offsets describing a quadrangle polygon.....	256
Table 1	Conversion of mph to m/s for selected data elements.....	253
Table 2	Effect of zoom scale on LSB units of XYZ and LLH coordinates.....	258
Table 3	Vehicle taxonomies used in V2X	262

1. SCOPE

This SAE standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems. While the data dictionary was originally designed for use over DSRC, this document is intended to be independent of the underlying communications protocols used to exchange data between participants in V2X applications.

1.1 Purpose

The purpose of this SAE standard is to support interoperability among V2X applications through the use of a standardized message set and its data frames and data elements. In some cases, this standard also provides information that is useful in understanding how to apply the message set to V2X applications.

2. REFERENCES

2.1 Applicable Documents

The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply.

2.1.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

SAE J2540 Messages for Handling Strings and Look-up Tables in ATIS Standards

SAE J2540-2 ITIS Phrase Lists (International Traveler Information Systems)

SAE J2945/1 On-Board System Requirements for V2V Safety Communications

SAE J2945/3 Requirements for Road Weather Applications

SAE J2945/5 Service Specific Permissions and Security Guidelines for Connected Vehicle Applications

2.1.2 IEEE Publications

Available from IEEE Operations Center, 445 and 501 Hoes Lane, Piscataway, NJ 08854-4141, Tel: 732-981-0060, www.ieee.org.

IEEE Std 1609.2-2016 IEEE Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages

IEEE Std 1609.3-2016 IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services

IEEE Std 1609.4-2016 IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel Operation

2.1.3 ISO Publications

Copies of these documents are available online at <http://webstore.ansi.org/>.

ISO/IEC 8824-1:1998 Information Technology - Abstract Syntax Notation One (ASN.1): Specification of Basic Notation

ISO/IEC 8824-2:1998 Information Technology - Abstract Syntax Notation One (ASN.1): Information Object Specification

ISO/IEC 8824-3:1998 Information Technology - Abstract Syntax Notation One (ASN.1): Constraint Specification

ISO/IEC 8824-4:1998 Information Technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 Specifications

2.1.4 RTCM Publications

Available from the Radio Technical Commission For Maritime Services, 1800 N Kent St., Suite 1060, Arlington, VA 22209, www.rtcm.org.

RTCM 10402.3 Recommended Standards for Differential GNSS (Global Navigation Satellite Systems) Service - Version 2.3 Revision 2.3 adopted on August 20, 2001, and its successors

RTCM 10403.1 For Differential GNSS (Global Navigation Satellite Systems) Services - Version 3 adopted on October 27, 2006 and its successors, including amendments #1~#5 adopted July 1, 2011, and its successors

2.1.5 NMEA Publication

Available from National Marine Electronics Association, 7 Riggs Ave., Severna Park, MD 21146, www.nmea.org.

NMEA 183 Interface Standard V 3.01, published by the National Marine Electronics Association (NMEA) released January 2002.

2.2 Related Publications

The following publications are provided for information purposes only and are not a required part of this SAE Technical Report.

For background material, the following standards or information reports are also of value.

2.2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

SAE J1939 Serial Control and Communications Heavy Duty Vehicle Network - Top Level Document

SAE J2630 Converting ATIS Message Standards From ASN.1 To XML

SAE J3067 Candidate Improvements to Dedicated Short Range Communications (DSRC) Message Set Dictionary [SAE J2735] Using Systems Engineering Methods

2.2.2 U.S. Dept. of Transportation, National Transportation Library

Available on-line from the National Transportation Library at <http://ntl.bts.gov>.

Cooperative Intersection Collision Avoidance System Limited to Stop Sign and Traffic Signal Violations (CICAS-V), Task 10 Final Report Dated 09-30-2008 which is available at <https://rosap.ntl.bts.gov/view/dot/4143>.

2.2.3 U.S. Department of Transportation, National ITS Architecture

Available online at <http://local.iteris.com/arc-it/>.

2.2.4 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM E2158-01 Standard Specification for Dedicated Short Range Communication (DSRC) Physical Layer Using Microwave in the 902 to 928 MHz Band

ASTM E2213 -03 Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications

2.2.5 IEEE Publications

Available from IEEE Operations Center, 445 and 501 Hoes Lane, Piscataway, NJ 08854-4141, Tel: 732-981-0060, www.ieee.org.

IEEE Std 1609.0-2013 IEEE Guide for Wireless Access in Vehicular Environments (WAVE) - Architecture

IEEE Std 802.11-2012 Standard for LAN/MAN - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (and all published Corrigenda for this standard)

IEEE Std 1609.12 Draft IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Identifier Allocations. December 9, 2015 (anticipated publication date)

3. TERMS AND DEFINITIONS

For the purposes of this standard, the following definitions, abbreviations, and acronyms apply.

3.1 Definitions

For the purposes of this standard, the following definitions shall apply.

3.1.1 ACTUATED OPERATION

A type of traffic control signal operation in which some or all signal phases are operated on the basis of actuation, e.g., detector inputs. A signal without any actuation runs on either fixed time or time of day operation. A signal may be semi-actuated as well.

3.1.2 APPROACH

All lanes of traffic moving towards an intersection or a midblock location from one direction, including any adjacent parking lane(s). In the context of this standard, an approach is an arbitrary collection of lanes used in the flow of traffic proceeding to an intersection or a midblock location. An approach is typically identified by its general flow, i.e., "the east-bound approach." In this standard, an approach consists of one or more motor vehicle lanes of travel, as well as possible pedestrian lanes, parking lanes, barriers, and other types of lane objects some of which cross the path of the motor vehicle travel. Approach is also used in certain messages to specify where one or more lanes begin, regardless of whether the lane is ingress or egress.

3.1.3 APPROACHING VEHICLE

An equipped vehicle whose trajectory will or may intersect the HV as the HV maintains its own trajectory.

3.1.4 BACK OFFICE (BO)

A back office infrastructure element that consumes data from, or provides data to, the roadside Infrastructure or other devices capable of V2X communications (e.g., vehicles).

3.1.5 BLOB

Binary large object, a term used in software to describe sequences of octets or bytes where any inner encoding or meaning is not visible.

3.1.6 CERTIFICATE AUTHORITY (CA)

A back office infrastructure element which interacts with the HV and the RSU to enter into a dialog with the HV and provide certification services. A primary goal of the CA is to manage the collection of certificates for V2X devices.

3.1.7 COMPUTED LANE

A lane drivable by motorized vehicle traffic which shares its path definition with another nearby lane at the same intersection. It is one of several types of basic lanes defined in the message set. The computed lane allows saving of message bytes used to express the geometric path of multiple lanes approaching an intersection with the same general path.

3.1.8 CONFLICT MONITOR

A device used to detect and respond to improper or conflicting signal indications and improper operating voltages in a traffic controller assembly.

3.1.9 CONTROLLER ASSEMBLY

A complete electrical device mounted in a cabinet for controlling the operation of a highway traffic signal.

3.1.10 CONTROLLER UNIT

That part of a controller assembly which is devoted to the selection and timing of the display of signal indications.

3.1.11 CROSSING VEHICLE

An equipped vehicle whose trajectory will or may intersect the HV as the HV changes its own trajectory to make a turning maneuver.

3.1.12 CYCLE

One complete sequence of signal indications.

3.1.13 CYCLE LENGTH

The duration of one complete sequence of signal indications. The cycle length is not generally fixed at actuated controllers.

3.1.14 DARK MODE

Dark mode indicates that all signal indications are off. Transmission of dark mode may commonly be associated with signalized intersections, ramp meters, lane control, beacons, and power shutdown. When using a SPAT message to convey a non-signalized all-way stop intersection, the dark mode indicates that the signage is missing for the particular approach(es).

3.1.15 DATA CONCEPT

Any of a group of data dictionary structures defined in this standard (e.g., data element, data element concept, entity type, property, value domain, data frame, or message) referring to abstractions or things in the natural world that can be identified with explicit boundaries and meaning and whose properties and behavior all follow the same rules.

3.1.16 DATA CONSUMER

Any entity in the ITS environment which consumes data.

3.1.17 DATA DICTIONARY

An information technology for documenting, storing and retrieving the syntactical form (i.e., representational form) and some usage semantics of data elements and other data concepts.

3.1.18 DATA ELEMENT

A syntactically formal representation of some single unit of information of interest (such as a fact, proposition, observation, etc.) with a singular instance value at any point in time, about some entity of interest (e.g., a person, place, process, property, object, concept, association, state, event). A data element is considered indivisible.

3.1.19 DATA FRAME

A data frame is a collection of two or more other data concepts in a known ordering. These data concepts may be simple (data elements) or complex (data frames). A construct composed entirely of an octet string is considered a data frame if the octet string represents two or more distinct data concepts.

3.1.20 DATA PLANE

The data plane is the component of an abstract telecommunications architecture containing the entities that exchange protocol data units that contain application data units with their peers at the various layers in the protocol stack.

3.1.21 DATA TYPE

Classification of a data element based upon how value contained is to be interpreted in operations defined for the data element.

3.1.22 DIALOG

A sequence of two or more messages which are exchanged in a known sequence and format (typically of a request followed by one or more replies) between the parties.

3.1.23 DISABLED VEHICLE

A vehicle that is not longer operating as intended (e.g., the engine stopped working). Such a vehicle may be moving or may be stationary.

3.1.24 DISTINGUISHED ENCODING RULES

A variant of ASN BER encoding used by the 2009 edition of this standard.

3.1.25 DRIVER

The human operating an equipped vehicle used in any role, typically the start or end point of a use case in which the driver is alerted to an event or takes some action. The precise means of delivery for driver alerts within each vehicle's human-machine interface are beyond the scope of this effort. There is only one driver at any time within one vehicle. At this time, only drivers of equipped vehicles are included, as none of the current use cases requires interaction with non-equipped vehicles or their drivers.

3.1.26 DUAL-ARROW SIGNAL SECTION

A type of signal section designed to include both a yellow arrow and a green arrow.

3.1.27 EGRESS

Egress is the flow of vehicular or other types of traffic leaving an intersection on one or more of the defined lanes of travel.

3.1.28 ENCOUNTER

In the context of this standard, an encounter is an exchange of messages between two or more V2X-equipped devices (OBUs or RSUs) lasting for a brief period of time.

3.1.29 ENTITY

Anything of interest (such as a person, place, process, property, object, concept, association, state, event, etc.) within a given domain of discourse (in this case within the ITS domain of discourse).

3.1.30 ENTITY TYPE

An abstract type of structure defined in the ITS data registry but no longer used. There are no entity types defined in this standard.

3.1.31 FLASHING MODE

A mode of operation in which at least one traffic signal indication (but, more typically, all signal indications of the entire signalized intersection) in each vehicular signal face of a highway traffic signal is turned on and off repetitively. Refer to MUTCD 2009 for additional information (<http://mutcd.fhwa.dot.gov/>). Expressed in the terminology of the SPAT message, this is reflected in the descriptions of signal states of the affected lanes (in that movement) being set to red or yellow flashing.

3.1.32 FLEET VEHICLE

An equipped vehicle which is part of a collection of vehicles owned or operated by a common entity, public or private.

3.1.33 FULL-ACTUATED OPERATION

A type of traffic control signal operation in which all signal phases function on the basis of actuation.

3.1.34 FUNCTIONAL-AREA DATA DICTIONARY (FADD)

A data dictionary that is intended to standardize data element syntax, and semantics, within and among application areas within the same functional area. This V2X standard is a FADD.

3.1.35 HOST VEHICLE (HV)

The equipped vehicle about which a given use case may be constructed. The host vehicle (HV) can be a transmitting vehicle, or a receiving vehicle, or both; this distinction is made clear in the use case description. There is typically only one host vehicle in any use case.

3.1.36 INFRASTRUCTURE

Any roadside device or back office system that supports V2X communications flows (message exchanges), including, but not limited to, V2X RSU devices.

3.1.37 INGRESS

In the context of this standard, an ingress is a flow of vehicular or other types of traffic approaching an intersection on one or more of the defined lanes of travel.

3.1.38 INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

Systems that apply information technology to transportation challenges. ITS will often integrate components and users from many domains, both public and private. ITS improves transportation safety and mobility and enhances productivity through the integration of advanced communications technologies into the transportation infrastructure and in vehicles. Intelligent transportation systems (ITS) encompass a broad range of wireless and wire line communications-based information and electronics technologies. See more at: <https://www.its.dot.gov/index.htm>.

3.1.39 INTEROPERABILITY

The ability to share information among heterogeneous applications and systems.

3.1.40 INTERSECTION

In the context of this standard, an intersection is a nexus where two or more approaches meet and vehicles and other types of users may travel between the connecting links. If signalized, the modes of allowed travel are reflected in the signal phases, the geometry of the intersection, and local regulatory environment. This standard conveys some of this information in messages: specifically the MAP message conveys the road geometry, while the SPAT message conveys the current signal indication to control movement in the intersection.

3.1.41 INTERSECTION CONTROL BEACON

A beacon used only at an intersection to control two or more directions of travel.

3.1.42 INTERVAL

In the context of signal timing, the part of a signal cycle during which signal indications are stable and do not change. In the SPAT message, the current timing value for the remaining interval time estimate as well as the anticipated interval for yellow change interval is provided for each lane. Because signal interval times commonly change based on triggering events in many types of signaling systems, the value provided in the SPAT message may represent a minimal value that is extended and updated as the message is re-issued each time.

3.1.43 INTERVAL SEQUENCE

The order of appearance of signal indications during successive intervals of a signal cycle.

3.1.44 INTERNATIONAL TRAVELER INFORMATION SYSTEMS (ITIS)

The term commonly associated with the SAE J2540-2 standard for incident phrases developed by the SAE ATIS Committee in conjunction with ITE TMDD and other standards. This work contains a wide variety of standard phrases to describe incidents (i.e., a traffic accident) and is used throughout the ITS industry. The codes found there can be used for sorting and classifying types of incident events, as well as creating uniform human-readable phrases. ITIS phrases can also be freely mixed with text and used to describe incidents, accidents, weather reports, roadway signage, and other content types.

3.1.45 LANE

In the context of this standard, a lane is a portion of the transportation network (typically a section of roadway geometry) which is being described in terms of its centerline path and various attributes. In the V2X message set, the lane object is used to represent lanes. Lanes consist not only of sections of “drivable” roadway traversed by motor vehicles, but other types of lanes, including pedestrian and bicycle walkways, train tracks, transit lanes, and certain types of dividers and barriers. When used in describing an intersection, a lane is often defined for each possible path into and out of the intersection (e.g., within the MAP message). In use, the current signal phase (and therefore the allowed movements) that is applicable to that lane or its approach at a given point in time is provided in the SPAT message.

3.1.46 LANE-USE CONTROL SIGNAL

A signal face displaying signal indications to permit or prohibit the use of specific lanes of a roadway or to indicate the impending prohibition of such use.

3.1.47 LINK (RF)

A communications channel being used in support of application data transfer needs.

3.1.48 LINK (TRAFFIC)

A segment of a road network. A highway type of link is generally separated by one data collection node (such as an RSU or a vehicle detector station). Local road links tend to be defined by intersections with cross streets. Other common usages of the word “link,” such as those used in telecommunications, may also appear in the document.

3.1.49 LOCAL DEPLOYMENT

A local deployment is an embodiment of the V2X message set within a region that implements one or more V2X applications. Such deployments use the messages of the standard in conformant ways to exchange data. Such deployments may have additional information content defined in the regional extensions of the messages to handle needs which are unique.

3.1.50 MANAGEMENT PLANE

The collection of functions performed in support of the communication system operation, but not directly involved in passing application data.

3.1.51 MESSAGE

A well-structured set of data elements and data frames that can be sent as a unit between devices to convey some semantic meaning in the context of the in the context of pre-defined applications. Within Section 5 of this standard, each sub-section (e.g., 5.1) defines one message. The casual term “message type” often has the same meaning as “message” in this standard.

3.1.52 MESSAGE SET

A collection of messages based on the ITS functional area they pertain to. The collection of messages defined in this standard is a message set.

3.1.53 NETWORKING SERVICES

The collection of management plane and data plane functions at the network layer and transport layer.

3.1.54 OFFSET (PHASE)

Offset is the time lag for the cycle start of a coordinated signal. Quoting from the FHWA Signal Timing Manual, Chapter 6, Section 6.1 Terminology (Draft 3 version, development currently underway): “The time relationship between coordinated phases [and a] defined reference point and a defined master reference (master clock or sync pulse).” In other words, a local signal controller setting that references the start of the green to a common clock so the beginning of a green can be coordinated along a roadway to speed motorists along at a designed speed.

3.1.55 ON-BOARD UNIT

An on-board unit (OBU) is a vehicle-mounted V2X device used to transmit and receive a variety of message traffic to and from other V2X devices (other OBUs and RSUs). Among the message types and applications supported by this process are vehicle safety messages used to exchange information on each vehicle’s dynamic movements for coordination and safety, a primary subject of this standard.

3.1.56 OPERATOR

The human user of infrastructure or a back office, typically the start or end point of a flow or an event in which the operator is informed of some condition. Similar to the vehicle’s human-machine interface, the interface of the human operator with the physical equipment is beyond the scope of this effort. It is presumed that there will be multiple operators interfacing to the physical equipment. In most of the current use cases, the operator is passive in the flow of events; however, the use cases and flows support any business use case logic for the operator. Qualifiers such as road/roadway/infrastructure may be added.

3.1.57 PARKED VEHICLE

An equipped vehicle which is stationary, with a transmission state indicating that it will not move.

3.1.58 PEDESTRIAN CHANGE INTERVAL

An interval during which the flashing upraised hand (symbolizing DON'T WALK) signal indication is displayed, often also called the pedestrian clearance time. During this interval, the SPAT message indicates a DON'T WALK state for that pedestrian lane (along with an optional period of time remaining for this state).

3.1.59 PEDESTRIAN CLEARANCE TIME

The minimum time provided for a pedestrian crossing in a crosswalk, after leaving the curb or shoulder, to travel to the far side of the traveled way or to a median. During this interval, the SPAT message indicates a flashing DON'T WALK indication for that pedestrian lane (along with an optional period of time remaining for this state). The duration for such time intervals comes from MUTCD and is based on a rate of speed of 2 m/s.

3.1.60 PEDESTRIAN PHASE

The time during which a walking figure or word WALK is presented and the flashing DON'T WALK is presented. The pedestrian phase is the time interval of the pedestrian walk interval and the pedestrian change interval combined.

3.1.61 PEDESTRIAN WALK INTERVAL

An interval during which the walking person (symbolizing WALK) signal indication is displayed. When a verbal message is provided at an accessible pedestrian signal, the verbal message is "walk sign." During this interval, the SPAT messages indicates a WALK state for that pedestrian lane (along with an optional period of time remaining for this state and the subsequent pedestrian clearance state).

3.1.62 PERMISSIVE MODE

A mode of traffic control signal operation in which, when a circular green signal indication is displayed, left and/or right turns are permitted to be made after yielding to pedestrians and/or oncoming traffic.

3.1.63 PREEMPTION CONTROL

The transfer of normal operation of a traffic control signal to a special control mode of operation.

3.1.64 PRE-TIMED OPERATION

A type of traffic control signal operation in which none of the signal phases function on the basis of actuation. When such a signal operation is reflected in the SPAT message, the time intervals given for various signal phases are fixed and do not vary based on any form of actuation. Pre-timed operation may be fixed or based on time of day schedules.

3.1.65 PROTECTED MODE

A mode of traffic control signal operation in which left or right turns are permitted to be made when a left or right green arrow signal indication is displayed.

3.1.66 PROVIDER SERVICE IDENTIFIER (PSID)

A number that identifies a service provided by an application. PSID is defined in IEEE Std 1609.12.

3.1.67 PUBLIC SAFETY VEHICLE

An equipped vehicle actively engaged in public safety operations and announcing so to others. When not engaged in public safety operations, this role reverts to the behaviors associated with its basic vehicle class and type (typically a passenger vehicle). This type of vehicle is presumed to be equipped with an on-board unit specialized for public safety ("PSOBU") device.

3.1.68 RED CLEARANCE INTERVAL

An optional interval that follows a yellow change interval and precedes the next conflicting green interval.

3.1.69 REFERENCE LANE

A reference lane is a lane drivable by motorized vehicle traffic which also contains a detailed path definition of the lane's geometry (a center line path and width) as well as basic attributes (such as the allowed maneuvers) about the lane. The provided path data may optionally be reused with another nearby lane (a "computed lane") in the same intersection. It is one of several basic types of lanes defined in the message set.

3.1.70 REFERENCE POINT

A reference point is a complete set of values for latitude - longitude - and height above the reference ellipsoid which is used as an initial starting point for subsequent orthogonal offset X, Y, Z values from that point. All roadway geometry, maps of intersections, lane and curve descriptions, and other geometrical data that are encoded in this standard use a system of local reference points to index and offset the data that follows. Also called an anchor point.

3.1.71 REPORTING VEHICLE

An equipped vehicle which is providing some form of additional data to other vehicles or to the roadside Infrastructure.

3.1.72 REVERSING VEHICLE

An equipped vehicle in which the transmission is engaged to propel the vehicle backwards.

3.1.73 ROADSIDE UNIT

A roadside unit (RSU) is a V2X device used to transmit to, and receive from, V2X-equipped moving vehicles (OBUs). The RSU transmits from a fixed position on the roadside (which may be either a permanent installation or "temporary" equipment brought on-site for a period of time associated with an incident, road construction, or other event). Some RSUs have the ability to transmit signals with greater power than OBUs and some may have connectivity to other nodes or the Internet.

3.1.74 ROLES

These are the parts "played" by each actor in a given UML use case scenario, e.g., primary vehicle, nearby vehicle, approaching vehicles.

3.1.75 SEMI-ACTUATED OPERATION

A type of traffic control signal operation in which at least one, but not all, signal phases function on the basis of actuation.

3.1.76 SIGNAL HEAD

An assembly of one or more traffic signal lamps. One or more signal heads may be used to provide complementary indications to one or more approaches, which may cover multiple lanes. The definitive mapping to specific lanes can be determined by examining the SPAT and MAP fragment messages.

3.1.77 SIGNAL PHASE

The right-of-way, yellow change, and red clearance intervals in a cycle that are assigned to an independent traffic movement, or combination of movements. Each of these cycles is reflected in the SPAT message for the lanes that are part of the movement(s), along with its expected timing interval (which may be updated in signal systems that vary the time interval based on actuation or other methods).

3.1.78 SIGNAL SECTION

Two or more traffic control signals operating in signal coordination. Also called a signal system.

3.1.79 SIGNAL TIMING

The amount of time allocated for the display of a signal indication; slang.

3.1.80 SPAT

Signal phase and timing (SPAT) is a message type which describes the current state of a signal system and its phases and relates this to the specific lanes (and therefore to movements and approaches) in the intersection. It is used along with the MAP message to describe an intersection and its current and future control states.

3.1.81 SPLIT (PHASE)

In split phase operations opposing turn lanes are coordinated at differing times. For example, the east and west left turn movements would get green arrows at different times.

3.1.82 SPLIT (SIGNAL)

Signal split is a term having to do with coordinated signals. Signal split pertains to time allocated to the coordinated road versus the cross streets.

3.1.83 STABILITY CONTROL

A system which operates to prevent a car from sliding sideways under dynamic driving conditions.

3.1.84 STOP LINE

The stop line is a defined location along the path of the lane type where users (vehicles) are presumed to stop and come to rest, often found at the lane's edge leading to the center of the intersection. The stop line is used as the starting point to define the centerline path of a lane in the messages (with sets of offset points defining the path of the lane proceeding away from the stop line). While stop lines are normally considered for lanes describing motorized vehicle travel, they are also used on other forms of lanes (such as pedestrian walkway lanes) to describe the initial point of the path.

3.1.85 STOPPED VEHICLE

An equipped vehicle which is stationary but which remains in gear and able to move at any time.

3.1.86 SYNTAX

The structure of expressions in a language, and the rules governing the structure of a language.

3.1.87 TOWING VEHICLE

An equipped light passenger vehicle which is towing a trailer.

3.1.88 TRANSACTIONS

Bi-directional data exchanges between devices (RSUs and OBUs).

3.1.89 TRANSIT VEHICLE

An equipped vehicle engaged in Transit operations, e.g., a bus.

3.1.90 UNALIGNED PACKED ENCODING RULES

The variant of ASN PER encoding which is the default encoding for this standard.

3.1.91 UNAVAILABLE

In the context of this standard and in the context of a data concept definitions, the term unavailable shall mean that the value of this data concept could not be obtained for use in the message.

3.1.92 UN-EQUIPPED VEHICLE

A vehicle which is not equipped with an OBU device.

3.1.93 VEHICLE

In the context of this standard, all types of motor vehicles, including light passenger vehicles, heavy and freight vehicles, buses, special services vehicles (street sweepers, tow trucks, etc.), those vehicles used in public safety and response roles, and various “alternative” vehicles which may use public roadways, such as motorcycles, off-road heavy equipment, etc. For certain basic use cases in the current scope of work, non-motorized vehicle roles and pedestrian roles are also modeled as vehicles. It is expected that a more detailed breakdown will be required in time.

3.1.94 VEHICLE TYPE

In the context of standard, the vehicle type is a data element used to define overall gross size and mass of a vehicle. Observe that this definition differs from the (multiple other) vehicle types defined elsewhere in other standards used in the ITS.

3.1.95 WALK INTERVAL

An interval during which the walking person (symbolizing WALK) signal indication is displayed. When a verbal message is provided at an accessible pedestrian signal, the verbal message is “walk sign.”

3.1.96 WARNING BEACON

A beacon used only to supplement an appropriate warning or regulatory sign or marker.

3.1.97 WAVE DEVICE

A device which is conformant to wireless access for vehicular environment communication protocol.

3.1.98 YELLOW CHANGE INTERVAL

The first interval following the green interval during which the yellow signal indication is displayed. In the SPAT message, the fixed duration of the yellow change interval is (optionally) provided for each active lane being described.

3.2 Abbreviations and Acronyms

The terms, abbreviations, and acronyms cited below shall be a part of the terms of this standard (and of the other companion volumes and guides), unless specifically cited otherwise.

AAMVA	American Association of Motor Vehicle Administrators
ABS	Anti-Lock Braking System
ASC	Advanced Signal Controller
ASN	Abstract Syntax Notation Revision One, Also: ASN.1
ASTM	American Society for Testing and Materials
ATIS	Advanced Traveler Information Systems
ATMS	Advanced Transportation Management Systems

BER	Basic Encoding Rules
BLOB	Binary Large OBject
BSM	Basic Safety Message
BSW	Blind Spot Warning
CAM	Cooperative Awareness Message
CAN	Controller Area Network
CCC	Cooperative Cruise Control
CICAS-V	Cooperative Intersection Collision Avoidance System - Violation
CLW	Control Loss Warning
CRC	Cyclic Redundancy Code
CSR	Common Safety Request Message
DE	Data Element
DER	Distinguished Encoding Rules
DF	Data Frame
DGPS	Differential GPS (or GNSS)
DNPW	Do Not Pass Warning
DSRC	Dedicated Short Range Communications
DVIN	Driver-Vehicle Interface Notifier
EEBL	Emergency Electronic Brake Lights
EGUI	Engineering Graphical User Interface
ESS	Environmental Sensors Stations
EVA	Emergency Vehicle Alert Message
FCW	Forward Collision Warning
GES	General Estimates System
GID	Geographic Information Description
GMT	Greenwich Mean Time
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HMI	Human Machine Interface
HVPP	Host Vehicle Path Prediction

ICA	Intersection Collision Alert Message
IEEE	Institute of Electrical and Electronics Engineers
IM	Incident Management or Inter-Modal
IMA	Intersection Movement Assist
IP	Internet Protocol
IPv6	Internet Protocol Version 6
ISO	International Standards Organization
ITE	Institute of Transportation Engineers
ITIS	International Traveler Information Systems
JER	JSON Encoding Rules
JSON	JavaScript Object Notation
LCW	Lane Change Warning
LLC	Logical Link Control
LLH	Latitude, Longitude, Height, and Above the Ellipsoid
LRMS	Location Referencing Message System
LSB	Least Significant Bit
MAC	Medium Access Control
MAP	Map Data Message
MIB	Management Information Base
MIL	Malfunction Indicator Light (Check Engine Light)
MSB	Most Significant Bit
MSG	Message
NAP	Network Access Point
NEMA	National Electronics Manufacturers Association
NHSTA	National Highway Traffic Safety Administration
NMEA	National Marine Electronics Association
NTCIP	National Transportation Communications for ITS Protocols
NTRIP	Networked Transport of RTCM via Internet Protocol
OER	Octet Encoding Rules
OBE	On-Board Equipment

SAEJ2735.COM : Click to view the full PDF of j2735_202007

OBU	On-Board Unit
OEM	Original Equipment Manufacturer
OTA	Over-the-Air
PDM	Probe Data Management Message
PDU	Protocol Data Unit
PER	Packed Encoding Rules
PH	Path History
PHY	Physical Layer
PP	Path Prediction
PSID	Provider Service Identifier
PSN	Probe Segment Number
PVD	Probe Vehicle Data Message
RSA	Roadside Alert Message
RSU	Roadside Unit
RTCM	Radio Technical Commission for Maritime Services or RTCM Corrections Message
RTK	Real Time Kinematics
SC-104	Sub-Committee 104 of the RTCM
SDH	Sensor Data Handler
SDN	Service Delivery Node
SDO	Standards Developing Organizations or Standards Development Organization
SPAT	Signal Phase and Timing Message
SRM	Signal Request Message
SRS	Safety Restraint System or Supplemental Restraint System
SSM	Signal Status Message
SSP	Service-Specific Permissions
TA	Threat Arbitration
TC	Traction Control or Target Classification
TCIP	Transit Communications Interface Profiles
TCP	Transmission Control Protocol
TCS	Traction Control System

TIM	Traveler Information Message
TMDD	Traffic Management Data Dictionary
UDP	User Datagram Protocol
UPER	Unaligned Packed Encoding Rules
USDOT	United States Department of Transportation
UTC	Universal Coordinated Time
V2I	Vehicle-to-Infrastructure
V2P	Vehicle-to-Pedestrian
V2V	Vehicle-to-Vehicle
V2X	Vehicle to Any V2X Equipped Object
VIN	Vehicle Identification Number
VSC	Vehicle Safety Communications
VSC-2	Vehicle Safety Communications 2
WAVE	Wireless Access in Vehicular Environments
WSM	WAVE Short Message
WSMP	WSM Protocol
XER	XML Encoding Rules
XML	Extensible Markup Language

4. THE USE OF V2X MESSAGES IN APPLICATIONS

This section contains introductory material about this edition of SAE J2735, and background information on the rationale for the standard and the user needs which it was developed to meet. The general design approach used in the standard and a selection of topics which provide both informative and normative information about its use can be found in Section 11.

4.1 Introduction to V2X Goals and Objectives (Informative)

Public-sector organizations throughout the world have identified the need to reduce fatalities and serious injuries that result from vehicle crashes, as well as the need to reduce traffic congestion. The use of wireless and computer technologies in vehicles, and on the roadway infrastructure, have been identified as promising areas to provide solutions for these needs. Intelligent transportation system (ITS) planning in many regions of the world has therefore become focused on supporting applications that utilize a common platform to address three priorities:

1. Safety
2. Mobility
3. Commercial (or Private)

Safety applications, in particular, must be interoperable between vehicles from different manufacturers and between vehicles and roadway infrastructure within all the areas where the vehicle is likely to travel. These requirements for interoperability are also relevant to contemplated mobility applications. This SAE standard specifies messages, data frames and data elements to facilitate interoperability at the application layer.

The message set specified in this SAE standard can be used by an application to send information using V2X communications to peer instances of that application (for example, in a vehicle) to the other end (for example, in another vehicle). These lower layers of the protocol stack are defined and specified in standards developed by other Standards Development Organizations (SDOs). This standard defines the content and structure of messages exchanged between applications. A given SAE J2735 message is the payload of the next lower layer protocol, e.g., the WSM data as defined in IEEE 1609.3. The aggregate content of an over-the-air packet is determined jointly by all the protocols in the stack.

The following subsection provides an overview of V2X communications. The messages themselves are presented in Section 5. The particular message design techniques described in this standard have allowed for the construction of a dictionary of reusable, relevant data frames and data elements that support interoperability for currently envisioned applications. These techniques are also intended to expedite the development of messages to be defined in the future. The data frames are presented in Section 6 of this standard, and the data elements are specified in Section 7. Data concepts reused from other areas of ITS work or developed in support of regional needs are presented in Section 8. Data concepts which allow regional deployment to extend the standard in various ways are found in Section 9.

NOTE: Use of regional extensions is discouraged for security reasons (refer to SAE J2945/5, 2.7.5).

4.2 V2X Communications Overview (Informative)

While the data dictionary was originally developed for use over DSRC, other interfaces such as cellular-V2X using V2X sidelink as defined in 3GPP may be used, as well as traditional cellular networks, WiFi, and any other communications media that meet the requirements of the applications using the data dictionary.

4.2.1 WAVE Communications Overview

The wireless access for vehicular environment (WAVE) communications system is designed to enable vehicle-to-vehicle and vehicle-to/from-infrastructure communications in order to provide a common platform to achieve the safety, mobility and commercial priorities described in 4.1. Interoperability is a fundamental requirement of this common platform, and WAVE is designed to provide the required interoperable wireless networking services for transportation. As well, the WAVE system uniquely supports the high-availability, low-latency communications requirements of vehicle safety applications, such as pre-crash collision mitigation, intersection collision avoidance, and cooperative collision avoidance.

The physical layer (PHY) and the medium access control (MAC) layer of the WAVE system are specified in IEEE standard 802.11 or 3GPP standards (V2X sidelink), depending on which communications interface is being used. The system generally supports a MAC and PHY for each channel on which it operates. The range of this system is generally considered to be distances of less than 1000 m.

The IEEE 1609 family of standards is used along with the MAC and PHY layer standards to enable safety, mobility ,and other applications, including many that use the data dictionary in this SAE standard. IEEE 1609 supports a multi-channel system and includes specifications for channel coordination (1609.4), network and transport layers (1609.3), and data security (1609.2).

Two data exchange options (network and transport layer protocols) are identified in IEEE 1609.3: the wave short message protocol (WSMP) and IPv6 (with various transport layer protocols). IEEE 1609.3 also specifies services for applications and upper layers that use one or both of these two protocol stacks. WSMP is uniquely specified by IEEE 1609.3, and it supports both broadcast and unicast addressing. IEEE 1609.4 specifies channel coordination options that can be used in conjunction with IEEE 1609.3.

4.2.2 Security

IEEE 1609.2 specifies cryptographic data security services. These services include data signing and verification for authentication and integrity, as well as encryption and decryption using asymmetric public keys. To achieve end-to-end security, applications usually invoke these services directly. IEEE 1609.2 also indicates whether a participant in a V2X application is authorized to send certain data objects over the V2X communications interface using provider service identifier (PSID) and service specific permissions (SSP). The recommended design approach to design an SSP associated with a specific idea is defined in SAE J2945/5. The ASN.1 objects defined in this document do not contain security content or use indexes to SSP. Previous versions of SAE J2735 have included these SSP indexes within certain objects, but in this revision of the document, these indexes are not used by applications. In order to maintain backward compatibility, the fields have remained where previously defined, but the fields are set to zero and ignored upon reception.

In addition to IEEE 1609.2, when using IP-based interfaces, ISO 21177—which specifies features that support transport layer security (TLS) using 1609.2 certificates—may be used.

4.3 Philosophy of Message Design (Informative)

This document defines ASN.1 types as follows:

1. The smallest divisions of information content to be standardized are called data elements.
2. Data frames are the next, more complex data structures that contain data elements and other data frames.
3. The top level of complexity in the data structure is called a message, which contains one or more data frames or elements.

The data objects specified in this document are defined using abstract syntax notation revision one (ASN.1, referred to as ASN hereafter). These ASN modules follow the typical style used for message sets defined in ITS standards by SAE and the other SDOs engaged in V2X applications development. The complete ASN specification of the standard is available to developers to download at the SAE V2X support site (Appendix A).

4.4 Message Encoding (Normative)

Instantiations of ASN objects specified by this standard are encoded for transport using one of the standard sets of encoding rules available for ASN.1-defined objects (BER, DER, UPER, OER, XER, JER, etc.). The data dictionary has been optimized for UPER encoding in most cases. If the encoding is not specified by a corresponding application specification, UPER encoding shall be used.

4.5 Additional Data Dictionary Constraints (Informative)

In some cases, the use of the messages, data frames, and data elements defined in this standard, including the various system performance levels required, can be found in other standards such as SAE J2945/1.

5. MESSAGE SET

This section defines the precise structure of the messages defined by this standard.

All text in this clause is normative unless expressly marked otherwise. The definitions for each data object in this dictionary set is presented in the following sub clauses. The section titled “Use” provides a general overview of the data concept and broadly explains the informational concept and its intended use. It may also provide illustrative use cases. It may assert normative details regarding such use. In addition, each standard that makes use of the data concept may further constrain aspects of its use (for example defining a minimum accuracy level under given operational conditions). The ASN is presented in a section titled “ASN Representation” and is also available from SAE in a downloadable format. The ASN defines, at the least, the precise structural details of the data concept, such as precision and range of valid values. The section titled “Used By” provides a listing and a set of hyperlinks to other places in the document where this data concept is used. The section titled “Remarks” is used to provide additional information regarding the data concept, often denoting changes made to the concept from prior published editions.

The ASN definitions that follow are normative. While the majority of the normative content is reflected in the actual syntax of the ASN, some entries also have additional statements in the ASN comments which are also normative. In addition, the textual commentary provided with each entry (in sections marked “Use” and “Remarks”) may also provide additional normative restrictions on the proper use of the entry being described. Users of this standard seeking to be in conformance with it shall follow the normative text outlined here.

In this SAE data dictionary, all ASN entities are formally named data element (DE), data frame (DF), or message (MSG). This is the name that appears in the title of the section where the object is defined. When citing ASN entities in this and other documents, they should be referred to only by their proper names and not by the numerical index which they have, as that value will change over time as other entries are added or removed. For example, the ASN definition of DSRCmsgID, which is a data element, should be referred to by its formal name, which is DE_DSRC_MessageID.

The MessageFrame entry represents the top most entry of the data dictionary and contains data frame and data elements.

5.1 Message: MSG_MessageFrame (FRAME)

Use: The MessageFrame message is used to hold all the defined messages of this standard. Each of the defined messages in this standard has one or more selected locations where additional “regional information” can be inserted into data frames in the message. The methodology used to do this is further described in 11.2. The provided set of test messages are intended for testing use only. Note that the entire MSG_MessageFrame is encoded using the ecoding method specified in the corresponding application specification or using UPER if not specified.

SAENORM.COM : Click to view the full PDF of j2735-2007

ASN.1 Representation:

```
MessageFrame ::= SEQUENCE {
  messageId  MESSAGE-ID-AND-TYPE.&id({MessageTypes}),
  value      MESSAGE-ID-AND-TYPE.&Type({MessageTypes}{@.messageId}),
  ...
}

MESSAGE-ID-AND-TYPE ::= CLASS {
  &id      DSRCmsgID UNIQUE,
  &Type
} WITH SYNTAX {&Type IDENTIFIED BY &id}

MessageTypes MESSAGE-ID-AND-TYPE ::= {
  { BasicSafetyMessage      IDENTIFIED BY basicSafetyMessage      } |
  { MapData                IDENTIFIED BY mapData                } |
  { SPAT                  IDENTIFIED BY signalPhaseAndTimingMessage } |
  { CommonSafetyRequest    IDENTIFIED BY commonSafetyRequest    } |
  { EmergencyVehicleAlert IDENTIFIED BY emergencyVehicleAlert } |
  { IntersectionCollision IDENTIFIED BY intersectionCollision  } |
  { NMEAcorrections       IDENTIFIED BY nmeaCorrections       } |
  { ProbeDataManagement    IDENTIFIED BY probeDataManagement  } |
  { ProbeVehicleData       IDENTIFIED BY probeVehicleData    } |
  { RoadSideAlert          IDENTIFIED BY roadSideAlert        } |
  { RTCMcorrections        IDENTIFIED BY rtcmCorrections      } |
  { SignalRequestMessage   IDENTIFIED BY signalRequestMessage } |
  { SignalStatusMessage    IDENTIFIED BY signalStatusMessage  } |
  { TravelerInformation   IDENTIFIED BY travelerInformation  } |
  { PersonalSafetyMessage IDENTIFIED BY personalSafetyMessage } |
  { TestMessage00          IDENTIFIED BY testMessage00        } |
  { TestMessage01          IDENTIFIED BY testMessage01        } |
  { TestMessage02          IDENTIFIED BY testMessage02        } |
  { TestMessage03          IDENTIFIED BY testMessage03        } |
  { TestMessage04          IDENTIFIED BY testMessage04        } |
  { TestMessage05          IDENTIFIED BY testMessage05        } |
  { TestMessage06          IDENTIFIED BY testMessage06        } |
  { TestMessage07          IDENTIFIED BY testMessage07        } |
  { TestMessage08          IDENTIFIED BY testMessage08        } |
  { TestMessage09          IDENTIFIED BY testMessage09        } |
  { TestMessage10          IDENTIFIED BY testMessage10        } |
  { TestMessage11          IDENTIFIED BY testMessage11        } |
  { TestMessage12          IDENTIFIED BY testMessage12        } |
  { TestMessage13          IDENTIFIED BY testMessage13        } |
  { TestMessage14          IDENTIFIED BY testMessage14        } |
  { TestMessage15          IDENTIFIED BY testMessage15        } ,
  ... -- Expansion to be used only by the SAE V2X Core TC
}

-- Regional extensions support
REG-EXT-ID-AND-TYPE ::= CLASS {
  &id      RegionId UNIQUE,
  &Type
} WITH SYNTAX {&Type IDENTIFIED BY &id}

RegionalExtension {REG-EXT-ID-AND-TYPE : Set} ::= SEQUENCE {
  regionId    REG-EXT-ID-AND-TYPE.&id( {Set} ),
  regExtValue  REG-EXT-ID-AND-TYPE.&Type( {Set}{@regionId} )
}
```

Remarks: Use of regional extensions is discouraged for security reasons (refer to SAE J2945/5, 2.7.5).

5.2 Message: MSG_BasicSafetyMessage (BSM)

Use: The basic safety message (BSM) is used in a variety of applications to exchange safety data regarding vehicle state. This message is broadcast frequently to surrounding vehicles with data content as required by safety and other applications. Transmission rates are beyond the scope of this standard, but a rate 10 times per second is typical when congestion control algorithms do not prescribe a reduced rate. Part I data shall be included in every BSM. Part II data items are optional for a given BSM and are included as needed according to policies that are beyond the scope of this standard. A BSM without Part II optional content is a valid message.

ASN.1 Representation:

```
BasicSafetyMessage ::= SEQUENCE {
    -- Part I, Sent at all times with each message
    coreData      BSMcoreData,

    -- Part II Content
    partII        SEQUENCE (SIZE(1..8)) OF
                    PartIIContent {{ BSMpartIIExtension }} OPTIONAL,
    regional      SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-BasicSafetyMessage}} OPTIONAL,
    ...
}

-- BSM Part II content support
PARTII-EXT-ID-AND-TYPE ::= CLASS {
    &id      PartII-Id UNIQUE,
    &Type
} WITH SYNTAX {&Type IDENTIFIED BY &id}

PartIIContent { PARTII-EXT-ID-AND-TYPE: Set } ::= SEQUENCE {
    partII-Id      PARTII-EXT-ID-AND-TYPE.&id( {Set} ),
    partII-Value    PARTII-EXT-ID-AND-TYPE.&Type( {Set} {&partII-Id} )
}

PartII-Id ::= INTEGER (0..63)
vehicleSafetyExt      PartII-Id ::= 0    -- VehicleSafetyExtensions
specialVehicleExt     PartII-Id ::= 1    -- SpecialVehicleExtensions
supplementalVehicleExt PartII-Id ::= 2    -- SupplementalVehicleExtensions
-- NOTE: new registered Part II content IDs will be denoted here

-- In a given message there may be multiple extensions present
-- but at most one instance of each extension type.
BSMpartIIExtension PARTII-EXT-ID-AND-TYPE ::= {
    { VehicleSafetyExtensions      IDENTIFIED BY vehicleSafetyExt } |
    { SpecialVehicleExtensions    IDENTIFIED BY specialVehicleExt } |
    { SupplementalVehicleExtensions IDENTIFIED BY supplementalVehicleExt } ,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.3 Message: MSG_CommonSafetyRequest (CSR)

Use: The common safety request message provides a means by which a vehicle participating in the exchange of the basic safety message can unicast requests to other vehicles for additional information which it requires for the safety applications it is actively running. Responding vehicles will (or may) add this information to the appropriate place in the basic safety message when they broadcast it. Additional operational concepts are explained further in other standards.

Additional information (data elements and data frames) can be requested by this message to be placed into the Part II sections of the basic safety message (Part I contains selected information that is always present in every message without exception).

When a device receives a request for a data element it does not understand or support, or from a vehicle with a spatial position or heading that it may choose to ignore, then that request is simply ignored.

ASN.1 Representation:

```
CommonSafetyRequest ::= SEQUENCE {
    timeStamp      MinuteOfTheYear           OPTIONAL,
    msgCnt         MsgCount                 OPTIONAL,
    id             TemporaryID              OPTIONAL, -- targeted remote device
    requests       RequestedItemList,
    -- Note: Above no longer uses the same request as probe management
    regional       SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-CommonSafetyRequest}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.4 Message: MSG_EmergencyVehicleAlert (EVA)

Use: The emergency vehicle alert message is used to broadcast warning messages to surrounding vehicles that an emergency vehicle (typically an incident responder of some type) is operating in the vicinity and that additional caution is required. The message itself is built on the original ATIS roadside alert message which in turn uses the common ITIS phrase list to both describe the event and provide advice and recommendation for travelers. The emergency vehicle alert message appends to the message some additional data elements regarding the overall type of vehicle involved and other useful data. Note that this message can be used by both private and public response vehicles, and that the relative priority of each (as well as security certificates) is determined in the application layer.

ASN.1 Representation:

```
EmergencyVehicleAlert ::= SEQUENCE {
    timeStamp      MinuteOfTheYear           OPTIONAL,
    id             TemporaryID              OPTIONAL,
    rsaMsg         RoadSideAlert,
    -- the DSRCmsgID inside this
    -- data frame is set as per the
    -- RoadSideAlert.
    responseType   ResponseType             OPTIONAL,
    details        EmergencyDetails        OPTIONAL,
    -- Combines these 3 items:
    -- SirenInUse,
    -- LightbarInUse,
    -- MultiVehicleReponse,
    mass           VehicleMass             OPTIONAL,
    basicType     VehicleType             OPTIONAL,
    -- gross size and axle cnt
    -- type of vehicle and agency when known
    vehicleType    ITIS.VehicleGroupAffected OPTIONAL,
    responseEquip  ITIS.IncidentResponseEquipment OPTIONAL,
    responderType ITIS.ResponderGroupAffected OPTIONAL,
    regional       SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-EmergencyVehicleAlert}} OPTIONAL,
    ...
}
```

Remarks: The TemporaryID data element shall be sent only if the vehicle is to be identified to others. If a data element value is not known or will not be sent (because its presence is marked OPTIONAL in the ASN), then that data item will not be part of the message. The road side alert message shall be a valid message within the emergency vehicle message.

5.5 Message: MSG_IntersectionCollisionAvoidance (ICA)

Use: This message is intended to be used to broadcast to other V2X devices in the area a warning of a potential collision with a vehicle that is likely to be entering an intersection without the right of way. The sender may be either an equipped vehicle or another source such as the infrastructure.

ASN.1 Representation:

```
IntersectionCollision ::= SEQUENCE {
    msgCnt          MsgCount,
    id              TemporaryID,
    timeStamp       MinuteOfTheYear OPTIONAL,
    partOne         BSMcoreData OPTIONAL,
    path             PathHistory OPTIONAL,
    -- a set of recent path points forming a history
    pathPrediction PathPrediction OPTIONAL,
    -- the predicted path
    intersectionID IntersectionReferenceID,
    -- the applicable Intersection
    laneNumber      ApproachOrLane,
    -- the best estimate of the applicable Lane or Approach
    eventFlag       VehicleEventFlags,
    -- used to convey vehicle Panic Events,
    -- Set to indicate "Intersection Violation"
    regional        SEQUENCE (SIZE(1..4)) OF
                      RegionalExtension {{REGION.Reg-IntersectionCollision}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.6 Message: MSG_MapData (MAP)

Use: The MapData message is used to convey many types of geographic road information. At the current time, its primary use is to convey one or more intersection lane geometry maps within a single message. The map message content includes such items as complex intersection descriptions, road segment descriptions, high speed curve outlines (used in curve safety messages), and segments of roadway (used in some safety applications). A given single MapData message may convey descriptions of one or more geographic areas or intersections. The contents of this message involve defining the details of indexing systems that are in turn used by other messages to relate additional information (for example, the signal phase and timing via the SPAT message) to events at specific geographic locations on the roadway.

ASN.1 Representation:

```

MapData ::= SEQUENCE {
    timeStamp           MinuteOfTheYear OPTIONAL,
    msgIssueRevision    MsgCount,
    layerType           LayerType OPTIONAL,
    layerID              LayerID OPTIONAL,
    intersections        IntersectionGeometryList OPTIONAL,
    -- All Intersection definitions
    roadSegments         RoadSegmentList OPTIONAL,
    -- All roadway descriptions

    dataParameters       DataParameters OPTIONAL,
    -- Any meta data regarding the map contents

    restrictionList      RestrictionClassList OPTIONAL,
    -- Any restriction ID tables which have
    -- established for these map entries

    regional              SEQUENCE (SIZE(1..4)) OF
                           RegionalExtension {{REGION.Reg-MapData}} OPTIONAL,
                           }

-- NOTE:
-- Other map data will be added here as it is defined
-- Examples of the type of content to be added include
-- curve warnings, construction routes, etc.

...
}

```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.7 Message: MSG_NMEACorrections (NMEA)

Use: The NMEA Corrections message is used to encapsulate NMEA 183 style differential corrections for GPS/GNSS radio navigation signals as defined by the NMEA (National Marine Electronics Association) committee in its Protocol 0183 standard. Here, in the work of the SAE V2X Core Technical Committee, these messages are “wrapped” for transport on V2X media, and then can be re-constructed back into the final expected formats defined by the NMEA standard and used directly by GNSS to increase the absolute and relative accuracy estimates produced.

ASN.1 Representation:

```

NMEACorrections ::= SEQUENCE {
    timeStamp           MinuteOfTheYear OPTIONAL,
    rev                 NMEA-Revision OPTIONAL,
    -- the specific edition of the standard
    -- that is being sent, 4.x at the time of publication
    msg                 NMEA-MsgType OPTIONAL,
    -- the message and sub-message type, as
    -- defined in the revision being used

-- NOTE The message type is also in the payload expressed as a string,
    wdCount             ObjectCount OPTIONAL,
    -- a count of octets to follow
    -- observe that not all NMEA sentences are limited to 82 characters
    payload              NMEA-Payload,
    regional             SEQUENCE (SIZE(1..4)) OF
                           RegionalExtension {{REGION.Reg-NMEACorrections}} OPTIONAL,
                           }

...
}

```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: As a rule, NMEA 183 messages (called sentences in the NMEA work) are not used in V2X due to the inherently large size of expressing the data in a text format. This message primarily has use as an aid in debugging and it is for this reason that it is included in the standard. The NMEA 183 messages provide a means for private vendors to add their own messages (such messages all start with "\$P") and the developer is cautioned that such messages may not be interoperable with different vendors' GNSS devices. The newer NMEA 2000 standard, which involves a denser binary message format, may also be sent using this message. The NMEA 2000 standard operates over an SAE J1939 CAN bus protocol, but NMEA does not coordinate its messages with SAE in this regard.

5.8 Message: MSG_PersonalSafetyMessage (PSM)

Use: The Personal Safety Message (PSM) is used to broadcast safety data regarding the kinematic state of various types of Vulnerable Road Users (VRU), such as pedestrians, cyclists, or road workers. Data items which are optional are included in a PSM as needed according to policies that are beyond the scope of this standard.

This message is under development, and is included in this standard to support field trials. Changes in the specification of the message and/or its constituent elements may occur in the future.

ASN.1 Representation:

```
PersonalSafetyMessage ::= SEQUENCE {
    basicType                                PersonalDeviceUserType,
    secMark                                    DSecond,
    msgCnt                                     MsgCount,
    id                                         TemporaryID,
    position                                    Position3D, -- Lat, Long, Elevation
    accuracy                                    PositionalAccuracy,
    speed                                       Velocity,
    heading                                      Heading,
    accelSet                                    AccelerationSet4Way          OPTIONAL,
    pathHistory                                 PathHistory                  OPTIONAL,
    pathPrediction                             PathPrediction                OPTIONAL,
    propulsion                                  PropelledInformation        OPTIONAL,
    useState                                    PersonalDeviceUsageState    OPTIONAL,
    crossRequest                                PersonalCrossingRequest    OPTIONAL,
    crossState                                  PersonalCrossingInProgress  OPTIONAL,
    clusterSize                                 NumberOfParticipantsInCluster OPTIONAL,
    clusterRadius                               PersonalClusterRadius       OPTIONAL,
    eventResponderType                         PublicSafetyEventResponderWorkerType OPTIONAL,
    activityType                                PublicSafetyAndRoadWorkerActivity OPTIONAL,
    activitySubType                            PublicSafetyDirectingTrafficSubType OPTIONAL,
    assistType                                   PersonalAssistive            OPTIONAL,
    sizing                                       UserSizeAndBehaviour        OPTIONAL,
    attachment                                  Attachment                 OPTIONAL,
    attachmentRadius                           AttachmentRadius           OPTIONAL,
    animalType                                   AnimalType                 OPTIONAL,
    regional SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-PersonalSafetyMessage}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The optional PathPrediction field is only intended to be included when the PSM sender is traveling along a roadway; e.g., in a bicycle lane.

5.9 Message: MSG_ProbeDataManagement (PDM)

Use: The ProbeDataManagement message is used to control the type of data collected and sent by OBUs to the local RSU (also called a STA in some documents), taken at a defined snapshot event to define RSU coverage patterns such as the moment an OBU joins or becomes associated with an RSU and can send probe data.

ASN.1 Representation:

```
ProbeDataManagement ::= SEQUENCE {
    timeStamp                  MinuteOfTheYear OPTIONAL,
    sample                     Sample,
                                -- Identifies the vehicle
    directions                 HeadingSlice,
                                -- population affected by this
    term CHOICE {
        termtime                TermTime,
                                -- Terminate this management process
        termDistance              TermDistance
                                -- based on Time-to-Live
                                -- Terminate management process
                                -- based on Distance-to-Live
    },
    snapshot CHOICE {
        snapshotTime              SnapshotTime,
                                -- Collect snapshots based on Time
                                -- the value 0 indicates forever
        snapshotDistance          SnapshotDistance
                                -- Collect snapshots based on combination
                                -- of vehicle Speed and Distance
    },
    txInterval                 SecondOfTime,
    dataElements                VehicleStatusRequestList OPTIONAL,
                                -- Time Interval at which to send snapshots
                                -- Control data frames and associated
                                -- trigger thresholds to be changed
    regional                   SEQUENCE (SIZE(1..4)) OF
                                RegionalExtension [(REGION.Reg-ProbeDataManagement)} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The ProbeDataManagement message originates from the ATMS and its associated infrastructure and is used to control the types of information reported back to meet the needs of the ATMS and private users of the data.

5.10 Message: MSG_ProbeVehicleData (PVD)

Use: The probe vehicle message frame is defined below. The probe vehicle message is used to exchange status about a vehicle with other (typically RSU) V2X devices to collect vehicle traveling behaviors along a segment of road. The exchange of this message, as well as the event which caused the collection of various elements defined in the message, is defined elsewhere. In typical use, the reporting vehicle has collected one or more snapshots which it will send to RSUs along with information (the vector) about the point in time and space when the snapshot event occurred. Because snapshots within a limited range of time and space are related, some data compression is used in the message to reduce redundant information.

ASN.1 Representation:

```
ProbeVehicleData ::= SEQUENCE {
    timeStamp           OPTIONAL,
    segNum              OPTIONAL,
                                -- a short term Ident value
                                -- not used when ident is used
    probeID              OPTIONAL,
                                -- identity data for selected
                                -- types of vehicles
    startVector          FullPositionVector,    -- the space and time of
                                                -- transmission to the RSU
    vehicleType          VehicleClassification, -- type of vehicle,
    snapshots             SEQUENCE (SIZE(1..32)) OF Snapshot,
                                -- a seq of name-value pairs
                                -- along with the space and time
                                -- of the first measurement set
    regional              SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-ProbeVehicleData}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: At the time of writing additional probe vehicle messages are being developed that will allow control over what information is gathered and reported in a probe vehicle message. Builders are urged to consider these messages in their development of products using this message.

5.11 Message: MSG_RoadSideAlert (RSA)

Use: This message is used to send alerts for nearby hazards to travelers. Unlike many other messages which use the LRMS profiles to describe the areas affected, this message likely applies to the receiver by the very fact that it is received. In other words, it does not use LRMS. Typically transmitted via V2X, this message provides simple alerts to travelers (both in vehicle and portable devices). Typical example messages would be “bridge icing ahead” or “train coming” or “ambulances operating in the area.” The full range of ITIS phrases are supported here, but those dealing with mobile hazards, construction zones, and roadside events are expected to be most frequently used.

This message is for alerting about roadway hazards; not for vehicle cooperative communications, mayday, or other safety applications. It is generally presumed that each receiving device is aware of its own position and heading; but, it is neither a requirement to receive and understand these messages, nor is having a local base map.

The position section of the message gives a simple vector for where the hazard is located (fixed or moving) and can be used to filter some messages as being not applicable. Consider a “train approaching” message which indicates the train is in fact traveling away from the receiver. The basic information types themselves are represented in the standard ITIS codes sent only in their integer representation formats. This ITIS list is national in scope, never outdated (items can only be added), and in this use does not allow local additions. Refer to SAE J2540-2 for the complete code list. A priority level for the message is also sent, which may be matched to various other priorities in the cockpit to determine the order and type of message presentation to minimize driver distraction. Message transmission priority is typically handled in the IEEE 1609 standard layer in the application stack and is a function of the application type. A duration field provides a gross level for the range (distance) of applicability for the message over distance. For example, some messages are no longer meaningful to the traveler once the vehicle has moved a distance down the roadway link.

In many cases, a complex event is explained in the other supporting ATISmessages, and a linkage value is given when it's available.

ASN.1 Representation:

```
RoadSideAlert ::= SEQUENCE {
  msgCnt          MsgCount,
  timeStamp       MinuteOfTheYear OPTIONAL,
  typeEvent        ITIS. ITIScodes,
    -- a category and an item from that category
    -- all ITS stds use the same types here
    -- to explain the type of the
    -- alert/danger/hazard involved
  description      SEQUENCE (SIZE(1..8)) OF ITIS. ITIScodes OPTIONAL,
    -- up to eight ITIS code set entries to further
    -- describe the event, give advice, or any
    -- other ITIS codes
  priority         Priority OPTIONAL,
    -- the urgency of this message, a relative
    -- degree of merit compared with other
    -- similar messages for this type (not other
    -- messages being sent by the device), nor a
    -- priority of display urgency
  heading          HeadingSlice OPTIONAL,
    -- Applicable headings/direction
  extent           Extent OPTIONAL,
    -- the spatial distance over which this
    -- message applies and should be presented
    -- to the driver
  position          FullPositionVector OPTIONAL,
    -- a compact summary of the position,
    -- heading, speed, etc. of the
    -- event in question. Including stationary
    -- and wide area events.
  furtherInfoID    FurtherInfoID OPTIONAL,
    -- an index link to any other incident
    -- information data that may be available
    -- in the normal ATIS incident description
    -- or other messages
    -- 1~2 octets. in length
  regional          SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-RoadSideAlert}} OPTIONAL,
  ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

MSG [MSG_EmergencyVehicleAlert \(EVA\)](#) [<ASN>](#), and
MSG [MSG_MessageFrame \(FRAME\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: This message is also used as a building block for other V2X messages. When used in other public safety messages, additional elements may be appended to form new message types.

5.12 Message: MSG_RTCMcorrections (RTCM)

Use: The RTCM Corrections message is used to encapsulate RTCM differential corrections for GPS and other radio navigation signals as defined by the RTCM (Radio Technical Commission for Maritime Services) special committee number 104 in its various standards. These messages are “wrapped” for transport on the V2X media, and then can be re-constructed back into the final expected formats defined by the RTCM standard and used directly by various positioning systems to increase the absolute and relative accuracy estimates produced.

ASN.1 Representation:

```
RTCMcorrections ::= SEQUENCE {
  msgCnt          MsgCount,
  rev             RTCM-Revision,
    -- the specific edition of the standard
    -- that is being sent
  timeStamp        MinuteOfTheYear OPTIONAL,
    -- Observer position, if needed
  anchorPoint      FullPositionVector OPTIONAL,
    -- Precise ant position and noise data for a rover
  rtcmHeader       RTCMheader OPTIONAL,
    -- one or more RTCM messages
  msgs             RTCMmessageList,
  regional         SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-RTCMcorrections}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Observe that the transport layer details (preamble, CRC, etc.) as outlined in RTCM standard 10403.1 version 3.0 clause four are not sent in this message. In a similar fashion, the same framing information found in clause 4.2 of the RTCM standard 10402.3 (version 2.3) is not sent. These would be reconstituted after reception by a mobile device and before sending the resultant message to any positioning device expecting messages in such a format, as outlined in the RTCM recommendations found in clause four of each document. Also observe that the specific bit ordering of the transport message level used in the final message varies between RTCM version 3.x and that of version 2.3.

5.13 Message: MSG_SignalPhaseAndTiming Message (SPAT)

Use: The signal phase and timing (SPAT) message is used to convey the current status of one or more signalized intersections. Along with the MSG_MapData message (which describes a full geometric layout of an intersection), the receiver of this message can determine the state of the signal phasing and when the next expected phase will occur.

The SPAT message sends the current movement state of each active phase in the system as needed (such as values of what states are active and values at what time a state has begun/does begin earliest, is expected to begin most likely and will end latest). The state of inactive movements is not normally transmitted. Movements are mapped to specific approaches and connections of ingress to egress lanes and by use of the SignalGroupID in the MapData message.

The current signal preemption and priority status values (when present or active) are also sent. A more complete summary of any pending priority or preemption events can be found in the signal status message (SSM).

ASN.1 Representation:

```
SPAT ::= SEQUENCE {
  timeStamp      MinuteOfTheYear OPTIONAL,
  name           DescriptiveName OPTIONAL,
  -- human readable name for this collection
  -- to be used only in debug mode

  intersections IntersectionStateList,
  -- sets of SPAT data (one per intersection)

  -- If PrioritizationResponse data is required, it is found
  -- in the RegionalSPAT entry below

  regional        SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-SPAT}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.14 Message: MSG_SignalRequestMessage (SRM)

Use: The signal request message (SRM) is a message sent by a V2X-equipped entity (such as a vehicle) to the RSU in a signalized intersection. It is used for either a priority signal request or a preemption signal request depending on the way each request is set. Each request defines a path through the intersection which is desired in terms of lanes and approaches to be used. Each request can also contain the time of arrival and the expected duration of the service. Multiple requests to multiple intersections are supported. The requestor identifies itself in various ways (using methods supported by the RequestorDescription data frame), and its current speed, heading, and location can be placed in this structure as well. The specific request for service is typically based on previously decoding and examining the list of lanes and approaches for that intersection (sent in MAP messages). The outcome of all of the pending requests to a signal can be found in the signal status message (SSM), and may be reflected in the SPAT message contents if successful.

ASN.1 Representation:

```
SignalRequestMessage ::= SEQUENCE {
  timeStamp      MinuteOfTheYear OPTIONAL,
  second         DSecond OPTIONAL,
  sequenceNumber MsgCount OPTIONAL,

  requests       SignalRequestList OPTIONAL,
  -- Request Data for one or more signalized
  -- intersections that support SRM dialogs

  requestor      RequestorDescription,
  -- Requesting Device and other User Data
  -- contains vehicle ID (if from a vehicle)
  -- as well as type data and current position
  -- and may contain additional transit data

  regional        SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-SignalRequestMessage}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.15 Message: MSG_SignalStatusMessage (SSM)

Use: The signal status message is a message sent by an RSU in a signalized intersection. It is used to relate the current status of the signal and the collection of pending or active preemption or priority requests acknowledged by the controller. It is also used to send information about preemption or priority requests which were denied. This in turn allows a dialog acknowledgment mechanism between any requester and the signal controller. The data contained in this message allows other users to determine their “ranking” for any request they have made as well as to see the currently active events. When there have been no recently received requests for service messages, this message may not be sent. While the outcome of all pending requests to a signal can be found in the signal status message, the current active event (if any) will be reflected in the SPAT message contents.

ASN.1 Representation:

```
SignalStatusMessage ::= SEQUENCE {
    timeStamp          MinuteOfTheYear    OPTIONAL,
    second              DSecond,
    sequenceNumber     MsgCount        OPTIONAL,
      
    -- Status Data for one of more signalized intersections
    status              SignalStatusList,
    regional            SEQUENCE (SIZE(1..4)) OF
                        RegionalExtension {{REGION.Reg-SignalStatusMessage}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.16 Message: MSG_TravelerInformation Message (TIM)

Use: The traveler information message is used to send various types of information (advisory and road sign types) to equipped devices. It makes heavy use of the ITIS encoding system to send well known phrases, but allows limited text for local place names. The supported message types specify several sub-dialects of ITIS phrase patterns to further reduce the number of octets to be sent. The expressed messages are active at a precise start and duration period, which can be specified to a resolution of a minute. The affected local area can be expressed using either a radius system or one of the systems of short defined regions, similar to the way roadway geometry is defined in the MAP messages.

ASN.1 Representation:

```
TravelerInformation ::= SEQUENCE {
    msgCnt            MsgCount,
    timeStamp         MinuteOfTheYear    OPTIONAL,
    packetID          UniqueMSGID      OPTIONAL,
    urlB              URI-Base        OPTIONAL,
      
    -- A set of one or more self contained
    -- traveler information messages (frames)
    dataFrames        TravelerDataFrameList,
    regional          SEQUENCE (SIZE(1..4)) OF
                        RegionalExtension {{REGION.Reg-TravelerInformation}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

5.17 Message: MSG_TestMessages

Use: The set of TestMessage messages are used to provide expandable messages for local and regional deployment use. This is intended to support the development new message and information exchanges of their own within the common framework of the overall V2X message set and this data dictionary. A few common data elements are provided for consistency, while the remainder of the message content can be defined by the developer using the normal regional methods. It is anticipated that over time the concepts developed in these messages will migrate into the data dictionary and message set itself.

ASN.1 Representation:

```
TestMessage00 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage00}} OPTIONAL,
  ...
}

TestMessage01 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage01}} OPTIONAL,
  ...
}

TestMessage02 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage02}} OPTIONAL,
  ...
}

TestMessage03 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage03}} OPTIONAL,
  ...
}

TestMessage04 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage04}} OPTIONAL,
  ...
}

TestMessage05 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage05}} OPTIONAL,
  ...
}

TestMessage06 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage06}} OPTIONAL,
  ...
}

TestMessage07 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage07}} OPTIONAL,
  ...
}

TestMessage08 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage08}} OPTIONAL,
  ...
}

TestMessage09 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage09}} OPTIONAL,
  ...
}
```

```
TestMessage10 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage10}} OPTIONAL,
  ...
}
TestMessage11 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage11}} OPTIONAL,
  ...
}
TestMessage12 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage12}} OPTIONAL,
  ...
}
TestMessage13 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage13}} OPTIONAL,
  ...
}
TestMessage14 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage14}} OPTIONAL,
  ...
}
TestMessage15 ::= SEQUENCE {
  header  Header  OPTIONAL,
  regional  RegionalExtension {{REGION.Reg-TestMessage15}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that developers are free to create sub-message types within each defined message but that no further top level messages will be created. Note that this message set data dictionary provides no coordination between different regional deployments. The possibility of message structure conflict due to overlapping regions is left to the developers to detect and resolve. Like all messages defined in this standard, the end receiver device is under no obligation to decode or understand any message where the internal content is not known. However such reception shall not cause other functionality in the device to break. This is simply a restatement of the conformance rules expressed elsewhere applied to this type of message.

6. DATA FRAMES

This section defines the precise structure of data frames defined by this standard.

6.1 Data Frame: DF_AccelerationSet4Way

Use: This data frame is a set of acceleration values in three orthogonal directions of the vehicle and with yaw rotation rates, expressed as a structure. The positive longitudinal axis is to the front of the vehicle. The positive lateral axis is to the right side of the vehicle (facing forward). Positive yaw is to the right (clockwise). A positive vertical "z" axis is downward with the zero point at the bottom of the vehicle's tires. The frame of reference and axis of rotation used shall be accordance with that defined in Section 11 of this standard.

ASN.1 Representation:

```
AccelerationSet4Way ::= SEQUENCE {
  long Acceleration,           -- Along the Vehicle Longitudinal axis
  lat  Acceleration,           -- Along the Vehicle Lateral axis
  vert VerticalAcceleration,   -- Along the Vehicle Vertical axis
  yaw   YawRate
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_VehicleStatus	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.2 Data Frame: DF_AccelSteerYawRateConfidence

Use: The DF_AccelSteerYawRateConfidence data frame combines multiple related values.

ASN.1 Representation:

```
AccelSteerYawRateConfidence ::= SEQUENCE {
  yawRate           YawRateConfidence,
  acceleration      AccelerationConfidence,
  steeringWheelAngle SteeringWheelAngleConfidence
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ConfidenceSet](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.3 Data Frame: DF_AdvisorySpeed

Use: The DF_AdvisorySpeed data frame is used to convey a recommended traveling approach speed to an intersection from the message issuer to various travelers and vehicle types. Besides support for various eco-driving applications, this allows transmitting recommended speeds for specialty vehicles such as transit buses.

ASN.1 Representation:

```
AdvisorySpeed ::= SEQUENCE {
    type          AdvisorySpeedType,
    -- the type of advisory which this is.
    speed         SpeedAdvice OPTIONAL,
    -- See Section 11 for converting and translating speed
    -- expressed in mph into units of m/s
    -- This element is optional ONLY when superceded
    -- by the presence of a regional speed element found in
    -- Reg-AdvisorySpeed entry
    confidence   SpeedConfidence OPTIONAL,
    -- A confidence value for the above speed
    distance     ZoneLength OPTIONAL,
    -- Unit = 1 meter,
    -- The distance indicates the region for which the advised speed
    -- is recommended, it is specified upstream from the stop bar
    -- along the connected egressing lane
    class         RestrictionClassID OPTIONAL,
    -- the vehicle types to which it applies
    -- when absent, the AdvisorySpeed applies to
    -- all motor vehicle types
    regional     SEQUENCE (SIZE(1..4)) OF
                  RegionalExtension {{REGION.Reg-AdvisorySpeed}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AdvisorySpeedList](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.4 Data Frame: DF_AdvisorySpeedList

Use: The AdvisorySpeedList data frame consists of a list of AdvisorySpeed entries.

ASN.1 Representation:

```
AdvisorySpeedList ::= SEQUENCE (SIZE(1..16)) OF AdvisorySpeed
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementEvent](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.5 Data Frame: DF_AntennaOffsetSet

Use: The DF_AntennaOffsetSet data frame is a collection of three offset values in an orthogonal coordinate system which describe how far the electrical phase center of an antenna is in each axis from a nearby known anchor point in units of 1 cm. When the antenna being described is on a vehicle, the signed offset shall be in the coordinate system defined in 11.4.

ASN.1 Representation:

```
AntennaOffsetSet ::= SEQUENCE {
    antOffsetX  Offset-B12, -- a range of +- 20.47 meters
    antOffsetY  Offset-B09, -- a range of +- 2.55 meters
    antOffsetZ  Offset-B10  -- a range of +- 5.11 meters
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RTCMheader](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: In the prior editions of the standard (pre-2015), this was constructed as a BLOB; it has now been converted for UPER use and the ranges reset to conserve bits.

6.6 Data Frame: DF_ApproachOrLane

Use: The ApproachOrLane data frame is used to indicate a single approach or lane of interest. A typical use case would be to relate where a vehicle was located with respect to the indexing system used in a V2X map. Under many operational conditions the precise lane may be unknown, and it is typical to then indicate the approach. (The relationship between lane indexes and approach indexes is defined in the map.) A value of zero is used when the lane or approach is unknown. See the entries for each data concept for further details.

ASN.1 Representation:

```
ApproachOrLane ::= CHOICE {  
    approach  ApproachID,  
    lane      LaneID  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG IntersectionCollisionAvoidance \(ICA\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.7 Data Frame: DF_BrakeSystemStatus

Use: The Brake System Status data frame conveys a variety of information about the current brake and system control activity of the vehicle. The structure consist of a sequence of items which provide status flags for any active brakes per wheel, the traction control system, the anti-lock brake system, the stability control system, the brake boost system, and the auxiliary brake system.

ASN.1 Representation:

```
BrakeSystemStatus ::= SEQUENCE {  
    wheelBrakes      BrakeAppliedStatus,  
    traction         TractionControlStatus,  
    abs              AntiLockBrakeStatus,  
    scs              StabilityControlStatus,  
    brakeBoost       BrakeBoostApplied,  
    auxBrakes        AuxiliaryBrakeStatus  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_BSMcoreData](#) [<ASN>](#), and

DF [DF_VehicleStatus](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that when the state of a brake or system control changes it will not only be reflected in this data element, but might also be reflected in a flag within the event flags data element; for example in Part II of a basic safety message.

6.8 Data Frame: DF_BSMcoreData

Use: The DF_BSMcoreData data frame contains the critical core data elements deemed to be needed with every BSM issued. This data frame's contents are often referred to as the "BSM Part One," although it is reused in other places as well.

ASN.1 Representation:

```
BSMcoreData ::= SEQUENCE {
  msgCnt          MsgCount,
  id              TemporaryID,
  secMark         DSecond,
  lat              Latitude,
  long             Longitude,
  elev             Elevation,
  accuracy        PositionalAccuracy,
  transmission    TransmissionState,
  speed            Speed,
  heading          Heading,
  angle            SteeringWheelAngle,
  accelSet         AccelerationSet4Way,
  brakes           BrakeSystemStatus,
  size              VehicleSize
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

MSG [MSG_BasicSafetyMessage \(BSM\)](#) [<ASN>](#), and

MSG [MSG_IntersectionCollisionAvoidance \(ICA\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

6.9 Data Frame: DF_BumperHeights

Use: The DF Bumper Heights data frame conveys the height of the front and rear bumper of the vehicle or object (can also be used with trailers).

ASN.1 Representation:

```
BumperHeights ::= SEQUENCE {
  front      BumperHeight,
  rear       BumperHeight
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF [DF_TrailerUnitDescription](#) [<ASN>](#), and

DF [DF_VehicleData](#) [<ASN>](#), and

DF [DF_VehicleStatus](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

6.10 Data Frame: DF_Circle

Use: The Circle data frame used to define a circle centered at a given point and extended to the given radius. It is typically used to describe the location of signs so that the receiving vehicle can determine if the sign applies to them and their current path.

ASN.1 Representation:

```
Circle ::= SEQUENCE {
  center  Position3D,
  radius   Radius-B12,
  units    DistanceUnits
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_GeometricProjection](#) [<ASN>](#), and
DF [DF_ValidRegion](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: The values km and miles are typically used for wide area weather alert type uses.

6.11 Data Frame: DF_ComputedLane

Use: The DF_ComputedLane data frame is used to contain information needed to compute one lane from another (hence the name). This concept is used purely as a means of saving size in the message payload. The new lane is expressed as an X,Y offset from the first point of the source lane. It can be optionally rotated and scaled. Any attribute information found within the node of the source lane list cannot be changed and must be reused.

SAENORM.COM : Click to view the full PDF of J2735-202007

ASN.1 Representation:

```
ComputedLane ::= SEQUENCE {
  -- Data needed to create a computed lane
  referenceLaneId LaneID,
    -- the lane ID upon which this
    -- computed lane will be based
  -- Lane Offset in X and Y direction
  offsetXaxis CHOICE {
    small DrivenLineOffsetSm,
    large DrivenLineOffsetLg
  },
  offsetYaxis CHOICE {
    small DrivenLineOffsetSm,
    large DrivenLineOffsetLg
  },
    -- A path X offset value for translations of the
    -- path's points when creating translated lanes.
    -- The values found in the reference lane are
    -- all offset based on the X and Y values from
    -- the coordinates of the reference lane's
    -- initial path point.

  -- Lane Rotation
  rotateXY Angle OPTIONAL,
    -- A path rotation value for the entire lane
    -- Observe that this rotates the existing orientation
    -- of the referenced lane, it does not replace it.
    -- Rotation occurs about the initial path point.

  -- Lane Path Scale (zooming)
  scaleXaxis Scale-B12 OPTIONAL,
  scaleYaxis Scale-B12 OPTIONAL,
    -- value for translations or zooming of the path's
    -- points. The values found in the reference lane
    -- are all expanded or contracted based on the X
    -- and Y and width values from the coordinates of
    -- the reference lane's initial path point.
    -- The Z axis remains untouched.

  regional SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-ComputedLane}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeListXY <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The specified transformation shall be applied to the reference lane without any intermediary loss of precision (truncation). The order of the transformations shall be: the east-west and north-south offsets, the scaling factors, and finally the rotation.

6.12 Data Frame: DF_ConfidenceSet

Use: A set of various measurement confidence values about the vehicle or a moving V2X object.

ASN.1 Representation:

```
ConfidenceSet ::= SEQUENCE {
  accelConfidence          AccelSteerYawRateConfidence OPTIONAL,
  speedConfidence           SpeedandHeadingandThrottleConfidence OPTIONAL,
  timeConfidence            TimeConfidence OPTIONAL,
  posConfidence             PositionConfidenceSet OPTIONAL,
  steerConfidence           SteeringWheelAngleConfidence OPTIONAL,
  headingConfidence         HeadingConfidence OPTIONAL,
  throttleConfidence        ThrottleConfidence OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.13 Data Frame: DF_ConnectingLane

Use: The DF_ConnectingLane data concept ties a single lane to a single maneuver needed to reach it from another lane. It is typically used to connect the allowed maneuver from the end of a lane to the outbound lane so that these can be mapped to the SPAT message to which both lanes apply.

ASN.1 Representation:

```
ConnectingLane ::= SEQUENCE {
  lane      LaneID,      -- Index of the connecting lane
  maneuver  AllowedManeuvers OPTIONAL
                -- The Maneuver between
                -- the enclosing lane and this lane
                -- at the stop line to connect them
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Connection](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.14 Data Frame: DF_Connection

Use: The Connection data structure is used in the ConnectsToList data frame to provide data about how the stop line at the end of a single lane connects to another lane beyond its stop point. The ConnectingLane entry ties an outbound (egress) lane by its index to a valid single maneuver required to reach that outbound lane. The SignalGroupID maps this to a single SPAT index. (Note that more than one entry can exist for any given lane to handle admissible and protected conditions.) When present, the RestrictionClass can be used to further restrict this information to defined classes of users. The ConnectionID entry is used to provide an index to any dynamic clearance data that may be sent in another message. The entries for ConnectionID, IntersectionID, and RestrictionClassID are not expected to be used in most intersections.

ASN.1 Representation:

```
Connection ::= SEQUENCE {
  -- The subject lane connecting to this lane is:
  connectingLane   ConnectingLane,
                    -- The index of the connecting lane and also
                    -- the maneuver from the current lane to it
  remoteIntersection IntersectionReferenceID OPTIONAL,
                    -- This entry is only used when the
                    -- indicated connecting lane belongs
                    -- to another intersection layout. This
                    -- provides a means to create meshes of lanes

  -- SPAT mapping details at the stop line are:
  signalGroup      SignalGroupID OPTIONAL,
                    -- The matching signal group send by
                    -- the SPAT message for this lane/maneuver.
                    -- Shall be present unless the connectingLane
                    -- has no signal group (is un-signaled)
  userClass        RestrictionClassID OPTIONAL,
                    -- The Restriction Class of users this applies to
                    -- The use of some lane/maneuver and SignalGroupID
                    -- pairings are restricted to selected users.
                    -- When absent, the SignalGroupID applies to all

  -- Movement assist details are given by:
  connectionID     LaneConnectionID OPTIONAL
                    -- An optional connection index used to
                    -- relate this lane connection to any dynamic
                    -- clearance data in the SPAT. Note that
                    -- the index may be shared with other
                    -- connections if the clearance data is common
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ConnectsToList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The assignment of lanes in the connects To structure shall start with the leftmost lane from the vehicle perspective (the u-turn lane in some cases) followed by subsequent lanes in a clockwise assignment order. Therefore, the rightmost lane to which this lane connects would always be listed last. Note that this order is observed regardless of which side of the road vehicles use. If this structure is used in the lane description, then all valid lanes to which the subject lane connects shall be listed.

6.15 Data Frame: DF_ConnectionManeuverAssist

Use: The ConnectionManeuverAssist data frame contains information about the the dynamic flow of traffic for the lane(s) and maneuvers in question (as determined by the LaneConnectionID). Note that this information can be sent regarding any lane-to-lane movement; it need not be limited to the lanes with active (non-red) phases when sent.

ASN.1 Representation:

```
ConnectionManeuverAssist ::= SEQUENCE {
    connectionID
        LaneConnectionID,
        -- the common connectionID used by all lanes to which
        -- this data applies
        -- (this value traces to ConnectsTo entries in lanes)
    -- Expected Clearance Information
    queueLength
        ZoneLength OPTIONAL,
        -- Unit = 1 meter, 0 = no queue
        -- The distance from the stop line to the back
        -- edge of the last vehicle in the queue,
        -- as measured along the lane center line.
    availableStorageLength ZoneLength OPTIONAL,
        -- Unit = 1 meter, 0 = no space remains
        -- Distance (e.g., beginning from the downstream
        -- stop-line up to a given distance) with a high
        -- probability for successfully executing the
        -- connecting maneuver between the two lanes
        -- during the current cycle.
        -- Used for enhancing the awareness of vehicles
        -- to anticipate if they can pass the stop line
        -- of the lane. Used for optimizing the green wave,
        -- due to knowledge of vehicles waiting in front
        -- of a red light (downstream).
        -- The element nextTime in TimeChangeDetails
        -- in the containing data frame contains the next
        -- timemark at which an active phase is expected,
        -- a form of storage flush interval.
    waitOnStop
        WaitOnStopline OPTIONAL,
        -- If "true," the vehicles on this specific connecting
        -- maneuver have to stop on the stop-line and not
        -- to enter the collision area
    pedBicycleDetect
        PedestrianBicycleDetect OPTIONAL,
        -- true if ANY ped or bicycles are detected crossing
        -- the above lanes. Set to false ONLY if there is a
        -- high certainty that there are none present,
        -- otherwise element is not sent.
    regional SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-ConnectionManeuverAssist}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ManeuverAssistList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.16 Data Frame: DF_ConnectsToList

Use: The ConnectsToList data structure is used in the generic lane descriptions to provide a sequence of other defined lanes to which each lane connects beyond its stop point. See the Connection data frame entry for details. Note that this data frame is not used in some lane object types.

ASN.1 Representation:

```
ConnectsToList ::= SEQUENCE (SIZE(1..16)) OF Connection
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GenericLane <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The assignment of lanes in the connection structure shall start with the leftmost lane from the vehicle perspective (the u-turn lane in some cases) followed by subsequent lanes in a clockwise assignment order. Therefore, the rightmost lane to which this lane connects would always be listed last. Note that this order is observed regardless of which side of the road vehicles use. If this structure is used in the lane description, then all valid lanes to which the subject lane connects shall be listed.

6.17 Data Frame: DF_DataParameters

Use: The DataParameters data frame is used to provide basic (static) information on how a map fragment was processed or determined.

ASN.1 Representation:

```
DataParameters ::= SEQUENCE {
  processMethod    IA5String(SIZE(1..255)) OPTIONAL,
  processAgency    IA5String(SIZE(1..255)) OPTIONAL,
  lastCheckedDate IA5String(SIZE(1..255)) OPTIONAL,
  geoidUsed        IA5String(SIZE(1..255)) OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.18 Data Frame: DF_DDate

Use: The V2X style date is a compound value consisting of finite-length sequences of integers (not characters) of the form "yyyy, mm, dd" as defined below.

ASN.1 Representation:

```
DDate ::= SEQUENCE {
  year    DYear,
  month   DMonth,
  day     DDay
}
```

6.19 Data Frame: DF_DDateTime

Use: The V2X style date is a compound value consisting of finite-length sequences of integers (not characters) of the form "yyyy, mm, dd, hh, mm, ss (sss+)" as defined below.

ASN.1 Representation:

```
DDDateTime ::= SEQUENCE {
  year    DYear          OPTIONAL,
  month   DMonth        OPTIONAL,
  day     DDay          OPTIONAL,
  hour    DHour         OPTIONAL,
  minute  DMinute       OPTIONAL,
  second  DSecond        OPTIONAL,
  offset   DOffset        OPTIONAL -- time zone
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_FullPositionVector	<ASN> , and
DF	DF_ObstacleDetection	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that some elements of this structure may not be sent when not needed. At least one element shall be present.

6.20 Data Frame: DF_DFullTime

Use: The V2X style full time is derived from complete entry date-time but with the seconds and fraction of a second removed (these are typically sent in another part of the same message). The full time is defined as a compound value consisting of finite-length sequences of integers (not characters) of the form “yyyy, mm, dd, hh, mm” as defined below.

ASN.1 Representation:

```
DFullTime ::= SEQUENCE {
    year    DYear,
    month   DMonth,
    day     DDay,
    hour    DHour,
    minute  DMinute
}
```

6.21 Data Frame: DF_DMonthDay

Use: The V2X style month-day is a compound value consisting of finite-length sequences of integers (not characters) of the form “mm, dd” as defined below.

ASN.1 Representation:

```
DMonthDay ::= SEQUENCE {
    month   DMonth,
    day     DDay
}
```

6.22 Data Frame: DF_DTime

Use: The V2X style time is a compound value consisting of finite-length sequences of integers (not characters) of the form “hh, mm, ss (sss+) (offset)” as defined below. In V2X applications, there is no need to send the offset representing the local time zone, so the most common representation for the data frame occupies four payload octets and provides a resolution of 1 ms over a range of 1 day.

ASN.1 Representation:

```
DTime ::= SEQUENCE {
    hour    DHour,
    minute  DMinute,
    second  DSecond,
    offset   DOffset  OPTIONAL -- time zone
}
```

6.23 Data Frame: DF_DYearMonth

Use: The V2X style year-month is a compound value consisting of finite-length sequences of integers (not characters) of the form “yyyy, mm” as defined below.

ASN.1 Representation:

```
DYearMonth ::= SEQUENCE {  
    year    DYear,  
    month   DMonth  
}
```

6.24 Data Frame: DF_DisabledVehicle

Use: The DF_DisabledVehicle data frame provides a means for a vehicle (or other equipped device) to describe its operational status and gross location to others using a subset of the ITIS codes. This data frame is most typically used to send information about a disabled vehicle to others. The vehicle's various classification values are handled by other data elements found in the BSM Part II content.

ASN.1 Representation:

```
DisabledVehicle ::= SEQUENCE {  
    statusDetails    ITIS.ITIScodes(523..541),  
    -- Codes 532 to 541, as taken from J2540:  
    -- Disabled, etc.  
    -- stalled-vehicle (532),  
    -- abandoned-vehicle (533),  
    -- disabled-vehicle (534),  
    -- disabled-truck (535),  
    -- disabled-semi-trailer (536), --^ Alt: disabled  
    -- tractor-trailer  
    -- disabled-bus (537),  
    -- disabled-train (538),  
    -- vehicle-spun-out (539),  
    -- vehicle-on-fire (540),  
    -- vehicle-in-water (541),  
    locationDetails    ITIS.GenericLocations  OPTIONAL,  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [SupplementalVehicleExtensions](#) <ASN>. In addition, this item may be used by data structures in other ITS standards.

6.25 Data Frame: DF_EmergencyDetails

Use: The EmergencyDetails data element combines several bit level items into a structure for efficient transmission about the vehicle during a response call.

ASN.1 Representation:

```
EmergencyDetails ::= SEQUENCE {  
    notUsed    SSPindex,  
    -- always set to 0 and carries no meaning;  
    -- legacy field maintained for backward compatibility  
    sirenUse   SirenInUse,  
    lightsUse  LightbarInUse,  
    multi      MultiVehicleResponse,  
    events     PrivilegedEvents OPTIONAL,  
    responseType ResponseType OPTIONAL,  
    ...  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_SpecialVehicleExtensions	<ASN> , and
MSG	MSG_EmergencyVehicleAlert (EVA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.26 Data Frame: DF_EnabledLaneList

Use: The Enabled Lane List data frame is a sequence of lane IDs for lane objects that are activated in the current map configuration. These lanes, unlike most lanes, have their RevocableLane bit set to one (asserted). Such lanes are not considered to be part of the current map unless they are in the Enabled Lane List. This concept is used to describe all the possible regulatory states for a given physical lane. For example, it is not uncommon to enable or disable the ability to make a right hand turn on red during different periods of a day. Another similar example would be a lane which is used for driving during one period and where parking is allowed at another. Traditionally, this information is conveyed to the vehicle driver by local signage. By using the Enabled Lane List data frame in conjunction with the RevocableLane bit and constructing a separate lane object in the intersection map for each different configuration, a single unified map can be developed and used. This overcomes the need to manage the process of sending different maps reflecting the then current configuration which was necessary in the 2009 edition of the standard, reducing the process to simply listing which lanes are then active in the current configuration.

ASN.1 Representation:

```
EnabledLaneList ::= SEQUENCE (SIZE(1..16)) OF LaneID
  -- The unique ID numbers for each
  -- lane object which is 'active'
  -- as part of the dynamic map contents.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionState](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.27 Data Frame: DF_EventDescription

Use: The EventDescription data frame provides a short summary of an event or incident. It is used by a sending device (often a public safety vehicle) to inform nearby equipped devices about an event or about the driving action the sending device is taking or is about to take. Typical use cases include such concepts as a slow moving vehicle as well as fire/police movement with flashing light details.

ASN.1 Representation:

```
EventDescription ::= SEQUENCE {
    typeEvent          ITIS.ITIScodes,
                        -- A category and an item from that category
                        -- all ITS stds use the same types here
                        -- to explain the type of the
                        -- alert/danger/hazard involved
    description        SEQUENCE (SIZE(1..8)) OF ITIS.ITIScodes OPTIONAL,
                        -- Up to eight ITIS code set entries to further
                        -- describe the event, give advice, or any
                        -- other ITIS codes
    priority           Priority OPTIONAL,
                        -- The urgency of this message, a relative
                        -- degree of merit compared with other
                        -- similar messages for this type (not other
                        -- messages being sent by the device), nor
                        -- is it a priority of display urgency
    heading            HeadingSlice OPTIONAL,
                        -- Applicable headings/direction
    extent             Extent OPTIONAL,
                        -- The spatial distance over which this
                        -- message applies and should be presented to the driver
    regional           SEQUENCE (SIZE(1..4)) OF
                        RegionalExtension {{REGION.Reg-EventDescription}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SpecialVehicleExtensions](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.28 Data Frame: DF_FullPositionVector

Use: A complete report of the vehicle's position, speed, and heading at an instant in time. Used in the probe vehicle message (and elsewhere) as the initial position information. Often followed by other data frames that may provide offset path data.

ASN.1 Representation:

```
FullPositionVector ::= SEQUENCE {
    utcTime            DDateTime OPTIONAL,      -- time with mSec precision
    long               Longitude,           -- 1/10th microdegree
    lat                Latitude,            -- 1/10th microdegree
    elevation          Elevation OPTIONAL,     -- units of 0.1 m
    heading            Heading OPTIONAL,
    speed              TransmissionAndSpeed OPTIONAL,
    posAccuracy        PositionalAccuracy OPTIONAL,
    timeConfidence    TimeConfidence OPTIONAL,
    posConfidence      PositionConfidenceSet OPTIONAL,
    speedConfidence   SpeedandHeadingandThrottleConfidence OPTIONAL,
    ...
}
```

Used By: This entry is directly used by the following six other data structures in this standard:

DF	DF_PathHistory	<ASN> , and
DF	DF_Snapshot	<ASN> , and
DF	DF_VehicleStatus	<ASN> , and
MSG	MSG_ProbeVehicleData (PVD)	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> , and
MSG	MSG_RTCMcorrections (RTCM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the 2006 edition of the standard, the first 2 octets were a DSecond followed by DFullTime in 6 octets. This produced a complete time value in 8 octets. In the 2009 edition (and reaffirmed in the 2015 edition), these have been re-ordered into a single value, that of DDateTime. This changes the ordering encoded over the air, and the ordering and the tags when expressed in ASN or in XML.

6.29 Data Frame: DF_GenericLane

Use: The GenericLane data frame is used for all types of lanes, e.g., motorized vehicle lanes, crosswalks, medians. The GenericLane describes the basic attribute information of the lane. The LaneID value for each lane is unique within an intersection. One use for the LaneID is in the SPAT message, where a given signal or movement phase is mapped to a set of applicable lanes using their respective LaneIDs. The NodeList2 data frame includes a sequence of offset points (or node points) representing the center line path of the lane. As described in this standard, node points are sets of variable sized delta orthogonal offsets from the prior point in the node path. (The initial point is offset from the LLH anchor point used in the intersection.) Each node point may convey optional attribute data as well. The use of attributes is described further in the Node definition, and in a later clause, but an example use would be to indicate a node point where the lane width changes.

It should be noted that a “lane” is an abstract concept that can describe objects other than motorized vehicle lanes, and that the generic lane structure (using features drawn from Japanese usage) also allows combining multiple physical lanes into a single lane object. In addition, such lanes can describe connectivity points with other lanes beyond a single intersection, extending such a lane description over multiple nearby physical intersections and side streets which themselves may not be equipped or assigned an index number in the regional intersection numbering system. (See the ConnectsTo entry for details.) This has value when describing a broader service area in terms of the roadway network, probably with less precision and detail.

ASN.1 Representation:

```
GenericLane ::= SEQUENCE {
  laneID
    LaneID,
    -- The unique ID number assigned
    -- to this lane object
  name
    DescriptiveName OPTIONAL,
    -- often for debug use only
    -- but at times used to name ped crossings
  ingressApproach
    ApproachID OPTIONAL, -- inbound
  egressApproach
    ApproachID OPTIONAL, -- outbound
  laneAttributes
    LaneAttributes,
    -- All Attribute information about
    -- the basic selected lane type
    -- Directions of use, Geometric co-sharing
    -- and Type Specific Attributes
    -- These Attributes are 'lane - global' that is,
    -- they are true for the entire length of the lane
  maneuvers
    AllowedManeuvers OPTIONAL,
    -- the permitted maneuvers for this lane
  nodeList
    NodeListXY,
    -- Lane spatial path information as well as
    -- various Attribute information along the node path
    -- Attributes found here are more general and may
    -- come and go over the length of the lane.
  connectsTo
    ConnectsToList OPTIONAL,
    -- a list of other lanes and their signal group IDs
    -- each connecting lane and its signal group ID
    -- is given, therefore this element provides the
    -- information formerly in "signalGroups" in prior
    -- editions.
  overlays
    OverlayLaneList OPTIONAL,
    -- A list of any lanes which have spatial paths that
    -- overlay (run on top of, and not simply cross)
    -- the path of this lane when used. An overlay
    -- for one lane can be applied to parallel lanes
    -- without repeating OverlayLaneList for each GenericLane
    -- entry.

  regional  SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-GenericLane}} OPTIONAL,
  ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_LaneList](#) [<ASN>](#), and
DF [DF_RoadLaneSetList](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the 2009 version of this standard, each lane type was specified in a distinct data frame, and there was no GenericLane data frame.

6.30 Data Frame: DF_GeographicalPath

Use: The DF_GeographicalPath data frame is used to support the cross-cutting need in many V2X messages to describe arbitrary spatial areas (polygons, boundary lines, and other basic shapes) required by various message types in a small message size. This data frame can describe a complex path or region of arbitrary size using either one of the two supported node offset methods (XY offsets or LL offsets), or using simple geometric projections. Both open and closed paths are supported, as well as a simple index and naming methodology.

ASN.1 Representation:

```
GeographicalPath ::= SEQUENCE {
    name          DescriptiveName          OPTIONAL,
    id            RoadSegmentReferenceID  OPTIONAL,
    anchor        Position3D          OPTIONAL,
    laneWidth     LaneWidth          OPTIONAL,
    directionality DirectionOfUse        OPTIONAL,
    closedPath    BOOLEAN            OPTIONAL,
    -- when true, last point closes to first
    direction     HeadingSlice        OPTIONAL,
    -- field of view over which this applies
    description CHOICE {
        path          OffsetSystem,
        -- The XYZ and LLH system of paths
        geometry      GeometricProjection,
        -- A projected circle from a point
        oldRegion    ValidRegion,
        -- Legacy method, no longer recommended for use
        ...
    } OPTIONAL,
    regional      SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-GeographicalPath}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.31 Data Frame: DF_GeometricProjection

Use: The DF_GeometricProjection data frame is used to describe various geometric spatial areas (circles and other basic shapes) required by various message types in a small message size.

ASN.1 Representation:

```
GeometricProjection ::= SEQUENCE {
    direction     HeadingSlice,
    -- field of view over which this applies,
    extent        Extent OPTIONAL,
    -- the spatial distance over which this
    -- message applies and should be presented
    laneWidth     LaneWidth OPTIONAL, -- used when a width is needed
    circle        Circle, -- A point and radius

    regional      SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-GeometricProjection}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GeographicalPath](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.32 Data Frame: DF_Header

Use: The DF_Header data frame is a set of basic time and sequence values used at the start of each TestMessage to provide such values in a consistent way.

ASN.1 Representation:

```
Header ::= SEQUENCE {
    -- Basic time and sequence values for the message
    year          DYear           OPTIONAL,
    timeStamp     MinuteOfTheYear OPTIONAL,
    secMark       DSecond        OPTIONAL,
    msgIssueRevision MsgCount    OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_TestMessages <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.33 Data Frame: DF_IntersectionAccessPoint

Use: The IntersectionAccessPoint data frame is used to specify the index of either a single approach or a single lane at which a service is needed. This is used, for example, with the signal request message (SRM) to indicate the inbound and outbound points by which the requestor (such as a public safety vehicle) can traverse an intersection.

ASN.1 Representation:

```
IntersectionAccessPoint ::= CHOICE {
    lane        LaneID,
    approach    ApproachID,
    connection  LaneConnectionID,
    ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_SignalRequest	<ASN> , and
DF	DF_SignalStatusPackage	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that the value of zero has a reserved meaning for these two indexing systems. In both cases, this value is used to indicate the concept of “none” in use. When the value is of zero is used here, it implies the center of the intersection itself. For example, requesting an outbound point of zero implies the requestor wishes to have the intersection itself be the destination. Alternatively, an inbound value of zero implies the requestor is within the intersection itself and wishes to depart for the outbound value provided. This special meaning for the value zero can be used in either the lane or approach with the same results.

6.34 Data Frame: DF_IntersectionGeometry

Use: A complete description of an intersection’s roadway geometry and its allowed navigational paths (independent of any additional regulatory restrictions that may apply over time or from user classification).

ASN.1 Representation:

```
IntersectionGeometry ::= SEQUENCE {
    name      DescriptiveName OPTIONAL,
                -- For debug use only
    id        IntersectionReferenceID,
                -- A globally unique value set,
                -- consisting of a regionID and
                -- intersection ID assignment
    revision   MsgCount,

    -- Required default values about lane descriptions follow
    refPoint   Position3D,   -- The reference from which subsequent
                            -- data points are offset until a new
                            -- point is used.
    laneWidth   LaneWidth OPTIONAL,
                -- Reference width used by all subsequent
                -- lanes unless a new width is given
    speedLimits SpeedLimitList OPTIONAL,
                -- Reference regulatory speed limits
                -- used by all subsequent
                -- lanes unless a new speed is given
                -- See Section 11 for converting and
                -- translating speed expressed in mph
                -- into units of m/s
    -- Complete details regarding each lane type in this intersection
    laneSet     LaneList,   -- Data about one or more lanes
                            -- (all lane data is found here)

    -- Data describing how to use and request preemption and
    -- priority services from this intersection (if supported)
    -- NOTE Additional data may be added in the next release of the
    -- standard at this point to handle this concept
    preemptPriorityData PreemptPriorityList OPTIONAL,
                        -- data about one or more regional
                        -- preempt or priority zones

    regional    SEQUENCE (SIZE(1..4)) OF
                RegionalExtension {{REGION.Reg-IntersectionGeometry}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionGeometryList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The PreemptZones and PriorityZones are used to relate each signal preempt and priority zone to a specific request values that a vehicle would use when making a request.

6.35 Data Frame: DF_IntersectionGeometryList

Use: The IntersectionGeometryList data frame consists of a list of IntersectionGeometry entries.

ASN.1 Representation:

```
IntersectionGeometryList ::= SEQUENCE (SIZE(1..32)) OF IntersectionGeometry
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.36 Data Frame: DF_IntersectionReferenceID

Use: The IntersectionReferenceID data frame conveys the combination of an optional RoadRegulatorID and of an IntersectionID that is unique within that region. When the RoadRegulatorID is present the IntersectionReferenceID is guaranteed to be globally unique.

ASN.1 Representation:

```
IntersectionReferenceID ::= SEQUENCE {
    region  RoadRegulatorID OPTIONAL,
        -- a globally unique regional assignment value
        -- typically assigned to a regional DOT authority
        -- the value zero shall be used for testing needs
    id      IntersectionID
        -- a unique mapping to the intersection
        -- in question within the above region of use
}
```

Used By: This entry is directly used by the following six other data structures in this standard:

DF	DF_Connection	<ASN> , and
DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_IntersectionState	<ASN> , and
DF	DF_SignalRequest	<ASN> , and
DF	DF_SignalStatus	<ASN> , and
MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: A fully qualified intersection consists of its regionally unique ID (the IntersectionID) and its region ID (the RoadRegulatorID). Taken together, these form a unique value which is never repeated.

6.37 Data Frame: DF_IntersectionState

Use: The IntersectionState data frame is used to convey all the SPAT information for a single intersection. Both current and future data can be sent.

ASN.1 Representation:

```
IntersectionState ::= SEQUENCE {
    name      DescriptiveName OPTIONAL,
        -- human readable name for intersection
        -- to be used only in debug mode
    id        IntersectionReferenceID,
        -- A globally unique value set, consisting of a
        -- regionID and intersection ID assignment
        -- provides a unique mapping to the
        -- intersection MAP in question
        -- which provides complete location
        -- and approach/move/lane data
    revision  MsgCount,
    status     IntersectionStatusObject,
        -- general status of the controller(s)
    moy       MinuteOfTheYear OPTIONAL,
        -- Minute of current UTC year
        -- used only with messages to be archived
    timeStamp DSecond OPTIONAL,
        -- the mSec point in the current UTC minute that
        -- this message was constructed
    enabledLanes EnabledLaneList OPTIONAL,
        -- a list of lanes where the RevocableLane bit
        -- has been set which are now active and
        -- therefore part of the current intersection
    states     MovementList,
        -- Each Movement is given in turn
        -- and contains its signal phase state,
        -- mapping to the lanes it applies to, and
        -- point in time it will end, and it
        -- may contain both active and future states
    maneuverAssistList ManeuverAssistList OPTIONAL,
        -- Assist data
    regional   SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-IntersectionState}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionStateList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.38 Data Frame: DF_IntersectionStateList

Use: The IntersectionStateList data frame consists of a list of IntersectionState entries.

ASN.1 Representation:

```
IntersectionStateList ::= SEQUENCE (SIZE(1..32)) OF IntersectionState
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_SignalPhaseAndTimingMessage \(SPAT\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.39 Data Frame: DF_ITIS_Phrase_ExitService

Use: A data frame to allow sequences of ITIS codes, short text strings, and numerical values to be expressed in the normal ITIS vocabulary method and pattern. Note that the allowed text strings are more limited than the normal ITIS format in order to conserve bandwidth. All ITIS phrase data, when encoded in a DER or UPER form, shall be expressed as integer values rather than their full text equivalents.

ASN.1 Representation:

```
ExitService ::= SEQUENCE (SIZE(1..16)) OF SEQUENCE {
  item CHOICE {
    itis  ITIS.ITIScodes,
    text  ITIStextPhrase
  }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.40 Data Frame: DF_ITIS_Phase_GenericSignage

Use: A data frame to allow sequences of ITIS codes, short text strings, and numerical values to be expressed in the normal ITIS vocabulary method and pattern. Note that the allowed text strings are more limited than the normal ITIS format in order to conserve bandwidth. All ITIS phrase data, when encoded in a DER or UPER form, shall be expressed as integer values rather than their full text equivalents.

ASN.1 Representation:

```
GenericSignage ::= SEQUENCE (SIZE(1..16)) OF SEQUENCE {
  item CHOICE {
    itis  ITIS.ITIScodes,
    text  ITIStextPhrase
  }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.41 Data Frame: DF_ITIS_Phase_SpeedLimit

Use: A data frame to allow sequences of ITIS codes, short text strings, and numerical values to be expressed in the normal ITIS vocabulary method and pattern. Note that the allowed text strings are more limited than the normal ITIS format in order to conserve bandwidth. All ITIS phrase data, when encoded in a DER or UPER form, shall be expressed as integer values rather than their full text equivalents.

ASN.1 Representation:

```
SpeedLimit ::= SEQUENCE (SIZE(1..16)) OF SEQUENCE {
  item CHOICE {
    itis  ITIS.ITIScodes,
    text  ITIStextPhrase
  }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.42 Data Frame: DF_ITIS_Phase_WorkZone

Use: A data frame to allow sequences of ITIS codes, short text strings, and numerical values to be expressed in the normal ITIS vocabulary method and pattern. Note that the allowed text strings are more limited than the normal ITIS format in order to conserve bandwidth. All ITIS phrase data, when encoded using UPER, shall be expressed as integer values rather than their full text equivalents.

ASN.1 Representation:

```
WorkZone ::= SEQUENCE (SIZE(1..16)) OF SEQUENCE {
  item CHOICE {
    itis  ITIS.ITIScodes,
    text  ITIStextPhrase
  }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.43 Data Frame: DF_J1939-Data Items

Use: This data frame used to sent various SAE J1939 defined data elements from the vehicle.

ASN.1 Representation:

```
J1939data ::= SEQUENCE {
  -- Tire conditions by tire
  tires          TireDataList          OPTIONAL,
  -- Vehicle Weights by axle
  axles          AxleWeightList        OPTIONAL,
  trailerWeight  TrailerWeight          OPTIONAL,
  cargoWeight    CargoWeight          OPTIONAL,
  steeringAxleTemperature SteeringAxleTemperature OPTIONAL,
  driveAxleLocation DriveAxleLocation OPTIONAL,
  driveAxleLiftAirPressure DriveAxleLiftAirPressure OPTIONAL,
  driveAxleTemperature DriveAxleTemperature OPTIONAL,
  driveAxleLubePressure DriveAxleLubePressure OPTIONAL,
  steeringAxleLubePressure SteeringAxleLubePressure OPTIONAL,
  ...
}
```

TireDataList ::= SEQUENCE (SIZE(1..16)) OF TireData

```
TireData ::= SEQUENCE {
  location       TireLocation          OPTIONAL,
  pressure       TirePressure          OPTIONAL,
  temp           TireTemp            OPTIONAL,
  wheelSensorStatus WheelSensorStatus OPTIONAL,
  wheelEndElectFault WheelEndElectFault OPTIONAL,
  leakageRate    TireLeakageRate        OPTIONAL,
  detection      TirePressureThresholdDetection OPTIONAL,
  ...
}
```

AxleWeightList ::= SEQUENCE (SIZE(1..16)) OF AxleWeightSet

```
AxleWeightSet ::= SEQUENCE {
  location       AxeLocation          OPTIONAL,
  weight         AxeWeight           OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.44 Data Frame: DF_LaneAttributes

Use: The DF_LaneAttributes data frame holds all of the constant attribute information of any lane object (as well as denoting the basic lane type itself) within a single structure. Constant attribute information are those values which do not change over the path of the lane, such as the direction of allowed travel. Other lane attribute information can change at or between each node.

The structure consists of three element parts as follows: LaneDirection specifies the allowed directions of travel, if any. LaneSharing indicates whether this lane type is shared with other types of travel modes or users. The lane type is defined in LaneTypeAttributes, along with additional attributes specific to that type.

The fundamental type of lane object is described by the element selected in the LaneTypeAttributes data concept. Additional information specific or unique to a given lane type can be found there as well. A regional extension is provided as well.

Note that combinations of regulatory maneuver information such as “both a left turn and straight ahead movement are allowed, but never a u-turn,” are expressed by the AllowedManeuvers data concept which typically follows after this element and in the same structure. Note that not all lane objects require this information (for example, a median). The various values are set via bit flags to indicate the assertion of a value. Each defined lane type contains the bit flags suitable for its application area.

Note that the concept of LaneSharing is used to indicate that there are other users of this lane with equal regulatory rights to occupy the lane (which is a term this standard does not formally define since it varies by world region). A typical case is a light rail vehicle running along the same lane path as motorized traffic. In such a case, motor traffic may be allowed equal access to the lane when a train is not present. Another case would be those intersection lanes (at the time of writing rather unusual) where bicycle traffic is given full and equal right of way to an entire width of motorized vehicle lane. This example would not be a bike lane or bike box in the traditional sense.

ASN.1 Representation:

```
LaneAttributes ::= SEQUENCE {
  directionalUse  LaneDirection,      -- directions of lane use
  sharedWith      LaneSharing,        -- co-users of the lane path
  laneType        LaneTypeAttributes, -- specific lane type data
  regional        RegionalExtension {{REGION.Reg-LaneAttributes}} OPTIONAL
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GenericLane <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.45 Data Frame: DF_LaneDataAttribute

Use: The data frame DF_LaneDataAttribute is used to relate an attribute and a control value at a node point or along a lane segment from an enumerated list of defined choices. It is then followed by a defined data value associated with it and which is defined elsewhere in this standard.

ASN.1 Representation:

```
LaneDataAttribute ::= CHOICE {
    -- Segment attribute types and the data needed for each
    pathEndPointAngle
        DeltaAngle,
        -- adjusts final point/width slant
        -- of the lane to align with the stop line
    laneCrownPointCenter
        RoadwayCrownAngle,
        -- sets the center of the road bed
        -- from centerline point
    laneCrownPointLeft
        RoadwayCrownAngle,
        -- sets the center of the road bed
        -- from left edge
    laneCrownPointRight
        RoadwayCrownAngle,
        -- sets the center of the road bed
        -- from right edge
    laneAngle
        MergeDivergeNodeAngle,
        -- the angle or direction of another lane
        -- this is required to support Japan style
        -- when a merge point angle is required
    speedLimits
        SpeedLimitList,
        -- Reference regulatory speed limits
        -- used by all segments

    -- Add others as needed, in regional space
    regional SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-LaneDataAttribute}},
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneDataAttributeList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: This data concept handles a variety of use case needs with a common and consistent message pattern. The typical use of this data concept (and several similar others) is to inject the selected attribute into the spatial description of a lane's center line path (the segment list). In this way, attribute information which is true for a portion of the overall lane can be described when needed. This attribute information applies from the node point in the stream of segment data until changed again. Denoting the porous aspects of a lane along its path as it merges with another lane would be an example of this use case. In this case the start and end node points would be followed by suitable segment attributes. Re-using a lane path (previously called a computed lane) is another example. In this case the reference lane to be re-used appears as a segment attribute followed by the lane value. It is then followed by one or more segment attributes which relate the positional translation factors to be used (offset, rotate, scale) and any further segment attribute changes.

6.46 Data Frame: DF_LaneDataAttributeList

Use: The LaneDataAttributeList data frame consists of a list of LaneDataAttribute entries.

ASN.1 Representation:

```
LaneDataAttributeList ::= SEQUENCE (SIZE(1..8)) OF LaneDataAttribute
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_NodeAttributeSetLL	<ASN> , and
DF	DF_NodeAttributeSetXY	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.47 Data Frame: DF_LaneList

Use: The LaneList data frame consists of a list of GenericLane entries.

ASN.1 Representation:

```
LaneList ::= SEQUENCE (SIZE(1..255)) OF GenericLane
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionGeometry](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.48 Data Frame: DF_LaneTypeAttributes

Use: The Lane Type Attributes data frame is used to hold attribute information specific to a given lane type. It is typically used in the DE_LaneAttributes data frame as part of an overall description of a lane object. Information unique to the specific type of lane is found here. Information common to lanes is expressed in other entries. The various values are set by bit flags to indicate the assertion of a value. Each defined lane type contains bit flags suitable for its application area.

ASN.1 Representation:

```
LaneTypeAttributes ::= CHOICE {
  vehicle      LaneAttributes-Vehicle,          -- motor vehicle lanes
  crosswalk    LaneAttributes-Crosswalk,        -- pedestrian crosswalks
  bikeLane     LaneAttributes-Bike,            -- bike lanes
  sidewalk      LaneAttributes-Sidewalk,        -- pedestrian sidewalk paths
  median        LaneAttributes-Barrier,        -- medians & channelization
  striping      LaneAttributes-Striping,        -- roadway markings
  trackedVehicle LaneAttributes-TrackedVehicle,  -- trains and trolleys
  parking       LaneAttributes-Parking,        -- parking and stopping lanes
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneAttributes](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.49 Data Frame: DF_ManeuverAssistList

Use: The ManeuverAssistList data frame consists of a list of ConnectionManeuverAssist entries.

ASN.1 Representation:

```
ManeuverAssistList ::= SEQUENCE (SIZE(1..16)) OF ConnectionManeuverAssist
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_IntersectionState	<ASN> , and
DF	DF_MovementState	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.50 Data Frame: DF_MovementEventList

Use: The MovementEventList data frame consists of a list of MovementEvent entries.

ASN.1 Representation:

```
MovementEventList ::= SEQUENCE (SIZE(1..16)) OF MovementEvent
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementState](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.51 Data Frame: DF_MovementEvent

Use: The MovementEvent data frame contains details about a single movement. It is used by the movement state to convey one of number of movements (typically occurring over a sequence of times) for a SignalGroupID.

ASN.1 Representation:

```
MovementEvent ::= SEQUENCE {
  eventState  MovementPhaseState,
    -- Consisting of:
    -- Phase state (the basic 11 states)
    -- Directional, protected, or permissive state

  timing      TimeChangeDetails OPTIONAL,
    -- Timing Data in UTC time stamps for event
    -- includes start and min/max end times of phase
    -- confidence and estimated next occurrence

  speeds      AdvisorySpeedList OPTIONAL,
    -- various speed advisories for use by
    -- general and specific types of vehicles
    -- supporting green-wave and other flow needs
    -- See Section 11 for converting and translating
    -- speed expressed in mph into units of m/s

  regional    SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-MovementEvent}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementEventList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.52 Data Frame: DF_MovementList

Use: The MovementList data frame consists of a list of MovementState entries.

ASN.1 Representation:

```
MovementList ::= SEQUENCE (SIZE(1..255)) OF MovementState
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionState <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.53 Data Frame: DF_MovementState

Use: The MovementState data frame is used to convey various information about the current or future movement state of a designated collection of one or more lanes of a common type. This is referred to as the GroupID. Note that lane object types supported include both motorized vehicle lanes as well as pedestrian lanes and dedicated rail and transit lanes. Of the reported data elements, the time to change (the time remaining in the current state) is often of the most value. Lanes with a common state (typically adjacent sets of lanes in an approach) in a signalized intersection will have individual lane values such as total vehicle counts, summed. It is used in the SPAT message to convey every active movement in a given intersection so that vehicles, when combined with certain map information, can determine the state of the signal phases.

ASN.1 Representation:

```
MovementState ::= SEQUENCE {
  movementName DescriptiveName OPTIONAL,
  -- uniquely defines movement by name
  -- human readable name for intersection
  -- to be used only in debug mode
  signalGroup SignalGroupID,
  -- the group id is used to map to lists
  -- of lanes (and their descriptions)
  -- which this MovementState data applies to
  -- see comments in the Remarks for usage details
  state-time-speed MovementEventList,
  -- Consisting of sets of movement data with:
  -- a) SignalPhaseState
  -- b) TimeChangeDetails, and
  -- c) AdvisorySpeeds (optional)
  -- Note one or more of the movement events may be for
  -- a future time and that this allows conveying multiple
  -- predictive phase and movement timing for various uses
  -- for the current signal group
  maneuverAssistList ManeuverAssistList OPTIONAL,
  -- This information may also be placed in the
  -- IntersectionState when common information applies to
  -- different lanes in the same way
  regional SEQUENCE (SIZE(1..4)) OF
  RegionalExtension {{REGION.Reg-MovementState}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that the value given for the time to change will vary in many actuated signalized intersections based on the sensor data received during the phase. The data transmitted always reflects the then most current timemark value (which is the point in UTC time when the change will occur). As an example, in a phase which may vary from 15 to 25 seconds of duration based on observed traffic flows, a time to change value of 15 seconds in the future might be transmitted for many consecutive seconds (and the time mark value extended for as much as 10 seconds depending on the extension time logic used by the controller before it either times out or gaps out), followed by a final time mark value reflecting the decreasing values as the time runs out, presuming the value was not again extended to a new time mark due to other detection events. The time to change element can therefore generally be regarded as a guaranteed minimum value of the time that will elapse unless a preemption event occurs.

In use, the SignalGroupID element is matched to lanes that are members of that ID. The type of lane (vehicle, crosswalk, etc.) is known by the lane description as well as its allowed maneuvers and any vehicle class restrictions. Every lane type is treated the same way (cross walks map to suitable meanings, etc.). Lane objects which are not part of the sequence of signalized lanes do not appear in any GroupID. The visual details of how a given signal phase is presented to a mobile user will vary based on lane type and with regional conventions. Not all signal states will be used in all regional deployments. For example, a pre-green visual indication is not generally found in U.S. deployments. Under such operating conditions, the unused phase states are simply skipped.

6.54 Data Frame: DF_Node_LL_24B

Use: A 24-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-24B ::= SEQUENCE {  
  -- ranges of +- 0.0002047 degrees  
  -- ranges of +- 22.634554 meters at the equator  
  lon  OffsetLL-B12,  
  lat  OffsetLL-B12  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.55 Data Frame: DF_Node_LL_28B

Use: A 28-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-28B ::= SEQUENCE {  
  -- ranges of +- 0.0008191 degrees  
  -- ranges of +- 90.571389 meters at the equator  
  lon  OffsetLL-B14,  
  lat  OffsetLL-B14  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.56 Data Frame: DF_Node_LL_32B

Use: A 32-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-32B ::= SEQUENCE {  
  -- ranges of +- 0.0032767 degrees  
  -- ranges of +- 362.31873 meters at the equator  
  lon  OffsetLL-B16,  
  lat  OffsetLL-B16  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.57 Data Frame: DF_Node_LL_36B

Use: A 36-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-36B ::= SEQUENCE {  
  -- ranges of +- 0.0131071 degrees  
  -- ranges of +- 01.449308 Kmeters at the equator  
  lon  OffsetLL-B18,  
  lat  OffsetLL-B18  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.58 Data Frame: DF_Node_LL_44B

Use: A 44-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-44B ::= SEQUENCE {
    -- ranges of +- 0.2097151 degrees
    -- ranges of +- 23.189096 Kmeters at the equator
    lon  OffsetLL-B22,
    lat  OffsetLL-B22
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.59 Data Frame: DF_Node_LL_48B

Use: A 48-bit node type with offset values from the last point in latitude and longitude form.

ASN.1 Representation:

```
Node-LL-48B ::= SEQUENCE {
    -- ranges of +- 0.8388607 degrees
    -- ranges of +- 92.756481 Kmeters at the equator
    lon  OffsetLL-B24,
    lat  OffsetLL-B24
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPoint_LL <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.60 Data Frame: DF_Node_LLmD_64b

Use: A 64-bit node type with lat-long values expressed in standard SAE 1/10th of a microdegree.

ASN.1 Representation:

```
Node-LLmD-64b ::= SEQUENCE {
    lon  Longitude,
    lat  Latitude
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_NodeOffsetPoint_LL	<ASN> , and
DF	DF_NodeOffsetPointXY	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.61 Data Frame: DF_Node_XY_20b

Use: A 20-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-20b ::= SEQUENCE {
    x  Offset-B10,
    y  Offset-B10
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPointXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.62 Data Frame: DF_Node_XY_22b

Use: A 22-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-22b ::= SEQUENCE {  
    x  Offset-B11,  
    y  Offset-B11  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPointXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.63 Data Frame: DF_Node_XY_24b

Use: A 24-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-24b ::= SEQUENCE {  
    x  Offset-B12,  
    y  Offset-B12  
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_NodeOffsetPointXY	<ASN> , and
DF	DF_TrailerHistoryPoint	<ASN> , and
DF	DF_TrailerUnitDescription	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.64 Data Frame: DF_Node_XY_26b

Use: A 26-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-26b ::= SEQUENCE {  
    x  Offset-B13,  
    y  Offset-B13  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPointXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.65 Data Frame: DF_Node_XY_28b

Use: A 28-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-28b ::= SEQUENCE {  
    x  Offset-B14,  
    y  Offset-B14  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPointXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.66 Data Frame: DF_Node_XY_32b

Use: A 32-bit node type with offset values from the last point in X and Y.

ASN.1 Representation:

```
Node-XY-32b ::= SEQUENCE {  
    x  Offset-B16,  
    y  Offset-B16  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeOffsetPointXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.67 Data Frame: DF_NodeAttributeLLLList

Use: The NodeAttributeLLLList data frame consists of a list of NodeAttributeLL entries.

ASN.1 Representation:

```
NodeAttributeLLLList ::= SEQUENCE (SIZE(1..8)) OF NodeAttributeLL
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeSetLL](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.68 Data Frame: DF_NodeAttributeSetLL

Use: The DF_NodeAttributeSetLL is a data frame used to convey one or more changes in the attribute set which occur at the node point at which it is used. Some of these attributes persist until the end of the lane or until changed again or turned off. Other attributes have a scope of use which is limited to the node in which they are found. Besides the basic attributes, optional data elements for increasing or decreasing the width and elevation values from the prior values are also provided.

ASN.1 Representation:

```
NodeAttributeSetLL ::= SEQUENCE {
    localNode      NodeAttributeLLLList OPTIONAL,
    -- Attribute states which pertain to this node point
    disabled       SegmentAttributeLLLList OPTIONAL,
    -- Attribute states which are disabled at this node point
    enabled        SegmentAttributeLLLList OPTIONAL,
    -- Attribute states which are enabled at this node point
    -- and which remain enabled until disabled or the lane ends
    data           LaneDataAttributeList OPTIONAL,
    -- Attributes which require an additional data values
    -- some of these are local to the node point, while others
    -- persist with the provided values until changed
    -- and this is indicated in each entry
    dWidth         Offset-B10 OPTIONAL,
    -- A value added to the current lane width
    -- at this node and from this node onwards, in 1cm steps
    -- lane width between nodes are a linear taper between pts
    -- the value of zero shall not be sent here
    dElevation     Offset-B10 OPTIONAL,
    -- A value added to the current Elevation
    -- at this node from this node onwards, in 10cm steps
    -- elevations between nodes are a linear taper between pts
    -- the value of zero shall not be sent here
    regional       SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-NodeAttributeSetLL}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeLL](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: See also [DF_NodeAttributeSetXY](#)

6.69 Data Frame: [DF_NodeAttributeSetXY](#)

Use: The [DF_NodeAttributeSetXY](#) is a data frame used to convey one or more changes in the attribute set which occur at the node point at which it is used. Some of these attributes persist until the end of the lane or until changed again or turned off. Other attributes have a scope of use which is limited to the node in which they are found. Besides the basic attributes, optional data elements for increasing or decreasing the width and elevation values from the prior values are also provided.

ASN.1 Representation:

```
NodeAttributeSetXY ::= SEQUENCE {
  localNode      NodeAttributeXYList OPTIONAL,
  -- Attribute states which pertain to this node point
  disabled       SegmentAttributeXYList OPTIONAL,
  -- Attribute states which are disabled at this node point
  enabled        SegmentAttributeXYList OPTIONAL,
  -- Attribute states which are enabled at this node point
  -- and which remain enabled until disabled or the lane ends
  data           LaneDataAttributeList OPTIONAL,
  -- Attributes which require an additional data values
  -- some of these are local to the node point, while others
  -- persist with the provided values until changed
  -- and this is indicated in each entry
  dWidth         Offset-B10 OPTIONAL,
  -- A value added to the current lane width
  -- at this node and from this node onwards, in 1cm steps
  -- lane width between nodes are a linear taper between pts
  -- the value of zero shall not be sent here
  dElevation     Offset-B10 OPTIONAL,
  -- A value added to the current Elevation
  -- at this node from this node onwards, in 10cm steps
  -- elevations between nodes are a linear taper between pts
  -- the value of zero shall not be sent here
  regional       SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-NodeAttributeSetXY}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: See also [DF_NodeAttributeSetLL](#).

6.70 Data Frame: [DF_NodeAttributeXYList](#)

Use: The [NodeAttributeXYList](#) data frame consists of a list of [NodeAttributeXY](#) entries.

ASN.1 Representation:

```
NodeAttributeXYList ::= SEQUENCE (SIZE(1..8)) OF NodeAttributeXY
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeSetXY](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.71 Data Frame: [DF_NodeListLL](#)

Use: The [NodeListLL](#) data structure provides the sequence of signed offset node point values for determining the latitude and longitude (and possibly elevation above the ellipsoid when present) using the then current [Position3D](#) object to build a path for the centerline of the subject lane type. Each LL point is referred to as a node point. The straight line paths between these points are referred to as segments. Note that these offsets are straight with respect to the LLH coordinate system, not a localized XYZ coordinate system. All nodes may have various optional attributes, the state of which can vary along the path and which are enabled and disabled by the sequence of objects found in the list of node structures. See the explanatory text in Section 11 for a description of how to correctly encode and decode this type of the data element.

ASN.1 Representation:

```
NodeListLL ::= CHOICE {
  nodes      NodeSetLL,
    -- a path made up of two or more
    -- LL node points and any attributes
    -- defined in those nodes
  -- Additional choices will be added in time
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_OffsetSystem](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: When describing a path, the first node is the one closest to the anchor point, typically chosen as the beginning point of a roadway segment. Typically, this is located on the stop line for lanes and approaches. For general geometric description needs, the starting point may be chosen arbitrarily to simply bound a region of interest. Subsequent offsets then describe the path, using the current zoom scale in combination with the offsets. The last node point may imply that path returns to the original anchor point (hence describing a closed path) or not depending on the context in which it is used.

6.72 Data Frame: DF_NodeListXY

Use: The NodeListXY data structure provides the sequence of signed offset node point values for determining the Xs and Ys (and possibly width or Zs when present), using the then current Position3D object to build a path for the centerline of the subject lane type. Each X,Y point is referred to as a node point. The straight line paths between these points are referred to as segments.

All nodes may have various optional attributes the state of which can vary along the path and which are enabled and disabled by the sequence of objects found in the list of node structures. See the explanatory text in Section 11 for a description of how to correctly encode and decode this type of the data element. As a simple example, a motor vehicle lane may have a section of the overall lane path marked "do not block," indicating that vehicles should not come to a stop and remain in that region. This is encoded in the Node data structures by an element in one node to indicate the start of the "do not block" lane attributes at a given offset, and then by a termination element when this attribute is set false. Other types of elements in the segment choice allow inserting attributes containing data values affecting the segment or the node.

ASN.1 Representation:

```
NodeListXY ::= CHOICE {
  nodes      NodeSetXY,
    -- a lane made up of two or more
    -- XY node points and any attributes
    -- defined in those nodes
  computed   ComputedLane,
    -- a lane path computed by translating
    -- the data defined by another lane
  ...
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_GenericLane	(ASN) , and
DF	DF_OffsetSystem	(ASN) , and
DF	DF_ShapePointSet	(ASN) .

In addition, this item may be used by data structures in other ITS standards.

Remarks: When describing a path, the first node is the one closest to the intersection for the lane or the beginning point in a roadway segment. Typically, this is located on the stop line for approaches. Safety applications can use this to identify their stop line without having to consult the intersection message. For egresses, the first node indicates where the outbound lane begins.

6.73 Data Frame: DF_NodeLL

Use: The DF_NodeLL data frame presents a structure to hold data for a signal node point in a lane. Each selected node has a latitude and longitude offset from the prior node point (or a complete lat-long representation in some cases), as well as optional attribute information. A lane node list is made up of a sequence of these to describe the lane path.

ASN.1 Representation:

```
NodeLL ::= SEQUENCE {
  delta      NodeOffsetPointLL,
  -- A choice of which Lat,Lon offset value to use
  -- this includes various delta values as well a regional choices
  attributes  NodeAttributeSetLL OPTIONAL,
  -- Any optional Attributes which are needed
  -- This includes changes to the current lane width and elevation
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeSetLL <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.74 Data Frame: DF_NodeOffsetPoint_LL

Use: The DF_NodeOffsetPointLL data frame presents a structure to hold different sized data frames for a single node geometry path. Nodes are described in terms of latitude and longitude offsets in units of 0.1 microdegrees (when the zoom scaling is set to 1:1). The choice of which node type is driven by the magnitude (size) of the offset data to be encoded. When the distance from the last node point is smaller or the required precision is less, the smaller entries can (and should) be chosen.

Each single selected node is computed as a latitude and longitude offset from the prior node point unless one of the entries reflecting a complete lat-long representation is selected. In this case, subsequent entries become offsets from that point. This ability was added for assistance with the development, storage, and back office exchange of messages where message size is not a concern and should not be sent over the air due to its additional message payload size.

The general usage guidance is to construct the content of each lane node point with the smallest possible element to conserve message size. However, using an element which is larger than needed is not a violation of the ASN.1 rules.

ASN.1 Representation:

```
NodeOffsetPointLL ::= CHOICE {
  -- Nodes with LL content      Span at the equator when using a zoom of one:
  node-LL1      Node-LL-24B,    -- within +- 22.634554 meters of last node
  node-LL2      Node-LL-28B,    -- within +- 90.571389 meters of last node
  node-LL3      Node-LL-32B,    -- within +- 362.31873 meters of last node
  node-LL4      Node-LL-36B,    -- within +- 01.449308 Kmeters of last node
  node-LL5      Node-LL-44B,    -- within +- 23.189096 Kmeters of last node
  node-LL6      Node-LL-48B,    -- within +- 92.756481 Kmeters of last node
  node-LatLon   Node-LLmD-64b,  -- node is a full 32b Lat/Lon range
  regional      RegionalExtension {{REGION.Reg-NodeOffsetPointLL}}
  -- node which follows is of a
  -- regional definition type
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeLL <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.75 Data Frame: DF_NodeOffsetPointXY

Use: The DF_NodeOffsetPointXY data frame presents a structure to hold different sized data frames for a single node point in a lane. Nodes are described in terms of X and Y offsets in units of 1 cm (when zoom is 1:1). Changes in elevation and in the lane width can be expressed in a similar way with the optional Attributes data entry which appears alongside the NodeOffsetPoint in use.

The choice of which node type is driven by the magnitude (size) of the offset data to be encoded. When the distance from the last node point is smaller, the smaller entries can (and should) be chosen

Each single selected node is computed as an X and Y offset from the prior node point unless one of the entries reflecting a complete lat-long representation is selected. In this case, subsequent entries become offsets from that point. This ability was added for assistance with the development, storage, and back office exchange of messages where message size is not a concern and should not be sent over the air due to its additional message payload size.

The general usage guidance is to construct the content of each lane node point with the smallest possible element to conserve message size. However, using an element which is larger than needed is not a violation of the ASN.1 rules.

ASN.1 Representation:

```
NodeOffsetPointXY ::= CHOICE {
  -- Nodes with X, Y content
  node-XY1      Node-XY-20b,      -- node is within 5.11m of last node
  node-XY2      Node-XY-22b,      -- node is within 10.23m of last node
  node-XY3      Node-XY-24b,      -- node is within 20.47m of last node
  node-XY4      Node-XY-26b,      -- node is within 40.96m of last node
  node-XY5      Node-XY-28b,      -- node is within 81.91m of last node
  node-XY6      Node-XY-32b,      -- node is within 327.67m of last node
  node-LatLon   Node-LImD-64b,    -- node is a full 32b Lat/Lon range
  regional      RegionalExtension {{REGION.Reg-NodeOffsetPointXY}}
                -- node which follows is of a
                -- regional definition type
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_NodeXY	<ASN> , and
DF	DF_REG_ConnectionManeuverAssist_EU	<ASN> , and
DF	DF_SignalHeadLocation_EU	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Was called NodeOffsetPoint in the April 2015 edition of the standard.

6.76 Data Frame: DF_NodeSetLL

Use: The NodeSetLL data frame consists of a list of NodeLL entries using LL offsets.

ASN.1 Representation:

```
NodeSetLL ::= SEQUENCE (SIZE(2..63)) OF NodeLL
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeListLL](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.77 Data Frame: DF_NodeSetXY

Use: The NodeSetXY data frame consists of a list of Node entries using XY offsets.

ASN.1 Representation:

```
NodeSetXY ::= SEQUENCE (SIZE(2..63)) OF NodeXY
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeListXY](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.78 Data Frame: DF_NodeXY

Use: The DF_NodeXY data frame presents a structure to hold data for a single node point in a path. Each selected node has an X and Y offset from the prior node point (or a complete lat-long representation in some cases) as well as optional attribute information. The node list for a lane (or other object) is made up of a sequence of these to describe the desired path. The X,Y points are selected to reflect the centerline of the path with sufficient accuracy for the intended applications. Simple lanes can be adequately described with only two node points, while lanes with curvature may require more points. Changes to the lane width and elevation can be expressed in the NodeAttributes entry, as well as various attributes that pertain to either the current node point or to one of more subsequent segments along the list of lane node points. As a broad concept, NodeAttributes are used to describe aspects of the lane that persist for only a portion of the overall lane path (either at a node or over a set of segments).

A further description of the use of the NodeOffsetPoint and the Attributes data concepts can be found in the data dictionary entries for each one. Note that each allows regional variants to be supported as well.

ASN.1 Representation:

```
NodeXY ::= SEQUENCE {
  delta      NodeOffsetPointXY,
  -- A choice of which X,Y offset value to use
  -- this includes various delta values as well as regional choices
  attributes  NodeAttributeSetXY OPTIONAL,
  -- Any optional Attributes which are needed
  -- This includes changes to the current lane width and elevation
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeSetXY](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.79 Data Frame: DF_ObstacleDetection

Use: The DF_ObstacleDetection data frame is used to relate basic location information about a detected obstacle or a road hazard in a vehicle's path.

ASN.1 Representation:

```
ObstacleDetection ::= SEQUENCE {
  obDist      ObstacleDistance,           -- Obstacle Distance
  obDirect    ObstacleDirection,         -- Obstacle Direction
  description  ITIS.ITIScodes(523..541) OPTIONAL, -- Uses a limited set of ITIS codes
  locationDetails ITIS.GenericLocations OPTIONAL,
  dateTime     DDateTime,                  -- Time detected
  vertEvent     VerticalAccelerationThreshold OPTIONAL,
  -- Any wheels which have
  -- exceeded the acceleration point
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.80 Data Frame: DF_OffsetSystem

Use: The DF_OffsetSystem data frame selects a sequence of node offsets described in either the X-Y offset method or the Lat-Long offset method. The sequence of node offsets then describes a path or polygon in the system selected. As a broad rule, the X-Y offset method is used to describe lanes, roadways and intersections over smaller areas of interest where coordinate systems can be considered flat and orthogonal. This system also supports an attribute description process. The Lat-Long offset method is used for describing larger distance spans when the curvature of the earth's surface can be a factor that must be accounted for. Both systems use one or more anchor points expressed in 0.1 microdegree units of the WGS-84 coordinate systems.

ASN.1 Representation:

```
OffsetSystem ::= SEQUENCE {
    scale      Zoom OPTIONAL,
    offset      CHOICE {
        xy        NodeListXY, -- offsets of 1.0 centimeters
        ll        NodeListLL   -- offsets of 0.1 microdegrees
    }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GeographicalPath <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.81 Data Frame: DF_OverlayLaneList

Use: The Overlay Lane List data frame is a sequence of lane IDs which refers to lane objects that overlap or overlay the current lane's spatial path.

ASN.1 Representation:

```
OverlayLaneList ::= SEQUENCE (SIZE(1..5)) OF LaneID
    -- The unique ID numbers for any lane object which have
    -- spatial paths that overlay (run on top of, and not
    -- simply cross with) the current lane.
    -- Such as a train path that overlays a motor vehicle
    -- lane object for a roadway segment.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GenericLane <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.82 Data Frame: DF_PathHistory

Use: The PathHistory data frame defines a geometric path reflecting time-tagged vehicle movement over some period of time and/or distance. A sequence of path history points is used along with an initial position (and the GNSS status at that time) to create a set of straight line segments representing the path.

The points present in the history represent a concise representation of the actual path history of the vehicle based on allowable position error tolerance between the actual vehicle path and its concise representation. This data frame allows creating a sequence of positions, typically a vehicle motion track, over a limited period of time or distance. These positions are each called PathHistoryPoint.

The initial anchor point shall be the initialPosition data frame or be provided in the message in which the PathHistory is sent (such as the BSM Part I). If the PathHistory is sent in a message which provides the full position vector or similar initial position data, then the optional initialPosition element shall not be sent.

The initial anchor point is used to create the offset values of the set. All path history points are older in time than the anchor point used. Each path history point is subtracted from the initial anchor point to create the offset values. The first point set in the message is the closest in time to the anchor point; older points follow in the order in which they were determined. Note that this methodology produces offsets where positive is in the south, west, and down directions. The sign of these offsets is inverted from conventions used elsewhere in this standard.

ASN.1 Representation:

```
PathHistory ::= SEQUENCE {
    initialPosition  FullPositionVector      OPTIONAL,
    currGNSSstatus   GNSSstatus           OPTIONAL,
    crumbData        PathHistoryPointList,
    ...
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_VehicleSafetyExtensions	<ASN> , and
MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards

6.83 Data Frame: DF_PathHistoryPointList

Use: The PathHistoryPointList data frame consists of a list of PathHistoryPoint entries. Note that implementations may use fewer than the maximum number of path history points allowed.

ASN.1 Representation:

```
PathHistoryPointList ::= SEQUENCE (SIZE(1..23)) OF PathHistoryPoint
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PathHistory](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.84 Data Frame: DF_PathHistoryPoint

Use: The PathHistoryPoint data frame is used to convey a single point in the path of an object (typically a motor vehicle) described as a sequence of such position points. The sequence and number of these points (defined in another data frame) is selected to convey the desired level of accuracy and precision required by the application.

The lat-long offset units used in the PathHistoryPointType data frame support units of 1/10th microdegrees of lat and long. The elevation offset units are in 10 cm units. The time is expressed in units of 10 ms. The PositionalAccuracy entry uses three elements to relate the pseudorange noise measured in the system. The heading and speed are not offset values, and follow the units defined in the ASN comments. All of these items are defined further in the relevant data entries.

ASN.1 Representation:

```
PathHistoryPoint ::= SEQUENCE {
    latOffset      OffsetLL-B18,
    lonOffset      OffsetLL-B18,
    elevationOffset VertOffset-B12,
    timeOffset     TimeOffset,
    -- Offset backwards in time
    speed          Speed           OPTIONAL,
    -- Speed over the reported period
    posAccuracy    PositionalAccuracy OPTIONAL,
    -- The accuracy of this value
    heading         CoarseHeading    OPTIONAL,
    -- overall heading
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PathHistoryPointList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.85 Data Frame: DF_PathPrediction

Use: The DF_PathPrediction data frame allows vehicles and other type of users to share their predicted path trajectory by estimating a future path of travel. This future trajectory estimation provides an indication of future positions of the transmitting vehicle and can significantly enhance in-lane and out-of-lane threat classification. Trajectories in the PathPrediction data element are represented by the RadiusOfCurvature element. The algorithmic approach and allowed error limits are defined in a relevant standard using the data frame. To help distinguish between steady state and non-steady state conditions, a confidence factor is included in the data element to provide an indication of signal accuracy due to rapid change in driver input. When driver input is in steady state (straight roadways or curves with a constant radius of curvature), a high confidence value is reported. During non-steady state conditions (curve transitions, lane changes, etc.), signal confidence is reduced.

ASN.1 Representation:

```
PathPrediction ::= SEQUENCE {
    radiusOfCurve RadiusOfCurvature,
    -- LSB units of 10cm
    -- straight path to use value of 32767
    confidence    Confidence,
    -- LSB units of 0.5 percent
    ...
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_VehicleSafetyExtensions	<ASN> , and
MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.86 Data Frame: DF_PivotPointDescription

Use: The DF_PivotPointDescription data frame is used to describe the geometric relationship between a vehicle and a trailer; or a dolly and another object to which it is connected. This point of connection can be fixed (non-pivoting) or can rotate in the horizontal plane at the connection point. The connection point itself is presumed to be along the centerline of the object in question. Rotation in the vertical plane (pitch and roll) is not modeled.

The offset of the PivotPointDescription is with respect to the length and tangential to the width of the object in question. It should be noted that the length and width values are typically sent in the same message in which the PivotPointDescription is used. Given the known length of an object, the magnitude and sign of the pivotOffset projects the point of connection/rotation along the object's centerline. If either of the objects pivots (has the element PivotingAllowed set true), the connection point pivots and the heading of the vehicle changes. The current angle between the two objects (one expressed with respect to the next) is provided by the pivotAngle entry. It should be noted that this is the only dynamic value when the vehicle is underway. It should also be noted that the heading and reported positions of the trailers are given with respect to the object in front of them. Only the lead vehicle and its BSM contain the absolute LLH and heading angle.

ASN.1 Representation:

```
PivotPointDescription ::= SEQUENCE {
    pivotOffset Offset-B11,
        -- This gives a +- 10m range from the edge of the outline
        -- measured from the edge of the length of this unit
        -- a negative value is offset to inside the units
        -- a positive value is offset beyond the unit
    pivotAngle Angle,
        -- Measured between the center-line of this unit
        -- and the unit ahead which is pulling it.
        -- This value is required to project the units relative position
    pivots PivotingAllowed,
        -- true if this unit can rotate about the pivot connection point
    ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_TrailerData](#) [<ASN>](#), and

DF [DF_TrailerUnitDescription](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

6.87 Data Frame: DF_Position3D

Use: The DF_Position3D data frame provides a precise location in the WGS-84 coordinate system, from which short offsets may be used to create additional data using a flat earth projection centered on this location. Position3D is typically used in the description of maps and intersections, as well as signs and traveler data.

ASN.1 Representation:

```
Position3D ::= SEQUENCE {
    lat Latitude,                                -- in 1/10th microdegrees
    long Longitude,                                -- in 1/10th microdegrees
    elevation Elevation OPTIONAL,                -- in 10 cm units
    regional SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-Position3D}} OPTIONAL,
    ...
}
```

Used By: This entry is directly used by the following nine other data structures in this standard:

DF	DF_Circle	<ASN> , and
DF	DF_GeographicalPath	<ASN> , and
DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_RegionPointSet	<ASN> , and
DF	DF_RequestorPositionVector	<ASN> , and
DF	DF_RoadSegment	<ASN> , and
DF	DF_RoadSignID	<ASN> , and
DF	DF_ShapePointSet	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: When used to describe paths, all subsequent offset values are added from this point (and thereafter from the prior point) or in order to determine the absolute position to be described.

6.88 Data Frame: DF_PositionalAccuracy

Use: The DF_PositionalAccuracy data frame consists of various parameters of quality used to model the accuracy of the positional determination with respect to each given axis.

ASN.1 Representation:

```
PositionalAccuracy ::= SEQUENCE {
  -- NMEA-183 values expressed in strict ASN form
  semiMajor      SemiMajorAxisAccuracy,
  semiMinor      SemiMinorAxisAccuracy,
  orientation    SemiMajorAxisOrientation
}
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
DF	DF_PathHistoryPoint	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the prior editions of the standard (pre-2015), this concept was constructed as a BLOB. It has now been converted for UPER use.

6.89 Data Frame: DF_PositionConfidenceSet

Use: The DF_PositionConfidenceSet data frame combines multiple related bit fields into a single concept.

ASN.1 Representation:

```
PositionConfidenceSet ::= SEQUENCE {
    pos      PositionConfidence, -- for both horizontal directions
    elevation ElevationConfidence
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_ConfidenceSet](#) [<ASN>](#), and

DF [DF_FullPositionVector](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the prior editions of the standard (pre-2015), this was constructed as a BLOB. It has now been converted for UPER use.

6.90 Data Frame: DF_PreemptPriorityList

Use: The DF_PreemptPriorityList data frame consists of a list of RegionalSignalControlZone entries.

ASN.1 Representation:

```
PreemptPriorityList ::= SEQUENCE (SIZE(1..32)) OF SignalControlZone

SignalControlZone ::= SEQUENCE {
    zone  RegionalExtension {{REGION.Reg-SignalControlZone}},
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionGeometry](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.91 Data Frame: DF_PrivilegedEvents

Use: The DF_PrivilegedEvents data frame provides a means to describe various public safety events. The information in this data frame (along with the BSM message in which it is sent) can be used to determine various aspects about the sender.

ASN.1 Representation:

```
PrivilegedEvents ::= SEQUENCE {

    notUsed SSPindex,
    -- always set to 0 and carries no meaning;
    -- legacy field maintained for backward compatibility
    -- The active event list
    event PrivilegedEventFlags,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_EmergencyDetails](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.92 Data Frame: DF_PropelledInformation

Use: The DF_PropelledInformation data frame relates details about type of propulsion that a VRU is being conveyed by.

ASN.1 Representation:

```
PropelledInformation ::= CHOICE {
    human  HumanPropelledType, -- PersonalDeviceUserType would be a aPEDESTRIAN
    animal  AnimalPropelledType,
    motor   MotorizedPropelledType,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.93 Data Frame: DF_RegionList

Use: The DF_RegionList data frame provides the sequence of signed offset values for determining the Xs and Ys (and possibly Zs, when present) using the then-current Position3D object to build a path to enclose a region.

ASN.1 Representation:

```
RegionList ::= SEQUENCE (SIZE(1..64)) OF RegionOffsets
    -- the Position3D ref point (starting point or anchor)
    -- is found in the outer object.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RegionPointSet <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: When describing a path, subsequent nodes provide points further and further away along the developed line. Include as many points as necessary to characterize curvature “within tolerance.”

6.94 Data Frame: DF_RegionOffsets

Use: The DF_RegionOffsets data frame provides one set of signed offset values for determining the Xs and Ys (and possibly Zs, when present) using the then-current reference point object (the Position3D used as the current anchor) to build a single point in a path. Typically, it is used to describe large enclosed regions.

ASN.1 Representation:

```
RegionOffsets ::= SEQUENCE {
    xOffset  OffsetLL-B16,
    yOffset  OffsetLL-B16,
    zOffset  OffsetLL-B16 OPTIONAL
        -- a1 in signed values where
        -- the LSB is in units of 1 meter
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RegionList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that while latitude, longitude, and elevation values are provided in the reference point with respect to the common geoid, these offsets are given in absolute distance (units of 1 m) of offset. When a value for zOffset is given, that value persists until changed again for additional nodes in the list.

6.95 Data Frame: DF_RegionPointSet

Use: The DF_RegionPointSet data frame is used to represent or describe an enclosed region. It is typically employed to define a region where signs or advisories would be valid.

ASN.1 Representation:

```
RegionPointSet ::= SEQUENCE {
    anchor      Position3D OPTIONAL,
    scale       Zoom OPTIONAL,
    nodeList    RegionList,
                -- path details of the regions outline
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ValidRegion](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.96 Data Frame: DF_RegulatorySpeedLimit

Use: The DF_RegulatorySpeedLimit data frame is used to convey a regulatory speed about a lane, lanes, or roadway segment.

ASN.1 Representation:

```
RegulatorySpeedLimit ::= SEQUENCE {
    type        SpeedLimitType,
                -- The type of regulatory speed which follows
    speed       Velocity
                -- The speed in units of 0.02 m/s
                -- See Section 11 for converting and translating
                -- speed expressed in mph into units of m/s
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SpeedLimitList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.97 Data Frame: DF_RequestedItem

Use: The DE_RequestedItemList data frame consists of a list of RequestedItem entries.

ASN.1 Representation:

```
RequestedItemList ::= SEQUENCE (SIZE(1..32)) OF RequestedItem
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_CommonSafetyRequest \(CSR\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.98 Data Frame: DF_RequestorDescription

Use: The DF_RequestorDescription data frame is used to provide identity information about a selected vehicle or users. This data frame is typically used with fleet type vehicles which can (or which must) safely release such information for use with probe measurements or with other interactions (such as a signal request).

ASN.1 Representation:

```
RequestorDescription ::= SEQUENCE {
    id
        VehicleID,
        -- The ID used in the BSM or CAM of the requestor
        -- This ID is presumed not to change
        -- during the exchange
    type
        RequestorType OPTIONAL,
        -- Information regarding all type and class data
        -- about the requesting vehicle
    position
        RequestorPositionVector OPTIONAL,
        -- The location of the requesting vehicle
    name
        DescriptiveName OPTIONAL,
        -- A human readable name for debugging use
    -- Support for Transit requests
    routeName
        DescriptiveName OPTIONAL,
        -- A string for transit operations use
    transitStatus
        TransitVehicleStatus OPTIONAL,
        -- current vehicle state (loading, etc.)
    transitOccupancy
        TransitVehicleOccupancy OPTIONAL,
        -- current vehicle occupancy
    transitSchedule
        DeltaTime OPTIONAL,
        -- current vehicle schedule adherence
    regional
        SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-RequestorDescription}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_SignalRequestMessage \(SRM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that the requestor description elements which are used when the request (the req) is made differ from those used when the status of an active or pending request is reported (the ack). Typically, when reporting the status to other parties, less information is required and only the temporaryID (contained in the VehicleID) and request number (a unique ID used in the orginal request) are used.

6.99 Data Frame: DF_RequestorPositionVector

Use: The DF_RequestorPositionVector data frame provides a report of the requestor's position, speed, and heading. Used by a vehicle or other type of user to request services and at other times when the larger FullPositionVector is not required.

ASN.1 Representation:

```
RequestorPositionVector ::= SEQUENCE {
    position
        Position3D,
    heading
        Angle OPTIONAL,
    speed
        TransmissionAndSpeed OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.100 Data Frame: DF_RequestorType

Use: The DF_RequestorType data frame is used when a V2X-equipped device is requesting service from another device. The most common use case is when a vehicle is requesting a signal preemption or priority service call from the signal controller in an intersection. This data frame provides the details of the requestor class taxonomy required to support the request. Depending on the precise use case and the local implementation, these details can vary considerably. As a result, besides the basic role of the vehicle, the other classification systems supported are optional. It should also be observed that often only a subset of the information in the RequestorType data frame is used to report the “results” of such a request to others. As an example, a police vehicle might request service based on being in a police vehicle role (and any further sub-type if required) and on the type of service call to which the vehicle is then responding (perhaps a greater degree of emergency than another type of call), placing these information elements in the RequestorType, which is then part of the signal request message (SRM). This allows the roadway operator to define suitable business rules regarding how to reply. When informing the requestor and other nearby drivers of the outcome, using the signal status message (SSM) message, only the fact that the preemption was granted or denied to some vehicle with a unique request ID is conveyed.

ASN.1 Representation:

```
RequestorType ::= SEQUENCE {
    -- Defines who is requesting
    role          BasicVehicleRole, -- Basic role of this user at this time
    subrole       RequestSubRole OPTIONAL, -- A local list with role based items

    -- Defines what kind of request (a level of importance in the Priority Scheme)
    request       RequestImportanceLevel OPTIONAL, -- A local list with request items

    -- Additional classification details
    iso3883       Iso3833VehicleType OPTIONAL,
    hpmsType      VehicleType OPTIONAL, -- HPMS classification types

    regional      RegionalExtension {{REGION.Reg-RequestorType}} OPTIONAL,
    ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	<u>DF_RequestorDescription</u>	<u><ASN></u> , and
DF	<u>DF_SignalRequesterInfo</u>	<u><ASN></u> .

In addition, this item may be used by data structures in other ITS standards.

6.101 Data Frame: DF_RestrictionClassAssignment

Use: The DF_RestrictionClassAssignment data frame is used to assign (or bind) a single RestrictionClassID data element to a list of all user classes to which it applies. A collection of these bindings is conveyed in the RestrictionClassList data frame in the MAP message to travelers. The established index is then used in the lane object of the MAP message, in the ConnectTo data frame, to qualify to whom a signal group ID applies when it is sent by the SPAT message about a movement.

ASN.1 Representation:

```
RestrictionClassAssignment ::= SEQUENCE {
    id          RestrictionClassID,
    -- the unique value (within an intersection or local region)
    -- that is assigned to this group of users
    users       RestrictionUserTypeList
    -- The list of user types/classes
    -- to which this restriction ID applies
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RestrictionClassList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The overall RestrictionClass assignment process allows dynamic support within the framework of the common message set for the various special cases that some signalized intersections must support. While the assigned value needs to be unique only within the scope of the intersection that uses it, the resulting assignment lists will tend to be static and stable for regional deployment areas such as a metropolitan area based on their operational practices and needs.

6.102 Data Frame: DF_RestrictionClassList

Use: The DF_RestrictionClassList data frame is used to enumerate a list of user classes which belong to a given assigned index. The resulting collection is treated as a group by the signal controller when it issues movement data (signal phase information) with the GroupID for this group. This data frame is typically static for long periods of time (months) and conveyed to the user by means of the MAP message.

ASN.1 Representation:

```
RestrictionClassList ::= SEQUENCE (SIZE(1..254)) OF RestrictionClassAssignment
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The overall restriction class assignment process allows dynamic support within the framework of the common message set for the various special cases that some signalized intersections must support. While the assigned value needs to be unique only within the scope of the intersection that uses it, the resulting assignment lists will tend to be static and stable for regional deployment areas such as a metropolitan area based on their operational practices and needs.

6.103 Data Frame: DF_RestrictionUserTypeList

Use: The DF_RestrictionUserTypeList data frame consists of a list of RestrictionUserType entries.

ASN.1 Representation:

```
RestrictionUserTypeList ::= SEQUENCE (SIZE(1..16)) OF RestrictionUserType
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RestrictionClassAssignment](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.104 Data Frame: DF_RestrictionUserType

Use: The DF_RestrictionUserType data frame is used to provide a means to select one, and only one, user type or class from a number of well-known lists. The selected entry is then used in the overall restriction class assignment process to indicate that a given GroupID (a way of expressing a movement in the SPAT/MAP system) applies to (is restricted to) this class of user.

ASN.1 Representation:

```
RestrictionUserType ::= CHOICE {
  basicType   RestrictionAppliesTo,
    -- a set of the most commonly used types
  regional    SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-RestrictionUserType}},
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RestrictionUserTypeList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.105 Data Frame: DF_RoadLaneSetList

Use: The DF_RoadLaneSetList data frame consists of a list of GenericLane entries used to describe a segment of roadway.

ASN.1 Representation:

```
RoadLaneSetList ::= SEQUENCE (SIZE(1..255)) OF GenericLane
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RoadSegment](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.106 Data Frame: DF_RoadSegmentList

Use: The DF_RoadSegmentList data frame consists of a list of RoadSegment entries.

ASN.1 Representation:

```
RoadSegmentList ::= SEQUENCE (SIZE(1..32)) OF RoadSegment
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.107 Data Frame: DF_RoadSegmentReferenceID

Use: The DF_RoadSegmentReferenceID data frame is used to convey the RoadSegmentID which is unique to a given road segment of interest, and also the RoadRegulatorID assigned to the region in which it is operating (when required).

ASN.1 Representation:

```
RoadSegmentReferenceID ::= SEQUENCE {  
    region RoadRegulatorID OPTIONAL,  
        -- a globally unique regional assignment value  
        -- typically assigned to a regional DOT authority  
        -- the value zero shall be used for testing needs  
    id RoadSegmentID  
        -- a unique mapping to the road segment  
        -- in question within the above region of use  
        -- during its period of assignment and use  
        -- note that unlike intersectionID values,  
        -- this value can be reused by the region  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_GeographicalPath](#) [<ASN>](#), and

DF [DF_RoadSegment](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: A fully qualified road segment consists of its regionally unique ID (the RoadSegmentID) and its region ID (the RoadRegulatorID). Taken together, these form a unique value which is never repeated during the same period of time.

6.108 Data Frame: DF_RoadSegment

Use: The DF_RoadSegment data frame is a complete description of a RoadSegment including its geometry and its allowed navigational paths (independent of any additional regulatory restrictions that may apply over time or from user classification) and any current disruptions such as a work zone or incident event.

ASN.1 Representation:

```

RoadSegment ::= SEQUENCE {
  name      DescriptiveName OPTIONAL,
  id        RoadSegmentReferenceID,
              -- a globally unique value for the segment
  revision   MsgCount,
  -- Required default values about the descriptions to follow
  refPoint   Position3D, -- the reference from which subsequent
                      -- data points are offset until a new
                      -- point is used.
  laneWidth   LaneWidth OPTIONAL,
              -- Reference width used by all subsequent
              -- lanes unless a new width is given
  speedLimits SpeedLimitList OPTIONAL,
              -- Reference regulatory speed limits
              -- used by all subsequent
              -- lanes unless a new speed is given
              -- See Section 11 for converting and
              -- translating speed expressed in mph
              -- into units of m/s

  -- Data describing disruptions in the RoadSegment
  -- such as work zones etc will be added here;
  -- in the US the SAE ITIS codes would be used here
  -- The details regarding each lane type in the RoadSegment
  roadLaneSet RoadLaneSetList,

  regional    SEQUENCE (SIZE(1..4)) OF
                RegionalExtension {{REGION.Reg-RoadSegment}} OPTIONAL,
  ...
}

```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RoadSegmentList](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.109 Data Frame: DF_RoadSignID

Use: The DF_RoadSignID data frame is used to provide a precise location of one or more roadside signs.

ASN.1 Representation:

```

RoadSignID ::= SEQUENCE {
  position    Position3D,
              -- Location of sign
  viewAngle   HeadingSlice,
              -- Vehicle direction of travel while
              -- facing active side of sign
  mutcdCode   MUTCDCode OPTIONAL,
              -- Tag for MUTCD code or "generic sign"
  crc        MsgCRC OPTIONAL
              -- Used to provide a check sum
}

```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

6.110 Data Frame: DF_RTCMheader

Use: The DF_RTCMheader data frame is a collection of data values used to convey RTCM information between users. It is not required or used when sending RTCM data from a corrections source to end users (from a base station to devices deployed in the field which are called rovers).

ASN.1 Representation:

```
RTCMheader ::= SEQUENCE {  
    status      GNSSstatus,  
    offsetSet   AntennaOffsetSet  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_RTCMPackage](#) [<ASN>](#), and
MSG [MSG_RTCMcorrections \(RTCM\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that the offset value provided in the ASN is used to convey the XYZ offset of the phase center point of an antenna with respect to the length and width of an object (typically a V2X-equipped device) and its current LLH position. It is not the phase center point of an antenna used as a base station in an RTK system from which differential corrections are issued. That base station information should be sent in a normal RTCM message and using the customary millimeter-accurate values expressed in the current WGS-84 ECEF frame of reference.

6.111 Data Frame: DF_RTCMmessageList

Use: The DF_RTCMmessageList data frame consists of a list of RTCMmessage entries.

ASN.1 Representation:

```
RTCMmessageList ::= SEQUENCE (SIZE(1..5)) OF RTCMmessage
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_RTCMPackage](#) [<ASN>](#), and
MSG [MSG_RTCMcorrections \(RTCM\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

6.112 Data Frame: DF_RTCMPackage

Use: The DF_RTCMPackage data frame is used to convey RTCM messages which deal with differential corrections between users from one mobile device to another. Encapsulated messages are those defined in RTCM Standard 10403.1 for Differential GNSS (Global Navigation Satellite Systems) Services - Version 3 adopted on July 1, 2011, and its successors.

ASN.1 Representation:

```
RTCMpackage ::= SEQUENCE {  
    -- precise antenna position and noise data for a rover  
    rtcmHeader   RTCMheader OPTIONAL,  
  
    -- one or more RTCM messages  
    msgs        RTCMmessageList,  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The octets defined here shall be set in accordance with the presentation layer data values defined by RTCM 10403.1 and its successors.

6.113 Data Frame: DF_Sample

Use: The DF_Sample data frame allows the Probe Management message to apply its settings to a subset of vehicles (e.g., all vehicles within the stated range). The subset is defined as from-to range, using the last digit of the current probe segment number (PSN) to determine if probe management is to be used. If the current PSN falls between these two values, then the Probe Data Management policy should be applied. The numbers are inclusive; e.g., using 0x10 and 0x20 would provide a 1/16th sample, and the values 0x00 and 0x80 would provide a half sample.

ASN.1 Representation:

```
Sample ::= SEQUENCE {  
    sampleStart    INTEGER(0..255),    -- Sample Starting Point  
    sampleEnd      INTEGER(0..255)     -- Sample Ending Point  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.114 Data Frame: DF_SegmentAttributeLLLList

Use: The DF_SegmentAttributeLLLList data frame consists of a list of SegmentAttributeLL entries.

ASN.1 Representation:

```
SegmentAttributeLLLList ::= SEQUENCE (SIZE(1..8)) OF SegmentAttributeLL
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeSetLL <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.115 Data Frame: DF_SegmentAttributeXYList

Use: The DF_SegmentAttributeXYList data frame consists of a list of SegmentAttributeXY entries.

ASN.1 Representation:

```
SegmentAttributeXYList ::= SEQUENCE (SIZE(1..8)) OF SegmentAttributeXY
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeSetXY <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.116 Data Frame: DF_ShapePointSet

Use: The DF_ShapePointSet DF used to represent a short segment of described roadway. It is typically employed to define a region where signs or advisories would be valid.

ASN.1 Representation:

```
ShapePointSet ::= SEQUENCE {  
    anchor          Position3D      OPTIONAL,  
    laneWidth       LaneWidth       OPTIONAL,  
    directionality DirectionOfUse OPTIONAL,  
    nodeList        NodeListXY,    -- XY path details of the lane and width  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ValidRegion <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.117 Data Frame: DF_SignalRequesterInfo

Use: The DF_SignalRequesterInfo data frame is used to contain information regarding the entity that requested a given signal behavior. In addition to the VehicleID, the data frame also contains a request reference number used to uniquely refer to the request and some basic type information about the request maker which may be used by other parties.

ASN.1 Representation:

```
SignalRequesterInfo ::= SEQUENCE {
    -- These three items serve to uniquely identify the requester
    -- and the specific request to all parties
    id          VehicleID,
    request     RequestID,
    sequenceNumber MsgCount,
    role        BasicVehicleRole OPTIONAL,
    typeData    RequestorType OPTIONAL,
    -- Used when addition data besides the role
    -- is needed, at which point the role entry
    -- above is not sent.
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalStatusPackage <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.118 Data Frame: DF_SignalRequestList

Use: The DF_SignalRequestList data frame consists of a list of SignalRequest entries.

ASN.1 Representation:

```
SignalRequestList ::= SEQUENCE (SIZE(1..32)) OF SignalRequestPackage
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_SignalRequestMessage \(SRM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.119 Data Frame: DF_SignalRequestPackage

Use: The DF_SignalRequestPackage data frame contains both the service request itself (the preemption and priority details and the inbound-outbound path details for an intersection) and the time period (start and end time) over which this service is sought from one single intersection. One or more of these packages are contained in a list in the signal request message (SRM).

ASN.1 Representation:

```
SignalRequestPackage ::= SEQUENCE {
    request
        SignalRequest,
        -- The specific request to the intersection
        -- contains IntersectionID, request type,
        -- requested action (approach/lane request)

    -- The Estimated Time of Arrival (ETA) when the service is requested
    minute      MinuteOfTheYear OPTIONAL,
    second      DSecond OPTIONAL,
    duration    DSecond OPTIONAL,
        -- The duration value is used to provide a short interval that
        -- extends the ETA so that the requesting vehicle can arrive at
        -- the point of service with uncertainty or with some desired
        -- duration of service. This concept can be used to avoid needing
        -- to frequently update the request.
        -- The requester must update the ETA and duration values if the
        -- period of services extends beyond the duration time.
        -- It should be assumed that if the vehicle does not clear the
        -- intersection when the duration is reached, the request will
        -- be cancelled and the intersection will revert to
        -- normal operation.

    regional    SEQUENCE (SIZE(1..4)) OF
        RegionalExtension {{REGION.Reg-SignalRequestPackage}} OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalRequestList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.120 Data Frame: DF_SignalRequest

Use: The DF_SignalRequest is used (as part of a request message) to request either a priority or a preemption service from a signalized intersection. It relates the intersection ID as well as the specific request information. Additional information includes the approach and egress values or lanes to be used.

ASN.1 Representation:

```
SignalRequest ::= SEQUENCE {
  -- the unique ID of the target intersection
  id           IntersectionReferenceID,
  -- The unique requestID used by the requestor
  requestID    RequestID,
  -- The type of request or cancel for priority or preempt use
  -- when a prior request is canceled, only the requestID is needed
  requestType   PriorityRequestType,
  -- In typical use either an approach or a lane number would
  -- be given, this indicates the requested
  -- path through the intersection to the degree it is known.
  inBoundLane   IntersectionAccessPoint,
  -- desired entry approach or lane
  outBoundLane  IntersectionAccessPoint OPTIONAL,
  -- desired exit approach or lane
  -- the values zero is used to indicate
  -- intent to stop within the intersection
  regional      SEQUENCE (SIZE(1..4)) OF
  -- RegionalExtension {{REGION.Reg-SignalRequest}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalRequestPackage](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.121 Data Frame: DF_SignalStatusList

Use: The DF_SignalStatusList data frame consists of a list of SignalStatus entries.

ASN.1 Representation:

```
SignalStatusList ::= SEQUENCE (SIZE(1..32)) OF SignalStatus
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_SignalStatusMessage](#) [\(SSM\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.122 Data Frame: DF_SignalStatusPackageList

Use: The SignalStatusPackageList data frame consists of a list of SignalStatusPackage entries.

ASN.1 Representation:

```
SignalStatusPackageList ::= SEQUENCE (SIZE(1..32)) OF SignalStatusPackage
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.123 Data Frame: DF_SignalStatusPackage

Use: The DF_SignalStatusPackage data frame contains all the data needed to describe the preemption or priority state of the signal controller with respect to a given request and to uniquely identify the party who requested that state to occur. It should be noted that this data frame describes both active and anticipated states of the controller. A requested service may not be active when the message is created and issued. A requested service may be rejected. This structure allows the description of pending requests that have been granted (accepted rather than rejected) but are not yet active and being serviced. It also provides for the description of rejected requests so that the initial message is acknowledged (completing a dialog using the broadcast messages).

ASN.1 Representation:

```
SignalStatusPackage ::= SEQUENCE {
  -- The party that made the initial SRM request
  requester SignalRequesterInfo OPTIONAL,
  -- The lanes or approaches used in the request
  inboundOn IntersectionAccessPoint, -- estimated lane/approach of vehicle
  outboundOn IntersectionAccessPoint OPTIONAL,

  -- The Estimated Time of Arrival (ETA) when the service is requested
  -- This data echos the data of the request
  minute MinuteOfTheYear OPTIONAL,
  second DSecond OPTIONAL,
  duration DSecond OPTIONAL,

  -- the SRM status for this request
  status PrioritizationResponseStatus,
  -- Status of request, this may include rejection

  regional SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-SignalStatusPackage}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalStatusPackageList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.124 Data Frame: DF_SignalStatus

Use: The DF_SignalStatus data frame is used to provide the status of a single intersection to others, including any active preemption or priority state in effect.

ASN.1 Representation:

```
SignalStatus ::= SEQUENCE {
  sequenceNumber MsgCount,
  -- changed whenever the below contents have change
  id IntersectionReferenceID,
  -- this provides a unique mapping to the
  -- intersection map in question
  -- which provides complete location
  -- and approach/movement/lane data
  -- as well as zones for priority/preemption
  sigStatus SignalStatusPackageList,
  -- a list of detailed status containing all
  -- priority or preemption state data, both
  -- active and pending, and who requested it
  -- requests which are denied are also listed
  -- here for a short period of time
  regional SEQUENCE (SIZE(1..4)) OF
    RegionalExtension {{REGION.Reg-SignalStatus}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalStatusList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.125 Data Frame: DF_SnapshotDistance

Use: To allow network users to change the snapshot collection policy based on speed and distance. Two distances and two speeds are included in this Data Frame (Distance1, Speed1 and Distance2, Speed2) to be used by the OBU as follows:

- If speed is \leq Speed1, then distance to next snapshot is Distance1.
- If speed is \geq Speed2, then distance to next snapshot is Distance2.
- If speed is $>$ Speed1 and $<$ Speed2, then distance to snapshot is linearly interpolated between Distance1 and Distance2.

If Speed1 is set to zero, then the distance to the next snapshot is always Distance1.

ASN.1 Representation:

```
SnapshotDistance ::= SEQUENCE {
    distance1    GrossDistance,      -- meters
    speed1       GrossSpeed,        -- meters/second
    distance2    GrossDistance,      -- meters
    speed2       GrossSpeed         -- meters/second
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.126 Data Frame: DF_Snapshot

Use: A report on one or more status elements in the vehicle which may have changed along with a set of position and heading elements representing the location of the report. Each report can contain status information from a number of defined vehicle devices.

ASN.1 Representation:

```
Snapshot ::= SEQUENCE {
    thePosition  FullPositionVector,      -- data of the position and speed,
    safetyExt    VehicleSafetyExtensions OPTIONAL,
    dataSet      VehicleStatus           OPTIONAL,
                    -- a sequence of data frames
                    -- which encodes the data
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeVehicleData \(PVD\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Either the VehicleSafetyExtension or the VehicleStatus must be present in the message.

6.127 Data Frame: DF_SnapshotTime

Use: To allow network users to change the snapshot collection policy based on elapsed time. Two times and two speeds are included in the message (Time1, Speed1 and Time2, Speed2) to be used by the OBU as follows:

- If speed is \leq Speed1, then time to next snapshot is Time1 with a default of 20 mph (8.9 m/s) and 6 seconds.
- If speed is \geq Speed2, then time to next snapshot is Time2 with a default of 60 mph (26.8 m/s) and 20 seconds.
- If speed is $>$ Speed1 and $<$ Speed2, then time to snapshot is linearly interpolated between Time1 and Time2.

If Speed1 is set to zero, then the time to the next snapshot is always Time1.

ASN.1 Representation:

```
SnapshotTime ::= SEQUENCE {
    speed1  GrossSpeed,           -- meters/sec - the instantaneous speed
                                         -- when the calculation is performed
                                         -- in seconds
    time1   SecondOfTime,
    speed2  GrossSpeed,           -- meters/sec - the instantaneous speed
                                         -- when the calculation is performed
                                         -- in seconds
    time2   SecondOfTime
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.128 Data Frame: DF_SpecialVehicleExtensions

Use: The DF_SpecialVehicleExtensions data frame is used to send various additional optional information elements in the Part II BSM used by special vehicles. In this context, the term “special” indicates vehicles or other equipped devices which differ from other vehicles in their overall ability or intent to flow in traffic and which are likely to have additional certification permissions (CERTs) which expressly allow this information to be sent. As a broad rule, light passenger vehicles (when in non special roles) will not send this type of content. A typical use case would be a police vehicle, actively engaged in a police vehicle role, sending additional information (the Emergency Details data frame) about its flashing lights and immediate movements. An alternative use case would be a garbage truck engaged in stop and go operations (irregular vehicle movements) sending the same data frame with different internal content details. A further example use case would be an equipped heavy truck sending content about the trailer it was hauling.

ASN.1 Representation:

```
SpecialVehicleExtensions ::= SEQUENCE {
    -- The entire EVA message has been reduced to these items
    vehicleAlerts  EmergencyDetails OPTIONAL,
    -- Description or Direction from an emergency vehicle
    description    EventDescription OPTIONAL, -- short ITIS description

    -- Trailers for both passenger vehicles and heavy trucks
    trailers       TrailerData OPTIONAL,
    -- HAZMAT and Cargo details to be added in a future revision
    -- Wideload, oversized load to be added in a future revision
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_BasicSafetyMessage \(BSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.129 Data Frame: DF_SpeedHeadingThrottleConfidence

Use: The DF_SpeedHeadingThrottleConfidence data frame is a single data frame combining multiple related bit fields into one concept.

ASN.1 Representation:

```
SpeedandHeadingandThrottleConfidence ::= SEQUENCE {
    heading    HeadingConfidence,
    speed      SpeedConfidence,
    throttle   ThrottleConfidence
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_ConfidenceSet	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the prior editions of the standard (pre-2015), this was constructed as a BLOB; it has now been converted to a data frame.

6.130 Data Frame: DF_SpeedLimitList

Use: The DF_SpeedLimitList data frame consists of a list of SpeedLimit entries.

ASN.1 Representation:

```
SpeedLimitList ::= SEQUENCE (SIZE(1..9)) OF RegulatorySpeedLimit
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_LaneDataAttribute	<ASN> , and
DF	DF_RoadSegment	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.131 Data Frame: DF_SpeedProfileMeasurementList

Use: The DF_SpeedProfileMeasurementList data frame consists of a list of SpeedProfileMeasurementList entries. The first value in the sequence would be the last measurement collected. If the sequence is full as a new measurement value is added, the oldest would be deleted.

ASN.1 Representation:

```
SpeedProfileMeasurementList ::= SEQUENCE (SIZE(1..20)) OF SpeedProfileMeasurement
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SpeedProfile](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.132 Data Frame: DF_SpeedProfile

Use: The DF_SpeedProfile data frame supports connected vehicles which will be collecting and parsing BSMs as they travel: these consist of speed data reported from the opposite direction. Each equipped vehicle collects the reported BSM speeds from the vehicles traveling in the opposite direction and store the average speed of these vehicles every 100 m. The BSM tempID will be used to prevent duplicates. The opposite direction is considered to be the collecting vehicle's current direction +170 through 190 degrees. Up to 20 readings of average speed can be transmitted by the SpeedProfile. The SpeedProfile is added to the BSM Part II content, thus making it available to vehicles traveling in the opposite direction for whom it provides an up to 2 km SpeedProfile of the traffic on their road ahead. Should the vehicle collecting the SpeedProfile make a turn greater than 70 degrees, then the SpeedProfile currently stored would be deleted. Further details of these operational concepts can be found in relevant standards.

ASN.1 Representation:

```
SpeedProfile ::= SEQUENCE {
  -- Composed of set of measured average speeds
  speedReports SpeedProfileMeasurementList,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.133 Data Frame: DF_SupplementalVehicleExtensions

Use: The DF_SupplementalVehicleExtensions data frame is used to send various optional additional information elements in the Part II BSM. The range of use cases supported by these elements is very broad and includes both additional V2V functionality and various V2I monitoring applications. A variety of “vehicle as probe” applications fit within this overall functionality as well. Further use cases and requirements are developed in relevant standards. It should be noted that the use of the regional extension mechanism here is intended to provide a means to develop experimental message content within this data frame.

ASN.1 Representation:

```
SupplementalVehicleExtensions ::= SEQUENCE {
  -- Note that VehicleEventFlags, ExteriorLights,
  -- PathHistory, and PathPrediction are in VehicleSafetyExtensions

  -- Vehicle Type Classification Data
  classification      BasicVehicleClass           OPTIONAL,
  -- May be required to be present for non passenger vehicles
  classDetails        VehicleClassification    OPTIONAL,
  vehicleData         VehicleData                 OPTIONAL,

  -- Various V2V Probe Data
  weatherReport       WeatherReport        OPTIONAL,
  weatherProbe        WeatherProbe         OPTIONAL,

  -- Detected Obstacle data
  obstacle            ObstacleDetection    OPTIONAL,

  -- Disabled Vehicle Report
  status              DisabledVehicle      OPTIONAL,

  -- Oncoming lane speed reporting
  speedProfile        SpeedProfile        OPTIONAL,

  -- Raw GNSS measurements
  theRTCM             RTCPackage        OPTIONAL,
  regional            SEQUENCE (SIZE(1..4)) OF
  -- RegionalExtension {{REGION.Reg-SupplementalVehicleExtensions}} OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_BasicSafetyMessage \(BSM\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.134 Data Frame: DF_TimeChangeDetails

Use: The DF_TimeChangeDetails data frame conveys details about the timing of a phase within a movement. The core data concept expressed is the time stamp (time mark) at which the related phase will change to the next state. This is often found in the MinEndTime element, but the other elements may be needed to convey the full concept when adaptive timing is employed.

The StartTime element is used to relate when the phase itself started or is expected to start. This in turn allows the indication that a set of time change details refers to a future phase, rather than a currently active phase.

By this method, timing information about “pre” phase events (which are the short transitional phase used to alert OBEs to an impending green/go or yellow/caution phase) and the longer yellow-caution phase data is supported in the same form as various green/go phases. In theory, the time change details could be sent for a large sequence of phases if the signal timing was not adaptive and the operator wished to do so. In practice, it is expected only the “next” future phase will commonly be sent. It should be noted that this also supports the sending of time periods regarding various red phases; however, this is not expected to be done commonly.

The element MinEndTime is used to convey the earliest time possible at which the phase could change, except when unpredictable events relating to a preemption or priority call disrupt a currently active timing plan. In a phase where the time is fixed (as in a fixed yellow or clearance time), this element shall be used alone. This value can be viewed as the earliest possible time at which the phase could change, except when unpredictable events relating to a preemption or priority call come into play and disrupt a currently active timing plan. The element MaxEndTime is used to convey the latest time possible which the phase could change, except when unpredictable events relating to a preemption or priority call come into play and disrupt a currently active timing plan. In a phase where the time is fixed (as in a fixed yellow or clearance time), this element shall be used alone.

The element likelyTime is used to convey the most likely time the phase changes. This occurs between MinEndTime and MaxEndTime and is only relevant for traffic-actuated control programs. This time might be calculated out of logged historical values, detected events (e.g., from inductive loops), or from other sources.

The element confidence is used to convey basic confidence data about the likelyTime.

The element nextTime is used to express a general (and presumably less precise) value regarding when this phase will next occur. This is intended to be used to alert the OBE when the next green/go may occur so that various ECO driving applications can better manage the vehicle during the intervening stopped time.

ASN.1 Representation:

```
TimeChangeDetails ::= SEQUENCE {
    startTime    TimeMark      OPTIONAL,
    -- When this phase 1st started
    minEndTime   TimeMark,
    -- Expected shortest end time
    maxEndTime   TimeMark      OPTIONAL,
    -- Expected longest end time

    likelyTime   TimeMark      OPTIONAL,
    -- Best predicted value based on other data
    confidence   TimeIntervalConfidence OPTIONAL,
    -- Applies to above time element only

    nextTime     TimeMark      OPTIONAL
    -- A rough estimate of time when
    -- this phase may next occur again
    -- used to support various ECO driving power
    -- management needs.
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementEvent <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that all times are expressed as absolute values and not as countdown timer values. When the stated time mark is reached, the state changes to the next state. Several technical reasons led to this choice; among these was that with a countdown embodiment, there is an inherent need to update the remaining time every time a SPAT message is issued. This would require re-formulating the message content as well as cryptographically signing the message each time. With the use of absolute values (time marks) chosen here, the current count down time when the message is created is added to the then-current time to create an absolute value and can be used thereafter without change. The message content need only change when the signal controller makes a timing decision to be published. This allows a clean separation of the logical functions of message creation from the logical functions of message scheduling and sending, and fulfills the need to minimize further real time processing when possible. This standard sets no limits on where each of these functions is performed in the overall roadside system.

6.135 Data Frame: DF_TrailerData

Use: The DF_TrailerData data frame provides a means to describe trailers pulled by a motor vehicle and/or other equipped devices. The span of use is intended to cover use cases from simple passenger vehicles with trailers to class 8 vehicles hauling one or more trailers and dollies. The information in this data frame (along with the BSM message in which it is sent) can be used to determine various aspects of the sender. These include the path of the vehicle and its trailer(s) under various maneuvering conditions (lane matching) as well as the rear of the final trailer, which is often useful in signal control optimization and in intersection safety. This data frame is typically used in the BSM Part II content.

ASN.1 Representation:

```
TrailerData ::= SEQUENCE {  
  
    notUsed    SSPindex,  
    -- always set to 0 and carries no meaning;  
    -- legacy field maintained for backward compatibility  
  
    -- Offset connection point details from the  
    -- hauling vehicle to the first trailer unit  
    connection PivotPointDescription,  
  
    -- One of more Trailer or Dolly Descriptions  
    -- (each called a unit)  
    units      TrailerUnitDescriptionList,  
  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SpecialVehicleExtensions <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The mechanisms by which the rigid bodies of the vehicle and trailer connect at the pivot points can be modeled in various ways to determine the position and heading of the trailer with respect to the vehicle.

6.136 Data Frame: DF_TrailerHistoryPointList

Use: The DF_TrailerHistoryPointList data frame is a sequence of trailer position history points which relate to a trailer's movements.

ASN.1 Representation:

```
TrailerHistoryPointList ::= SEQUENCE (SIZE(1..23)) OF TrailerHistoryPoint
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerUnitDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.137 Data Frame: DF_TrailerHistoryPoint

Use: The DF_TrailerHistoryPoint data frame contains a single position point for a trailer, expressed relative to the vehicle's BSM positional estimate at the same point in time.

ASN.1 Representation:

```
TrailerHistoryPoint ::= SEQUENCE {
    pivotAngle          Angle,
    -- angle with respect to the lead unit
    timeOffset          TimeOffset,
    -- offset backwards in time
    -- Position relative to the hauling Vehicle
    positionOffset      Node-XY-24b,
    elevationOffset     VertOffset-B07 OPTIONAL,
    heading             CoarseHeading OPTIONAL,
    -- overall heading
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerHistoryPointList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.138 Data Frame: DF_TrailerUnitDescriptionList

Use: The DF_TrailerUnitDescriptionList data frame is a sequence of trailer descriptions which relate to each connected trailer. Up to eight such units can be described to support various double and other complex combinations.

ASN.1 Representation:

```
TrailerUnitDescriptionList ::= SEQUENCE (SIZE(1..8)) OF TrailerUnitDescription
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerData <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.139 Data Frame: DF_TrailerUnitDescription

Use: The DF_TrailerUnitDescription data frame provides a physical description for one trailer or a dolly element (called a unit), including details of how it connects with other elements fore and aft. Note that in the case of multiple trailer units the front and rear pivots of adjacent trailers may result in multiple entries for the same pivot point. Care must be taken to avoid discrepancies.

ASN.1 Representation:

```
TrailerUnitDescription ::= SEQUENCE {
  isDolly           IsDolly, -- if false this is a trailer
  width              VehicleWidth,
  length             VehicleLength,
  height              VehicleHeight OPTIONAL,
  mass                TrailerMass OPTIONAL,
  bumperHeights      BumperHeights OPTIONAL,
  centerOfGravity    VehicleHeight OPTIONAL,
  -- The front pivot point of the unit
  frontPivot         PivotPointDescription,
  -- The rear pivot point connecting to the next element,
  -- if present and used (implies another unit is connected)
  rearPivot          PivotPointDescription OPTIONAL,
  -- Rear wheel pivot point center-line offset
  -- measured from the rear of the above length
  rearWheelOffset     Offset-B12 OPTIONAL,
  -- the effective center-line of the wheel set
  -- Current Position relative to the hauling Vehicle
  positionOffset      Node-XY-24b,
  elevationOffset     VertOffset-B07 OPTIONAL,
  -- Past Position history relative to the hauling Vehicle
  crumbData          TrailerHistoryPointList OPTIONAL,
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerUnitDescriptionList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.140 Data Frame: DF_TransmissionAndSpeed

Use: The DF_TransmissionAndSpeed data frame expresses the speed of the vehicle and the state of the transmission. The transmission state of “reverse” can be used as a sign value for the speed element when needed.

ASN.1 Representation:

```
TransmissionAndSpeed ::= SEQUENCE {
  transmission        TransmissionState,
  speed               Velocity
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_FullPositionVector	<ASN> , and
DF	DF_RequestorPositionVector	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.141 Data Frame: DF_TravelerDataFrameList

Use: The DF_TravelerDataFrameList data frame consists of a list of TravelerDataFrame entries.

ASN.1 Representation:

```
TravelerDataFrameList ::= SEQUENCE (SIZE(1..8)) OF TravelerDataFrame
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_TravelerInformationMessage \(TIM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.142 Data Frame: DF_TravelerDataFrame

Use: The DF_TravelerDataFrame is used to send a single “message” in a TIM message. The data frame allows sending various advisory and road sign types of information to equipped devices. It uses the ITIS encoding system to send well-known phrases, but allows limited text for local place names. The supported message types specify several sub-dialects of ITIS phrase patterns to further reduce the number of octets to be sent. The expressed messages are active at a precise start and duration period, which can be specified to a resolution of a minute. The affected local area (or set of areas) can be expressed using either a radius system or one of the two systems of short defined regions. This expression is similar to the way roadway geometry is defined in the map fragment messages.

ASN.1 Representation:

```
TravelerDataFrame ::= SEQUENCE {
  -- Part I, Frame header
  notUsed      SSPindex,
  -- always set to 0 and carries no meaning;
  -- legacy field maintained for backward compatibility
  frameType    TravelerInfoType, -- (enum, advisory or road sign)
  msgId        CHOICE {
    furtherInfoID  FurtherInfoID, -- links to ATIS msg
    roadSignID     RoadSignID   -- an ID to other data
  },
  startYear    DYear OPTIONAL, -- only if needed
  startTime    MinuteOfTheYear,
  durationTime MinutesDuration,
  priority     SignPriority,
  -- Part II, Applicable Regions of Use
  notUsed1     SSPindex,
  regions      SEQUENCE (SIZE(1..16)) OF GeographicalPath,
  -- Part III, Content
  notUsed2     SSPindex, -- set to 0
  notUsed3     SSPindex, -- set to 0
  content      CHOICE {
    advisory    ITIS.ITIScodesAndText,
    -- typical ITIS warnings
    workZone    WorkZone,
    -- work zone signs and directions
    genericSign GenericSignage,
    -- MUTCD signs and directions
    speedLimit  SpeedLimit,
    -- speed limits and cautions
    exitService ExitService
    -- roadside available services
    -- other types may be added in future revisions
  },
  url         URL-Short OPTIONAL, -- May link to image or other content
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrameList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.143 Data Frame: DF_ValidRegion

Use: The DF_ValidRegion data frame is used to describe one or more geographic locations to which a message is applied or considered valid. These messages are typically road signs or advisories.

ASN.1 Representation:

```
ValidRegion ::= SEQUENCE {
    direction      HeadingSlice,
                    -- field of view over which this applies,
    extent         Extent OPTIONAL,
                    -- the spatial distance over which this
                    -- message applies and should be presented
                    -- to the driver
    area           CHOICE {
        shapePointSet ShapePointSet,
                    -- A short road segment
        circle        Circle,
                    -- A point and radius
        regionPointSet RegionPointSet
                    -- Wide area enclosed regions
    }
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_GeographicalPath](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: This entry was used in the 2009 and 2015 edition of the standard, but is not recommended for further use. The TIM and other message now use the DF_GeographicalPath for the same needs.

6.144 Data Frame: DF_VehicleClassification

Use: The DF_VehicleClassification data frame is a structure with a composite set of common classification systems used in ITS. There are any number of such “types” that can be used to classify a vehicle based on different systems and needs. A given use case will typically use only a subset of the items noted below.

ASN.1 Representation:

```
VehicleClassification ::= SEQUENCE {
    -- Composed of the following elements:

    -- The 'master' V2X list used when space is limited
    keyType        BasicVehicleClass OPTIONAL,
    -- Types used in the MAP/SPAT/SSR/SRM exchanges
    role           BasicVehicleRole OPTIONAL, -- Basic CERT role at a given time
    iso3883        Iso3833VehicleType OPTIONAL,
    hpmsType       VehicleType OPTIONAL, -- HPMS classification types
    -- ITIS types for classes of vehicle and agency
    vehicleType    ITIS.VehicleGroupAffected OPTIONAL,
    responseEquip  ITIS.IncidentResponseEquipment OPTIONAL,
    responderType  ITIS.ResponderGroupAffected OPTIONAL,
    -- Fuel types for vehicles
    fuelType       FuelType OPTIONAL,
    regional        SEQUENCE (SIZE(1..4)) OF
                    RegionalExtension {{REGION.Reg-VehicleClassification}} OPTIONAL,
    ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_SupplementalVehicleExtensions](#) [<ASN>](#), and
MSG [MSG_ProbeVehicleData \(PVD\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

6.145 Data Frame: DF_VehicleData

Use: The DF_VehicleData data frame is used to convey additional data about the vehicle not found in the BSM Part I data frame.

ASN.1 Representation:

```
VehicleData ::= SEQUENCE {
    -- Values for width and length are sent in BSM part I
    height      VehicleHeight      OPTIONAL,
    bumpers     BumperHeights    OPTIONAL,
    mass        VehicleMass       OPTIONAL,
    trailerWeight TrailerWeight    OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.146 Data Frame: DF_VehicleIdent

Use: The DF_VehicleIdent data frame is used to provide identity information about a selected vehicle. This data frame is typically used with fleet type vehicles who can (or who must) safely release such information for use with probe measurements or with other interactions (such as a signal request). At least one of the optional data elements shall be present in the data frame.

ASN.1 Representation:

```
VehicleIdent ::= SEQUENCE {
    name        DescriptiveName OPTIONAL,
    -- a human readable name for debugging use
    vin         VINString OPTIONAL,
    -- vehicle VIN value
    ownerCode   IA5String(SIZE(1..32)) OPTIONAL,
    -- vehicle owner code
    id          VehicleID OPTIONAL,
    -- same value used in the BSM

    vehicleType VehicleType  OPTIONAL,
    vehicleClass CHOICE {
        vGroup    ITIS.VehicleGroupAffected,
        rGroup    ITIS.ResponderGroupAffected,
        rEquip   ITIS.IncidentResponseEquipment
    } OPTIONAL,
    ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_VehicleStatus	<ASN> , and
MSG	MSG_ProbeVehicleData (PVD)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.147 Data Frame: DF_VehicleID

Use: The DF_VehicleID data frame is used to contain either a (US) TemporaryID or an (EU) StationID in a simple frame. These two different value domains are used to uniquely identify a vehicle or other object in these two regional V2X environments. In normal use cases, this value changes over time to prevent tracking of the subject vehicle. When this value is unavailable but needed by another type of user (such as the roadside infrastructure sending data about an unequipped vehicle), the value zero shall be used. A typical restriction on the use of this value during a dialog or other exchange is that the value remains constant for the duration of that exchange. Refer to the performance requirements for a given application for details.

ASN.1 Representation:

```
VehicleID ::= CHOICE {
  entityID    TemporaryID,
  stationID   StationID
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_RequestorDescription	<ASN> , and
DF	DF_SignalRequesterInfo	<ASN> , and
DF	DF_VehicleIdent	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.148 Data Frame: DF_VehicleSafetyExtensions

Use: The DF_VehicleSafetyExtensions data frame is used to send various additional details about the vehicle. This data frame is used for vehicle safety applications to exchange safety information such as event flag and detailed positional information. This data frame is typically sent in conjunction with BSM Part I or used in other messages at the same or reduced frequency.

ASN.1 Representation:

```
VehicleSafetyExtensions ::= SEQUENCE {
  events          VehicleEventFlags OPTIONAL,
  pathHistory     PathHistory OPTIONAL,
  pathPrediction  PathPrediction OPTIONAL,
  lights          ExteriorLights OPTIONAL,
  ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_Snapshot	<ASN> , and
MSG	MSG_BasicSafetyMessage (BSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

6.149 Data Frame: DF_VehicleSize

Use: The DF_VehicleSize is a data frame representing the vehicle length and vehicle width in a single data concept.

ASN.1 Representation:

```
VehicleSize ::= SEQUENCE {
    width    VehicleWidth,
    length   VehicleLength
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BSMcoreData <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.150 Data Frame: DF_VehicleStatusRequest

Use: The DF_VehicleStatusRequest is used to request complex content along with threshold settings in the vehicle probe management process.

ASN.1 Representation:

```
VehicleStatusRequest ::= SEQUENCE {
    dataType          VehicleStatusDeviceTypeTag,
    subType           INTEGER (1..15) OPTIONAL,
    sendOnLessThanValue INTEGER (-32767..32767) OPTIONAL,
    sendOnMoreThanValue INTEGER (-32767..32767) OPTIONAL,
    sendAll           BOOLEAN OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatusRequestList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Range settings must match the range allowed by the subject data item. Units are as defined by the subject data item.

6.151 Data Frame: DF_VehicleStatusRequestList

Use: The DF_VehicleStatusRequestList data frame consists of a list of VehicleStatusRequest entries.

ASN.1 Representation:

```
VehicleStatusRequestList ::= SEQUENCE (SIZE(1..32)) OF VehicleStatusRequest
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.152 Data Frame: DF_VehicleStatus

Use: A data frame that is used to relate specific items of the vehicle's status. This structure relates all the different types of information that can be related about the vehicle inside a probe message or in a BSM Part II section. Typically, these information types are used in data event snapshots which are gathered and periodically reported to an RSU or as part of the BSM Part II content.

It should be noted that this data structure makes use of other defined data elements and data frames, enclosing them in a sequence structure so that a number of such items can be sent within the VehicleStatus instance.

ASN.1 Representation:

```
VehicleStatus ::= SEQUENCE {
    lights          ExteriorLights OPTIONAL,           -- Exterior Lights
    lightBar        LightbarInUse OPTIONAL,           -- PS Lights
    wipers          WiperSet OPTIONAL,             -- Wipers
    brakeStatus     BrakeSystemStatus OPTIONAL,        -- Braking Data
    brakePressure   BrakeAppliedPressure OPTIONAL,      -- Braking Pressure
    roadFriction    CoefficientOfFriction OPTIONAL,    -- Roadway Friction

    sunData         SunSensor OPTIONAL,             -- Sun Sensor
    rainData        RainSensor OPTIONAL,            -- Rain Sensor
    airTemp         AmbientAirTemperature OPTIONAL,    -- Air Temperature
    airPres         AmbientAirPressure OPTIONAL,       -- Air Pressure

    steering        SEQUENCE {
        angle          SteeringWheelAngle,           OPTIONAL,
        confidence     SteeringWheelAngleConfidence OPTIONAL,
        rate           SteeringWheelAngleRateOfChange OPTIONAL,
        wheels          DrivingWheelAngle           OPTIONAL,
    } OPTIONAL,                                     -- steering data

    accelSets       SEQUENCE {
        accel4way     AccelerationSet4Way           OPTIONAL,
        vertAccelThres VerticalAccelerationThreshold OPTIONAL,
        yawRateCon    YawRateConfidence           OPTIONAL,
        hozAccelCon   AccelerationConfidence        OPTIONAL,
        confidenceSet ConfidenceSet                 OPTIONAL,
    } OPTIONAL,                                     -- general ConfidenceSet

    object          SEQUENCE {
        obDist        ObstacleDistance,           -- Obstacle Distance
        obDirect      Angle,                      -- Obstacle Direction
        dateDateTime  DDateTime                  -- time detected
    } OPTIONAL,                                     -- detected Obstacle data

    fullPos         FullPositionVector OPTIONAL,        -- complete set of time and
    throttlePos     ThrottlePosition OPTIONAL,          -- position, speed, heading
    speedHeadC     SpeedandHeadingandThrottleConfidence OPTIONAL,
    speedC          SpeedConfidence OPTIONAL,

    vehicleData     SEQUENCE {
        height         VehicleHeight,
        bumpers        BumperHeights,
        mass           VehicleMass,
        trailerWeight  TrailerWeight,
        type           VehicleType
    } OPTIONAL,                                     -- values for width and length are sent in BSM part I as well.
    -- vehicle data
```

```

vehicleIdent  VehicleIdent OPTIONAL,           -- common vehicle identity data
j1939data     J1939data OPTIONAL,          -- Various SAE J1938 data items

weatherReport SEQUENCE {
    isRaining      NTCIP.EssPrecipYesNo,
    rainRate       NTCIP.EssPrecipRate           OPTIONAL,
    precipSituation NTCIP.EssPrecipSituation OPTIONAL,
    solarRadiation NTCIP.EssSolarRadiation OPTIONAL,
    friction       NTCIP.EssMobileFriction OPTIONAL
} OPTIONAL,                                -- local weather data

gnssStatus     GNSSstatus OPTIONAL,          -- vehicle's GPS

...
}

```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Snapshot <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.153 Data Frame: DF_VerticalOffset

Use: The DF_VerticalOffset data frame represents a change in the vertical position above or below the reference ellipsoid (typically WGS-84) from a prior value. The numbering system has a resolution of 1 decimeter and supports several variations with different bit width sizes as well as the full range of the Elevation structure. In this respect, this entry is similar to the DF_NodeOffsetPointLL and DF_NodeOffsetPointLL entries used to express offsets in horizontal plane for positions.

ASN.1 Representation:

```

VerticalOffset ::= CHOICE {
    -- Vertical Offset
    -- All below in steps of 10cm above or below the reference ellipsoid
    offset1      VertOffset-B07,    -- with a range of +- 6.3 meters vertical
    offset2      VertOffset-B08,    -- with a range of +- 12.7 meters vertical
    offset3      VertOffset-B09,    -- with a range of +- 25.5 meters vertical
    offset4      VertOffset-B10,   -- with a range of +- 51.1 meters vertical
    offset5      VertOffset-B11,   -- with a range of +- 102.3 meters vertical
    offset6      VertOffset-B12,   -- with a range of +- 204.7 meters vertical
    elevation    Elevation,      -- with a range of -409.5 to + 6143.9 meters
    regional     RegionalExtension {{REGION.Reg-VerticalOffset}}
    -- offset which follows is of a
    -- regional definition type
}

```

6.154 Data Frame: DF_WeatherProbe

Use: The DF_WeatherProbe data frame provides basic data on the air temperature and barometric pressure experienced by a vehicle, as well as the current status of the wiper systems on the vehicle, including front and rear wiper systems (where equipped) to indicate coarse rainfall levels.

ASN.1 Representation:

```

WeatherProbe ::= SEQUENCE {
    airTemp      AmbientAirTemperature OPTIONAL,
    airPressure  AmbientAirPressure OPTIONAL,
    rainRates    WiperSet           OPTIONAL,
    ...
}

```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.155 Data Frame: DF_WeatherReport

Use: The DF_WeatherReport data frame is used to convey weather measurements made by the sending device.

ASN.1 Representation:

```
WeatherReport ::= SEQUENCE {
    isRaining      NTCIP.EssPrecipYesNo,
    rainRate       NTCIP.EssPrecipRate           OPTIONAL,
    precipSituation NTCIP.EssPrecipSituation OPTIONAL,
    solarRadiation  NTCIP.EssSolarRadiation OPTIONAL,
    friction        NTCIP.EssMobileFriction OPTIONAL,
    roadFriction    CoefficientOfFriction    OPTIONAL,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SupplementalVehicleExtensions <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

6.156 Data Frame: DF_WiperSet

Use: The DF_WiperSet data frame provides the current status of the wiper systems on the subject vehicle, including front and rear wiper systems (where equipped).

ASN.1 Representation:

```
WiperSet ::= SEQUENCE {
    statusFront    WiperStatus,
    rateFront      WiperRate,
    statusRear     WiperStatus           OPTIONAL,
    rateRear       WiperRate           OPTIONAL
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_VehicleStatus](#) <ASN>, and

DF [DF_WeatherProbe](#) <ASN>.

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that when the wiper status changes, an event flag may be raised in the BSM and this data frame may be transmitted in Part II of that message to relate the new state.

7. DATA ELEMENTS

This section defines the precise structure of certain data elements defined by this standard.

7.1 Data Element: DE_Acceleration

Use: The DE_Acceleration data element represents the signed acceleration of the vehicle along some known axis in units of 0.01 m/s². A range of over 2Gs is supported. The coordinate system is as defined in 11.4.

Longitudinal acceleration is the acceleration along the X axis or the vehicle's direction of travel which is generally in parallel with a front to rear centerline. Negative values indicate deceleration, and possible braking action. Lateral acceleration is the acceleration along the Y axis or perpendicular to the vehicle's general direction of travel in parallel with a left-to-right centerline.

ASN.1 Representation:

```
Acceleration ::= INTEGER (-2000..2001)
-- LSB units are 0.01 m/s^2
-- the value 2000 shall be used for values greater than 2000
-- the value -2000 shall be used for values less than -2000
-- a value of 2001 shall be used for Unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AccelerationSet4Way <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.2 Data Element: DE_AccelerationConfidence

Use: The DE_AccelerationConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_Acceleration, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide information on the limitations of the sensing system; not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly.

The frame of reference and axis of rotation used shall be in accordance with that defined Section 11.

ASN.1 Representation:

```
AccelerationConfidence ::= ENUMERATED {
  unavailable (0), -- Not Equipped or data is unavailable
  accl-100-00 (1), -- 100 meters/second squared
  accl-010-00 (2), -- 10 meters/second squared
  accl-005-00 (3), -- 5 meters/second squared
  accl-001-00 (4), -- 1 meters/second squared
  accl-000-10 (5), -- 0.1 meters/second squared
  accl-000-05 (6), -- 0.05 meters/second squared
  accl-000-01 (7) -- 0.01 meters/second squared
} -- Encoded as a 3 bit value
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_AccelSteerYawRateConfidence <ASN>](#), and
DF [DF_VehicleStatus <ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.3 Data Element: DE_AdvisorySpeedType

Use: The DE_AdvisorySpeedType data element relates the type of travel to which a given speed refers. This element is typically used as part of an AdvisorySpeed data frame for signal phase and timing data.

ASN.1 Representation:

```
AdvisorySpeedType ::= ENUMERATED {
  none (0),
  greenwave (1),
  ecoDrive (2),
  transit (3),
  ...
} -- Note: subject to further growth
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AdvisorySpeed <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.4 Data Element: DE_AllowedManeuvers

Use: The DE_AllowedMovements data element relates the allowed (possible) maneuvers from a lane, typically a motorized vehicle lane. It should be noted that in practice these values may be further restricted by vehicle class, local regulatory environment, and other changing conditions.

ASN.1 Representation:

```
AllowedManeuvers ::= BIT STRING {  
    -- With bits as defined:  
    -- Allowed maneuvers at path end (stop line)  
    -- All maneuvers with bits not set are therefore prohibited !  
    -- A value of zero shall be used for unknown, indicating no Maneuver  
    maneuverStraightAllowed      (0),  
                                -- a Straight movement is allowed in this lane  
    maneuverLeftAllowed         (1),  
                                -- a Left Turn movement is allowed in this lane  
    maneuverRightAllowed        (2),  
                                -- a Right Turn movement is allowed in this lane  
    maneuverUTurnAllowed        (3),  
                                -- a U turn movement is allowed in this lane  
    maneuverLeftTurnOnRedAllowed (4),  
                                -- a Stop, and then proceed when safe movement  
                                -- is allowed in this lane  
    maneuverRightTurnOnRedAllowed (5),  
                                -- a Stop, and then proceed when safe movement  
                                -- is allowed in this lane  
    maneuverLaneChangeAllowed   (6),  
                                -- a movement which changes to an outer lane  
                                -- on the egress side is allowed in this lane  
                                -- (example: left into either outbound lane)  
    maneuverNoStoppingAllowed  (7),  
                                -- the vehicle should not stop at the stop line  
                                -- (example: a flashing green arrow)  
    yieldAllwaysRequired       (8),  
                                -- the allowed movements above are not protected  
                                -- (example: an permanent yellow condition)  
    goWithHalt                 (9),  
                                -- after making a full stop, may proceed  
    caution                    (10),  
                                -- proceed past stop line with caution  
    reserved1                  (11)  
                                -- used to align to 12 Bit Field  
} (SIZE(12))
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_ConnectingLane](#) [<ASN>](#), and

DF [DF_GenericLane](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: When used by data frames, the AllowedManeuvers data concept is used in two places: optionally in the generic lane structure to list all possible maneuvers (as in what that lane can do at its stop line point); and within each ConnectsTo structure. Each ConnectsTo structure contains a list used to provide a single valid maneuver in the context of one lane connecting to another in the context of a signal phase that applies to that maneuver. It should be noted that, in some intersections, multiple outbound lanes can be reached by the same maneuver (for example two independent left turns might be found in a five-legged intersection) but that to reach any given lane from the stop line of another lane is always a single maneuver item (hence the use of a list). Not all intersection descriptions may contain an exhaustive set of ConnectsTo information (unsignalized intersections for example) and in such cases the AllowedManeuvers in the generic lane structure can be used. If present in both places, the data expressed in the generic lane shall not conflict with the data found in the collection of ConnectsTo entries.

7.5 Data Element: DE_AmbientAirPressure (Barometric Pressure)

Use: The DE_AmbientAirPressure data element is used to relate the measured Ambient Pressure (Barometric Pressure) from a vehicle or other device. The value of zero shall be used when not equipped. The value of one indicates a pressure of 580 hPa.

ASN.1 Representation:

```
AmbientAirPressure ::= INTEGER (0..255)
  -- 8 Bits in hPa starting at 580 with a resolution of
  -- 2 hPa resulting in a range of 580 to 1088
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_VehicleStatus	<u><ASN></u> , and
DF	DF_WeatherProbe	<u><ASN></u> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Barometric pressure is the pressure exerted by the weight of the earth's atmosphere, equal to 1 bar, 100 kPa, or 14.7 psi (often rounded off to 15 psi) at sea level. Barometric pressure changes with the weather and with altitude. Since it affects the density of the air entering the engine and ultimately the air/fuel ratio, some computerized emissions control systems use a barometric pressure sensor so that the spark advance and exhaust gas recirculation (EGR) flow can be regulated to control emissions more precisely.

Note that 1 kPa = 10 hPa.

To convert pounds per square inch to kilopascals, multiply the psi value by 6.894757293168361.

To convert kilopascals to pounds per square inch, multiply the kPa value by 0.14503773773020923.

7.6 Data Element: DE_AmbientAirTemperature

Use: The DE_AmbientAirTemperature data element is used to relate the measured Ambient Air Temperature from a vehicle or other device. Its measurement range and precision follows that defined by the relevant OBD-II standards. This provides for a precision of 1 °C and a range of -40 to +230 °C. In this use, we reduce the upper value allow to be +150 and to allow it to be encoded in a 1 octet value. The value of -40 °C is encoded as zero and every degree above that increments the transmitted value by one, resulting in a transmission range of 0 to 191. Hence, a measurement value representing 25 °C is transmitted as 40+25=65 or Hex 0x41.

ASN.1 Representation:

```
AmbientAirTemperature ::= INTEGER (0..191) -- in °C with a -40 offset
  -- The value 191 shall indicate an unknown value
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_VehicleStatus	<ASN> , and
DF	DF_WeatherProbe	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.7 Data Element: DE_Angle

Use: The DE_Angle data element Angle is used to describe an angular measurement in units of degrees. This data element is often used as a heading direction when in motion. In this use, the current heading of the sending device is expressed in unsigned units of 0.0125 degrees from north, such that 28799 such degrees represent 359.9875 degrees. North shall be defined as the axis defined by the WGS-84 coordinate system and its reference ellipsoid. Any angle “to the east” is defined as the positive direction. A value of 28800 shall be used when angle is unavailable.

ASN.1 Representation:

```
Angle ::= INTEGER (0..28800)
  -- LSB of 0.0125 degrees
  -- A range of 0 to 359.9875 degrees
```

Used By: This entry is directly used by the following six other data structures in this standard:

DF	DF_ComputedLane	<ASN> , and
DF	DF_ObstacleDetection	<ASN> , and
DF	DF_PivotPointDescription	<ASN> , and
DF	DF_RequestorPositionVector	<ASN> , and
DF	DF_TrailerHistoryPoint	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that other heading and angle data elements of various sizes and precisions are found in other parts of this standard and in ITS.

7.8 Data Element: DE_AnimalPropelledType

Use: The DE_AnimalPropelledType data element is used to describe the propulsion type that is performed by an animal.

ASN.1 Representation:

```
AnimalPropelledType ::= ENUMERATED {
  unavailable          (0),
  otherTypes           (1), -- any method not listed below
  animalMounted        (2), -- as in horseback
  animalDrawnCarriage (3),
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [PropelledInformation](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.9 Data Element: DE_AnimalType

Use: The DE_AnimalType data element is used to describe a type of animal.

ASN.1 Representation:

```
AnimalType ::= ENUMERATED {
    unavailable      (0),
    serviceUse       (1), -- Includes guide or police animals
    pet              (2),
    farm             (3),
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.10 Data Element: DE_AntiLockBrakeStatus

Use: The DE_AntiLockBrakeStatus data element reflects the status of the vehicle ABS. The element can inform others that the vehicle is not equipped with ABS or, if equipped, if the ABS status is unavailable. If the vehicle is equipped with ABS and the status is available, the element reports whether the system is in an off, on, or engaged state.

ASN.1 Representation:

```
AntiLockBrakeStatus ::= ENUMERATED {
    unavailable (0), -- B'00 Vehicle Not Equipped with ABS Brakes
                      -- or ABS Brakes status is unavailable
    off         (1), -- B'01 Vehicle's ABS are Off
    on          (2), -- B'10 Vehicle's ABS are On ( but not Engaged )
    engaged     (3)  -- B'11 Vehicle's ABS control is Engaged on any wheel
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.11 Data Element: DE_ApproachID

Use: The DE_ApproachID data element is used to relate the index of an approach, either ingress or egress within the subject lane. In general, an approach index in the context of a timing movement is not of value in the MAP and SPAT process because the lane ID and signal group ID concepts handle this with more precision. This value can also be useful as an aid as it can be used to indicate the gross position of a moving object (vehicle) when its lane level accuracy is unknown. This value can also be used when a deployment represents sets of lanes as groups without further details (as is done in Japan).

ASN.1 Representation:

```
ApproachID ::= INTEGER (0..15) -- zero to be used when valid value is unknown
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_ApproachOrLane	<ASN> , and
DF	DF_GenericLane	<ASN> , and
DF	DF_IntersectionAccessPoint	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.12 Data Element: DE_Attachment

Use: The DE_Attachment data element is used to describe the attachment to another object which the (nonmotorized) pedestrian (considered here as a vulnerable road user) may have. This applies to the person/user/device who has the attachment, not the attachment itself, or any occupant of the attachment.

ASN.1 Representation:

```
Attachment ::= ENUMERATED {
    unavailable          (0), -- has some unknown attachment type
    stroller              (1),
    bicycleTrailer        (2),
    cart                  (3),
    wheelchair            (4),
    otherWalkAssistAttachments (5),
    pet                  (6),
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.13 Data Element: DE_AttachmentRadius

Use: The DE_AttachmentRadius data element is used to describe the radius of an attachment to another object which the (non motorized) pedestrian may have.

ASN.1 Representation:

```
AttachmentRadius ::= INTEGER (0..200) -- In LSB units of one decimeter
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.14 Data Element: DE_AuxiliaryBrakeStatus

Use: The DE_AuxiliaryBrakeStatus data element reflects the status of the auxiliary brakes (sometimes referred to as the parking brake) of the vehicle. The element can inform others that the vehicle is not equipped with auxiliary brakes or, if equipped, if the auxiliary brakes status is unavailable. If the vehicle is equipped with auxiliary brakes and the status is available, the element reports whether the auxiliary brakes are in a fully released (off) state or in an engaged or in the process of being engaged (on) state.

ASN.1 Representation:

```
AuxiliaryBrakeStatus ::= ENUMERATED {
    unavailable (0), -- B'00 Vehicle Not Equipped with Aux Brakes
                    -- or Aux Brakes status is unavailable
    off          (1), -- B'01 Vehicle's Aux Brakes are Off
    on           (2), -- B'10 Vehicle's Aux Brakes are On ( Engaged )
    reserved     (3)  -- B'11
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.15 Data Element: DE_BasicVehicleClass

Use: The BasicVehicleClass data element is used to provide a common classification system to categorize V2X-equipped devices for various cross-cutting uses. Several other classification systems in this data dictionary can be used to provide more domain specific detail when required.

ASN.1 Representation:

```
BasicVehicleClass ::= INTEGER (0..255)
unknownVehicleClass          BasicVehicleClass ::= 0
                                         -- Not Equipped, Not known or unavailable
specialVehicleClass          BasicVehicleClass ::= 1
                                         -- Special use
--
-- Basic Passenger Motor Vehicle Types
--
passenger-Vehicle-TypeUnknown  BasicVehicleClass ::= 10 -- default type
passenger-Vehicle-TypeOther    BasicVehicleClass ::= 11
-- various fuel types are handled in another element
--
-- Light Trucks, Pickup, Van, Panel
--
lightTruck-Vehicle-TypeUnknown  BasicVehicleClass ::= 20 -- default type
lightTruck-Vehicle-TypeOther    BasicVehicleClass ::= 21
--
-- Trucks, Various axle types, includes HPMS items
--
truck-Vehicle-TypeUnknown  BasicVehicleClass ::= 25 -- default type
truck-Vehicle-TypeOther    BasicVehicleClass ::= 26
truck-axleCnt2             BasicVehicleClass ::= 27 -- Two axle, six tire single units
truck-axleCnt3             BasicVehicleClass ::= 28 -- Three axle, single units
truck-axleCnt4             BasicVehicleClass ::= 29 -- Four or more axle, single unit
truck-axleCnt4Trailer      BasicVehicleClass ::= 30 -- Four or less axle, single trailer
truck-axleCnt5Trailer      BasicVehicleClass ::= 31 -- Five or less axle, single trailer
truck-axleCnt6Trailer      BasicVehicleClass ::= 32 -- Six or more axle, single trailer
truck-axleCnt5MultiTrailer  BasicVehicleClass ::= 33 -- Five or less axle, multi-trailer
truck-axleCnt6MultiTrailer  BasicVehicleClass ::= 34 -- Six axle, multi-trailer
truck-axleCnt7MultiTrailer  BasicVehicleClass ::= 35 -- Seven or more axle, multi-trailer
--
-- Motorcycle Types
--
motorcycle-TypeUnknown      BasicVehicleClass ::= 40 -- default type
motorcycle-TypeOther         BasicVehicleClass ::= 41
motorcycle-Cruiser-Standard  BasicVehicleClass ::= 42
motorcycle-SportUnclad      BasicVehicleClass ::= 43
motorcycle-SportTouring     BasicVehicleClass ::= 44
motorcycle-SuperSport       BasicVehicleClass ::= 45
motorcycle-Touring          BasicVehicleClass ::= 46
motorcycle-Trike             BasicVehicleClass ::= 47
motorcycle-wPassengers      BasicVehicleClass ::= 48 -- type not stated
--
-- Transit Types
--
transit-TypeUnknown          BasicVehicleClass ::= 50 -- default type
transit-TypeOther             BasicVehicleClass ::= 51
transit-BRT                  BasicVehicleClass ::= 52
transit-ExpressBus          BasicVehicleClass ::= 53
transit-LocalBus             BasicVehicleClass ::= 54
transit-SchoolBus            BasicVehicleClass ::= 55
transit-FixedGuideway        BasicVehicleClass ::= 56
transit-Paratransit          BasicVehicleClass ::= 57
transit-Paratransit-Ambulance BasicVehicleClass ::= 58
```

```
--  
-- Emergency Vehicle Types  
--  
emergency-TypeUnknown          BasicVehicleClass ::= 60 -- default type  
emergency-TypeOther            BasicVehicleClass ::= 61 -- includes federal users  
emergency-Fire-Light-Vehicle  BasicVehicleClass ::= 62  
emergency-Fire-Heavy-Vehicle  BasicVehicleClass ::= 63  
emergency-Fire-Paramedic-Vehicle BasicVehicleClass ::= 64  
emergency-Fire-Ambulance-Vehicle BasicVehicleClass ::= 65  
emergency-Police-Light-Vehicle BasicVehicleClass ::= 66  
emergency-Police-Heavy-Vehicle BasicVehicleClass ::= 67  
emergency-Other-Responder     BasicVehicleClass ::= 68  
emergency-Other-Ambulance     BasicVehicleClass ::= 69  
  
--  
-- Other V2X Equipped Travelers  
--  
otherTraveler-TypeUnknown       BasicVehicleClass ::= 80 -- default type  
otherTraveler-TypeOther         BasicVehicleClass ::= 81  
otherTraveler-Pedestrian       BasicVehicleClass ::= 82  
otherTraveler-Visually-Disabled BasicVehicleClass ::= 83  
otherTraveler-Physically-Disabled BasicVehicleClass ::= 84  
otherTraveler-Bicycle          BasicVehicleClass ::= 85  
otherTraveler-Vulnerable-Roadworker BasicVehicleClass ::= 86  
  
--  
-- Other V2X Equipped Device Types  
--  
infrastructure-TypeUnknown     BasicVehicleClass ::= 90 -- default type  
infrastructure-Fixed           BasicVehicleClass ::= 91  
infrastructure-Movable         BasicVehicleClass ::= 92  
equipped-CargoTrailer         BasicVehicleClass ::= 93
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_SupplementalVehicleExtensions](#) [<ASN>](#), and
DF [DF_VehicleClassification](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: The DE_BasicVehicleClass should not be confused with the DE_BasicVehicleRole. All V2X-equipped devices always have a DE_BasicVehicleClass which is typically a value fixed over the operational life of the device. By contrast, some V2X-equipped devices depart from their normal role and assume other roles for periods of time. This is typically coordinated with a suitable certificate allowing the owner to assume such a role. As an example, a tow truck leaves the role of a duty passenger vehicle and assumes the role of an active tow truck at selected times (during a service call response and when towing or otherwise a potential hazard to nearby vehicles). During this period of time the BasicVehicleClass remains the same value. In the absence of a stated role a light duty passenger vehicle is presumed.

7.16 Data Element: DE_BasicVehicleRole

Use: The BasicVehicleRole data element indicates the current role that a V2X device is playing. This is most commonly employed when a vehicle needs to take on another role in order to send certain V2X message types. As an example, when a public safety vehicle, such as a police car, wishes to send a signal request message (SRM) to an intersection to request a preemption service, the vehicle takes on the role "police" from the below list in the SRM. The BasicVehicleRole entry is often used and combined with other information about the requester as well, such as details of why the request is being made.

ASN.1 Representation:

```
BasicVehicleRole ::= ENUMERATED {
    -- Values used in the EU and in the US
    basicVehicle      (0), -- Light duty passenger vehicle type
    publicTransport    (1), -- Used in EU for Transit us
    specialTransport   (2), -- Used in EU (e.g., heavy load)
    dangerousGoods    (3), -- Used in EU for any HAZMAT
    roadWork           (4), -- Used in EU for State and Local DOT uses
    roadRescue         (5), -- Used in EU and in the US to include tow trucks.
    emergency          (6), -- Used in EU for Police, Fire and Ambulance units
    safetyCar          (7), -- Used in EU for Escort vehicles
    -- Begin US unique numbering
    none-unknown      (8), -- added to follow current SAE style guidelines
    truck              (9), -- Heavy trucks with additional BSM rights and obligations
    motorcycle         (10), --
    roadSideSource     (11), -- For infrastructure generated calls such as
                            -- fire house, rail infrastructure, roadwork site, etc.
    police             (12), --
    fire               (13), --
    ambulance          (14), -- (does not include private para-transit etc.)
    dot                (15), -- all roadwork vehicles
    transit             (16), -- all transit vehicles
    slowMoving          (17), -- to also include oversize etc.
    stopNgo            (18), -- to include trash trucks, school buses and others
                            -- that routinely disturb the free flow of traffic
    cyclist             (19), --
    pedestrian          (20), -- also includes those with mobility limitations
    nonMotorized        (21), -- other, horse drawn, etc.
    military            (22), --
    ...
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_RequestorType	<ASN> , and
DF	DF_SignalRequesterInfo	<ASN> , and
DF	DF_VehicleClassification	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be observed that V2X devices can at times change their roles (i.e., a fire operated by a volunteer fireman can assume a fire role for a period of time, or a pedestrian may assume a cyclist role when using a bicycle). It should be observed that not all V2X devices (or V2X vehicles) can assume all roles, or that a given device in a given role will be provided with a security certificate (CERT) that has suitable SSP credentials to provide the ability to send a particular message or message content. The ultimate responsibility to determine what role is to be used, and what CERTs would be provided for that role (which in turn controls the messages and message content that can be sent within SAE-defined PSIDs) rests with the regional deployment.

7.17 Data Element: DE_BrakeAppliedPressure

Use: The applied pressure of the vehicle brake system. The precise pressure of each value is not specified; however, the collection is presumed to be monotonic.

ASN.1 Representation:

```
BrakeAppliedPressure ::= ENUMERATED {  
    unavailable (0), -- B'0000 Not Equipped  
    -- or Brake Pres status is unavailable  
    minPressure (1), -- B'0001 Minimum Braking Pressure  
    bkLvl-2 (2), -- B'0010  
    bkLvl-3 (3), -- B'0011  
    bkLvl-4 (4), -- B'0100  
    bkLvl-5 (5), -- B'0101  
    bkLvl-6 (6), -- B'0110  
    bkLvl-7 (7), -- B'0111  
    bkLvl-8 (8), -- B'1000  
    bkLvl-9 (9), -- B'1001  
    bkLvl-10 (10), -- B'1010  
    bkLvl-11 (11), -- B'1011  
    bkLvl-12 (12), -- B'1100  
    bkLvl-13 (13), -- B'1101  
    bkLvl-14 (14), -- B'1110  
    maxPressure (15) -- B'1111 Maximum Braking Pressure  
} -- Encoded as a 4 bit value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.18 Data Element: DE_BrakeAppliedStatus

Use: The Brake Applied Status data element indicates independently for each of four wheels whether braking is currently active. The four wheels are designated Left Front, Right Front, Left Rear, and Right Rear. The indicated status of a wheel is set to 1 if brakes are active on that wheel, or to 0 if brakes are inactive on that wheel. On a vehicle with only one front wheel, the brake-applied status is represented by the Left Front wheel indicator and the Right Front indicator is always set to zero. Similarly, on a vehicle with only one rear wheel the brake-applied status is represented by the Left Rear wheel indicator and the Right Rear indicator is always set to zero. If a vehicle has more than two front wheels (respectively more than two rear wheels) with independent braking, the collective brake-applied status of these wheels is mapped to the Left Front and Right Front (respectively Left Rear and Right Rear) indicators in a locally defined manner. Brake Applied Status could be used by a traffic management center to determine that an incident has occurred or congestion may be present. It is possible for some vehicles to provide an indication of how hard the braking action is; this is handled in another data element (DE_BrakeAppliedPressure).

ASN.1 Representation:

```
BrakeAppliedStatus ::= BIT STRING {  
    unavailable (0), -- When set, the brake applied status is unavailable  
    leftFront (1), -- Left Front Active  
    leftRear (2), -- Left Rear Active  
    rightFront (3), -- Right Front Active  
    rightRear (4) -- Right Rear Active  
} (SIZE (5))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.19 Data Element: DE_BrakeBoostApplied

Use: This is a data element which, when set to the “on” state, indicates emergency braking. This data element is an on/off value which indicates engagement of the vehicle’s brake boost assist function (as well as an unavailable state). Brake boost assist is available on some vehicles. It detects the potential of a situation requiring maximum braking and pre-charges the brake system even before the driver presses the brake pedal. This situation is detected either by measuring a rapid release of the accelerator pedal or via a forward sensing system. Some systems also apply full braking when the driver presses the pedal, even with a light force. Multiple reports by equipped vehicles activating their brake boost at the same location is an indication of an emergency situation on the road and is therefore of use to road authorities.

ASN.1 Representation:

```
BrakeBoostApplied ::= ENUMERATED {  
    unavailable (0), -- Vehicle not equipped with brake boost  
                  -- or brake boost data is unavailable  
    off (1), -- Vehicle's brake boost is off  
    on (2) -- Vehicle's brake boost is on (applied)  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.20 Data Element: DE_BumperHeight

Use: The DE_Bumper Height data element conveys the height of one of the bumpers of the vehicle or object. In cases of vehicles with complex bumper shapes, the center of the mass of the bumper (where the bumper can best absorb an impact) should be used.

ASN.1 Representation:

```
BumperHeight ::= INTEGER (0..127) -- in units of 0.01 meters from ground surface.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BumperHeights <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.21 Data Element: DE_CoarseHeading

Use: The DE_CoarseHeading data element is used to provide a coarser sense of heading than the DE_Heading provides.

ASN.1 Representation:

```
CoarseHeading ::= INTEGER (0..240)  
                  -- Where the LSB is in units of 1.5 degrees  
                  -- over a range of 0~358.5 degrees  
                  -- the value 240 shall be used for unavailable
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_PathHistoryPoint	<ASN>, and
DF	DF_TrailerHistoryPoint	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.22 Data Element: DE_CodeWord

Use: The DE_CodeWord is used to convey a prior known string of octets between systems, typically to establish trust or validity of the message request in which it is found. The use and setting of these words, as well as any policy regarding changing the value over time, is up to the participants.

ASN.1 Representation:

```
CodeWord ::= OCTET STRING (SIZE(1..16))  
                  -- any octet string up to 16 octets
```

7.23 Data Element: DE_CoefficientOfFriction

Note: An alternative (more accurate) method for conveying friction information is provided in SAE J2945/3. This DE is likely to be deprecated in the future.

Use: Coefficient of Friction of an object, typically a wheel in contact with the ground. This data element is typically used in sets where the value at each wheel is provided in turn as a measure of relative local traction.

ASN.1 Representation:

```
CoefficientOfFriction ::= INTEGER (0..50)
-- where 0 = 0.00 micro (frictionless), also used when data is unavailable
-- and 50 = 1.00 micro, in steps of 0.02
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_VehicleStatus	<ASN> , and
DF	DF_WeatherReport	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.24 Data Element: DE_Confidence

Use: The entry DE_Confidence is a data element representing the general confidence of another associated value.

ASN.1 Representation:

```
Confidence ::= INTEGER (0..200)
-- LSB units of 0.5 percent
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PathPrediction](#) [<ASN>](#).
In addition, this item may be used by data structures in other ITS standards.

7.25 Data Element: DE_Count

Use: The DE_Count data element provides a count of items to follow in the message.

ASN.1 Representation:

```
Count ::= INTEGER (0..32)
```

7.26 Data Element: DE_DDay

Use: The V2X style day is a simple value consisting of integer values from zero to 31. The value of zero shall represent an unknown value.

ASN.1 Representation:

```
DDay ::= INTEGER (0..31) -- units of days
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_DDate	<ASN> , and
DF	DF_DDateTime	<ASN> , and
DF	DF_DFullTime	<ASN> , and
DF	DF_DMonthDay	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.27 Data Element: DE_DeltaAngle

Use: The DeltaAngle data element provides the final angle used in the last point of the lane path. Used to “cant” the stop line of the lane.

ASN.1 Representation:

```
DeltaAngle ::= INTEGER (-150..150)
  -- With an angle range from
  -- negative 150 to positive 150
  -- in one degree steps where zero is directly
  -- along the axis or the lane center line as defined by the
  -- two closest points
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneDataAttribute <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.28 Data Element: DE_DeltaTime

Use: The DE_DeltaTime data element provides a time definition for an object's schedule adherence (typically a transit vehicle) within a limited range of time. When the reporting object is ahead of schedule, a positive value is used; when behind, a negative value is used. A value of zero indicates schedule adherence. This value is typically sent from a vehicle to the traffic signal controller's RSU to indicate the urgency of a signal request in the context of being within schedule or not. In another use case, the traffic signal controller may advise the transit vehicle to speed up ($\text{DeltaTime} > 0$) or to slow down ($\text{DeltaTime} < 0$) to optimize the transit vehicle distribution driving along a specific route (e.g., a bus route).

ASN.1 Representation:

```
DeltaTime ::= INTEGER (-122 .. 121)
  -- Supporting a range of +/- 20 minute in steps of 10 seconds
  -- the value of -121 shall be used when more than -20 minutes
  -- the value of +120 shall be used when more than +20 minutes
  -- the value -122 shall be used when the value is unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.29 Data Element: DE_DescriptiveName

Use: The DescriptiveName data element is used in maps and intersections to provide a human readable and recognizable name for the feature that follows. It is typically used when debugging a data flow and not in production use. One key exception to this general rule is to provide a human-readable string for disabled travelers in the case of crosswalks and sidewalk lane objects.

ASN.1 Representation:

```
DescriptiveName ::= IA5String (SIZE(1..63))
```

Used By: This entry is directly used by the following nine other data structures in this standard:

DF	DF_GenericLane	<ASN> , and
DF	DF_GeographicalPath	<ASN> , and
DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_IntersectionState	<ASN> , and
DF	DF_MovementState	<ASN> , and
DF	DF_RequestorDescription	<ASN> , and
DF	DF_RoadSegment	<ASN> , and
DF	DF_VehicleIdent	<ASN> , and
MSG	MSG_SignalPhaseAndTiming Message (SPAT)	<ASN>

In addition, this item may be used by data structures in other ITS standards.

7.30 Data Element: DE_DHour

Use: The V2X hour consists of integer values from zero to 23 representing the hours within a day. The value of 31 shall represent an unknown value. The range 24 to 30 is used in some transit applications to represent schedule adherence.

ASN.1 Representation:

```
DHour ::= INTEGER (0..31) -- units of hours
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_DDateTime	<ASN> , and
DF	DF_DFullTime	<ASN> , and
DF	DF_DTime	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.31 Data Element: DE_DirectionOfUse

Use: The allowed direction of travel on a street lane or path described by shape points. The presumed (default) direction is outward, away from the initial set of points. However, this data element can be used indicate a reverse direction or both directions as well as the original outward direction.

ASN.1 Representation:

```
DirectionOfUse ::= ENUMERATED {
  unavailable (0), -- unknown or NA, not typically used in valid expressions
  forward     (1), -- direction of travel follows node ordering
  reverse     (2), -- direction of travel is the reverse of node ordering
  both        (3)  -- direction of travel allowed in both directions
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_GeographicalPath](#) [<ASN>](#), and
DF [DF_ShapePointSet](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.32 Data Element: DE_DistanceUnits

Use: The DistanceUnits data element provides the LSB units to be used in an expression of distance.

ASN.1 Representation:

```
DistanceUnits ::= ENUMERATED {  
    centimeter (0),  
    cm2-5 (1), -- Steps of 2.5 centimeters  
    decimeter (2),  
    meter (3),  
    kilometer (4),  
    foot (5), -- US foot, 0.3048 meters exactly  
    yard (6), -- three US feet  
    mile (7) -- US mile (5280 US feet)  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Circle](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.33 Data Element: DE_DMinute

Use: The V2X style minute is a simple value consisting of integer values from zero to 59 representing the minutes within an hour. The value of 60 shall represent an unknown value.

ASN.1 Representation:

```
DMinute ::= INTEGER (0..60) -- units of minutes
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF [DF_DDateTime](#) [<ASN>](#), and
DF [DF_DFullTime](#) [<ASN>](#), and
DF [DF_DTime](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.34 Data Element: DE_DMonth

Use: The V2X month consists of integer values from one to 12, representing the month within a year. The value of zero shall represent an unknown value.

ASN.1 Representation:

```
DMonth ::= INTEGER (0..12) -- units of months
```

Used By: This entry is directly used by the following five other data structures in this standard:

DF	DF_DDate	<ASN>, and
DF	DF_DDateTime	<ASN>, and
DF	DF_DFullTime	<ASN>, and
DF	DF_DMonthDay	<ASN>, and
DF	DF_DYearMonth	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.35 Data Element: DE_Offset

Use: The V2X (time zone) offset consists of a signed integer representing an hour and minute value set from -14:00 to +14:00, representing all the world's local time zones in units of minutes. The value of zero (00:00) may also represent an unknown value. Note some time zones are do not align to hourly boundaries.

ASN.1 Representation:

```
DE_Offset ::= INTEGER (-840..840) -- units of minutes from UTC time
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_DDateTime	<ASN>, and
DF	DF_DTime	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.36 Data Element: DE_DrivenLineOffsetLarge

Use: The DE_DrivenLineOffsetLarge data element is an integer value expressing the offset in a defined axis from a reference lane number from which a computed lane is offset. The measurement is taken from the reference lane center line to the new center line, independent of any width values. The units are a signed value with an LSB of 1 cm.

ASN.1 Representation:

```
DrivenLineOffsetLg ::= INTEGER (-32767..32767)  
-- LSB units are 1 cm.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ComputedLane](#) <ASN>. In addition, this item may be used by data structures in other ITS standards.

Remarks: See also DE_DrivenLineOffsetSmall.

7.37 Data Element: DE_DrivenLineOffsetSmall

Use: The DrivenLineOffsetSmall data element is an integer value expressing the offset in a defined axis from a reference lane number from which a computed lane is offset. The measurement is taken from the reference lane center line to the new center line, independent of any width values. The units are a signed value with an LSB of 1 cm.

ASN.1 Representation:

```
DrivenLineOffsetSm ::= INTEGER (-2047..2047)  
-- LSB units are 1 cm.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ComputedLane](#) <ASN>. In addition, this item may be used by data structures in other ITS standards.

Remarks: See also DE_DrivenLineOffsetLarge

7.38 Data Element: DE_DrivingWheelAngle

Use: The angle of the front (steering) wheel, expressed in a signed (to the right being positive) value with units of 0.3333 degree and a range of ± 42.33 degrees. The value of zero shall be set when both wheels are pointed such as to drive the vehicle in a straight ahead direction (the toe-in angle of each side being equal and canceling each other out). A value of -128 shall be sent when unavailable.

ASN.1 Representation:

```
DrivingWheelAngle ::= INTEGER (-128..127)
  -- LSB units of 0.3333 degrees.
  -- a range of 42.33 degrees each way
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.39 Data Element: DE_DSecond

Use: The V2X second expressed in this data element consists of integer values from zero to 60999, representing the milliseconds within a minute. A leap second is represented by the value range 60000 to 60999. The value of 65535 shall represent an unavailable value in the range of the minute. The values from 61000 to 65534 are reserved.

ASN.1 Representation:

```
DSecond ::= INTEGER (0..65535) -- units of milliseconds
```

Used By: This entry is directly used by the following 10 other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_DDateTime	<ASN> , and
DF	DF_DTime	<ASN> , and
DF	DF_Header	<ASN> , and
DF	DF_IntersectionState	<ASN> , and
DF	DF_SignalRequestPackage	<ASN> , and
DF	DF_SignalStatusPackage	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> , and
MSG	MSG_SignalRequestMessage (SRM)	<ASN> , and
MSG	MSG_SignalStatusMessage (SSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: The value contained in the DSecond data element must refer to a known point in time within the V2X system that is shared or understood by the user community. This point in time is typically the moment when the position determination was made for most messages (such as the BSM). Other measurements present in the same message (speed, heading, etc.) should be aligned to that moment insofar as possible in the implementation.

The need for a leap second arises from the varying difference between solar time and UTC time caused by changes in the earth's rotation rate.

7.40 Data Element: DE_DSRC_MessageID

Use: The V2X message ID is a data element used with each message in the framework to define which type of message follows from the message set defined by this standard.

ASN.1 Representation:

```
DSRCmsgID ::= INTEGER (0 .. 32767)
--  
-- DER forms,  
-- All DER forms are now retired and not to be used  
--  
reservedMessageId-D DSRCmsgID ::= 0 --'00'H  
alaCarteMessage-D DSRCmsgID ::= 1 --'01'H ACM  
-- alaCarteMessage-D is Retired, not to be used  
basicSafetyMessage-D DSRCmsgID ::= 2 --'02'H BSM, heartbeat msg  
basicSafetyMessageVerbose-D DSRCmsgID ::= 3 --'03'H For testing only  
commonSafetyRequest-D DSRCmsgID ::= 4 --'04'H CSR  
emergencyVehicleAlert-D DSRCmsgID ::= 5 --'05'H EVA  
intersectionCollision-D DSRCmsgID ::= 6 --'06'H ICA  
mapData-D DSRCmsgID ::= 7 --'07'H MAP, intersections  
nmeaCorrections-D DSRCmsgID ::= 8 --'08'H NMEA  
probeDataManagement-D DSRCmsgID ::= 9 --'09'H PDM  
probeVehicleData-D DSRCmsgID ::= 10 --'0A'H PVD  
roadSideAlert-D DSRCmsgID ::= 11 --'0B'H RSA  
rtcmCorrections-D DSRCmsgID ::= 12 --'0C'H RTCM  
signalPhaseAndTimingMessage-D DSRCmsgID ::= 13 --'0D'H SPAT  
signalRequestMessage-D DSRCmsgID ::= 14 --'0E'H SRM  
signalStatusMessage-D DSRCmsgID ::= 15 --'0F'H SSM  
travelerInformation-D DSRCmsgID ::= 16 --'10'H TIM  
uperFrame-D DSRCmsgID ::= 17 --'11'H UPER frame  
--  
-- UPER forms  
--  
mapData DSRCmsgID ::= 18 -- MAP, intersections  
signalPhaseAndTimingMessage DSRCmsgID ::= 19 -- SPAT  
-- Above two entries were adopted in the 2015-04 edition  
-- Message assignments added in 2015 follow below  
basicSafetyMessage DSRCmsgID ::= 20 -- BSM, heartbeat msg  
commonSafetyRequest DSRCmsgID ::= 21 -- CSR  
emergencyVehicleAlert DSRCmsgID ::= 22 -- EVA  
intersectionCollision DSRCmsgID ::= 23 -- ICA  
nmeaCorrections DSRCmsgID ::= 24 -- NMEA  
probeDataManagement DSRCmsgID ::= 25 -- PDM  
probeVehicleData DSRCmsgID ::= 26 -- PVD  
roadSideAlert DSRCmsgID ::= 27 -- RSA  
rtcmCorrections DSRCmsgID ::= 28 -- RTCM  
signalRequestMessage DSRCmsgID ::= 29 -- SRM  
signalStatusMessage DSRCmsgID ::= 30 -- SSM  
travelerInformation DSRCmsgID ::= 31 -- TIM  
personalSafetyMessage DSRCmsgID ::= 32 -- PSM  
--  
-- The below values are reserved for local message testing use  
--  
testMessage00 DSRCmsgID ::= 240 -- Hex 0xF0  
testMessage01 DSRCmsgID ::= 241  
testMessage02 DSRCmsgID ::= 242  
testMessage03 DSRCmsgID ::= 243  
testMessage04 DSRCmsgID ::= 244  
testMessage05 DSRCmsgID ::= 245
```

```
testMessage06          DSRCmsgID ::= 246
testMessage07          DSRCmsgID ::= 247
testMessage08          DSRCmsgID ::= 248
testMessage09          DSRCmsgID ::= 249
testMessage10          DSRCmsgID ::= 250
testMessage11          DSRCmsgID ::= 251
testMessage12          DSRCmsgID ::= 252
testMessage13          DSRCmsgID ::= 253
testMessage14          DSRCmsgID ::= 254
testMessage15          DSRCmsgID ::= 255-- Hex 0xFF
--
-- All other values are reserved for std use
--
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The three/four letter abbreviations shown in the ASN comments are sometimes used as shorthand terms for the subject messages in the documentation. This name space shall be used to indicate any revised messages and to assign a new message ID when revisions occur. The transition from the DER to UPER style of encoding in the current standard is an example of this process, resulting in new assignments for the new formats.

The assignment of additional message IDs, and of new message IDs, is performed only by of SAE V2X Communications Technical Committees. Local deployments are free to use the range of assigned test message IDs in any way they see fit but shall not define additional further IDs. Local deployments may use the ability to further sub-type within any message structures that they define to provide a method for evaluating or testing further types.

7.41 Data Element: DE_Duration

Use: The Duration data element provides a range of zero to 3600 seconds (1 hour) for a requested or described service. The value zero shall be used to indicate an unknown or indefinite duration.

ASN.1 Representation:

```
Duration ::= INTEGER (0..3600) -- units of seconds
```

7.42 Data Element: DE_DYear

Use: The V2X year consists of integer values from zero to 4095 representing the year according to the Gregorian calendar date system. The value of zero shall represent an unknown value.

ASN.1 Representation:

```
DYear ::= INTEGER (0..4095) -- units of years
```

Used By: This entry is directly used by the following six other data structures in this standard:

DF	DF_DDate	<ASN> , and
DF	DF_DDateTime	<ASN> , and
DF	DF_DFullTime	<ASN> , and
DF	DF_DYearMonth	<ASN> , and
DF	DF_Header	<ASN> , and
DF	DF_TravelerDataFrame	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: The prior max value of 9999 was reduced to be 4095 to save two additional bits.

7.43 Data Element: DE_ElevationConfidence

Use: The DE_ElevationConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_Elevation, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide the listener with information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. The frame of reference and axis of rotation used shall be in accordance with that defined in Section 11.

ASN.1 Representation:

```
ElevationConfidence ::= ENUMERATED {  
    unavailable (0),    -- B'0000  Not Equipped or unavailable  
    elev-500-00 (1),    -- B'0001  (500 m)  
    elev-200-00 (2),    -- B'0010  (200 m)  
    elev-100-00 (3),    -- B'0011  (100 m)  
    elev-050-00 (4),    -- B'0100  (50 m)  
    elev-020-00 (5),    -- B'0101  (20 m)  
    elev-010-00 (6),    -- B'0110  (10 m)  
    elev-005-00 (7),    -- B'0111  (5 m)  
    elev-002-00 (8),    -- B'1000  (2 m)  
    elev-001-00 (9),    -- B'1001  (1 m)  
    elev-000-50 (10),   -- B'1010  (50 cm)  
    elev-000-20 (11),   -- B'1011  (20 cm)  
    elev-000-10 (12),   -- B'1100  (10 cm)  
    elev-000-05 (13),   -- B'1101  (5 cm)  
    elev-000-02 (14),   -- B'1110  (2 cm)  
    elev-000-01 (15)    -- B'1111  (1 cm)  
} -- Encoded as a 4 bit value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PositionConfidenceSet <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.44 Data Element: DE_Elevation

Use: The DE_Elevation data element represents the geographic position above or below the reference ellipsoid (typically WGS-84). The number has a resolution of 1 decimeter and represents an asymmetric range of positive and negative values. Any elevation higher than +6143.9 m is represented as +61439. Any elevation lower than -409.5 m is represented as -4095. If the sending device does not know its elevation, it shall encode the Elevation data element with -4096.

ASN.1 Representation:

```
Elevation ::= INTEGER (-4096..61439)  
    -- In units of 10 cm steps above or below the reference ellipsoid  
    -- Providing a range of -409.5 to + 6143.9 meters  
    -- The value -4096 shall be used when Unknown is to be sent
```

Used By: This entry is directly used by the following five other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
DF	DF_Position3D	<ASN> , and
DF	DF_VerticalOffset	<ASN> , and
DF	DF_REG_Position3D_JPN	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: When a vehicle is being measured, the elevation is taken from the horizontal spatial center of the vehicle projected downward, regardless of vehicle tilt, to the point where the vehicle meets the road surface.

7.45 Data Element: DE_Extent

Use: The spatial distance over which this message applies and should be presented to the driver. Under certain conditions, some messages may never be shown to the driver of a vehicle if they are short in duration and other conflicting needs supersede access to the display until such time as the subject message is no longer relevant.

ASN.1 Representation:

```
Extent ::= ENUMERATED {  
    useInstantlyOnly      (0),  
    useFor3meters         (1),  
    useFor10meters        (2),  
    useFor50meters        (3),  
    useFor100meters       (4),  
    useFor500meters       (5),  
    useFor1000meters      (6),  
    useFor5000meters      (7),  
    useFor10000meters     (8),  
    useFor50000meters     (9),  
    useFor100000meters    (10),  
    useFor500000meters    (11),  
    useFor1000000meters   (12),  
    useFor5000000meters   (13),  
    useFor10000000meters  (14),  
    forever                (15)  -- very wide area  
}  -- Encoded as a 4 bit value
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_EventDescription	<ASN> , and
DF	DF_GeometricProjection	<ASN> , and
DF	DF_ValidRegion	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.46 Data Element: DE_ExteriorLights

Use: The DE_ExteriorLights data element provides the status of various exterior lights (when such data is available) encoded in a bit string which can be used to relate the current vehicle settings.

ASN.1 Representation:

```
ExteriorLights ::= BIT STRING {  
    -- All lights off is indicated by no bits set  
    lowBeamHeadlightsOn      (0),  
    highBeamHeadlightsOn     (1),  
    leftTurnSignalOn        (2),  
    rightTurnSignalOn       (3),  
    hazardSignalOn          (4),  
    automaticLightControlOn (5),  
    daytimeRunningLightsOn  (6),  
    fogLightOn               (7),  
    parkingLightsOn          (8)  
} (SIZE (9, ...))
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_VehicleSafetyExtensions](#) [<ASN>](#), and
DF [DF_VehicleStatus](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.47 Data Element: DE_FuelType

Use: This data element provides the type of fuel used by a vehicle.

ASN.1 Representation:

```
FuelType ::= INTEGER (0..15)  
unknownFuel   FuelType::= 0 -- Gasoline Powered  
gasoline      FuelType::= 1  
ethanol       FuelType::= 2 -- Including blends  
diesel        FuelType::= 3 -- All types  
electric      FuelType::= 4  
hybrid        FuelType::= 5 -- All types  
hydrogen      FuelType::= 6  
natGasLiquid  FuelType::= 7 -- Liquefied  
natGasComp    FuelType::= 8 -- Compressed  
propane       FuelType::= 9
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleClassification](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.48 Data Element: DE_FurtherInfoID

Use: This data element provides a link number to other messages (described here and in other message set standards) which relate to the same event. Use zero when unknown or not present.

ASN.1 Representation:

```
FurtherInfoID ::= OCTET STRING (SIZE(2))  
-- a link to any other incident  
-- information data that may be available  
-- in the normal ATIS incident description  
-- or other messages
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_TravelerDataFrame	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Some message sets allow a request of other relevant messages by use of this ID, some others do not. Some messages do not yet support this ID and force the message receiver to sort the recovered message to align the events geographically. This is expected to be an area of harmonization. Developers should also note that data from different source agencies can vary with the numbering used as well.

7.49 Data Element: DE_GNSSstatus

Use: The DE_GNSSstatus data element is used to relate the current state of a GPS/GNSS rover or base system in terms of its general health, lock on satellites in view, and use of any correction information. Various bits can be asserted (made to a value of one) to reflect these values. A GNSS set with unknown health and no tracking or corrections would be represented by setting the unavailable bit to one. A value of zero shall be used when a defined data element is unavailable. The term "GPS" in any data element name in this standard does not imply that it is only to be used for GPS-type GNSS systems.

ASN.1 Representation:

```
GNSSstatus ::= BIT STRING {  
    unavailable          (0), -- Not Equipped or unavailable  
    isHealthy            (1),  
    isMonitored          (2),  
    baseStationType     (3), -- Set to zero if a moving base station,  
                           -- or if a rover device (an OBU),  
                           -- set to one if it is a fixed base station  
    aPDOPofUnder5       (4), -- A dilution of precision greater than 5  
    inViewOfUnder5      (5), -- Less than 5 satellites in view  
    localCorrectionsPresent (6), -- DGPS type corrections used  
    networkCorrectionsPresent (7) -- RTK type corrections used  
} (SIZE(8))
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_PathHistory	<ASN> , and
DF	DF_RTCMheader	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.50 Data Element: DE_GrossDistance

Use: The DE_GrossDistance data element represents the distance traveled of an object, typically a vehicle, expressed in unsigned units of 1.00 m.

ASN.1 Representation:

```
GrossDistance ::= INTEGER (0..1023) -- Units of 1.00 meters  
-- The value 1023 shall indicate unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SnapshotDistance](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.51 Data Element: DE_GrossSpeed

Use: The DE_GrossSpeed data element represents the velocity of an object, typically a vehicle speed, expressed in unsigned units of 1.00 m/s. This data element is often used to represent traffic flow rates where precision is not of concern and where the major use cases involve reporting slow traffic flow. Note that velocity as used here is intended to be a scalar value and not a vector.

ASN.1 Representation:

```
GrossSpeed ::= INTEGER (0..31) -- Units of 1.00 m/s
-- The value 30 shall be used for speeds of 30 m/s or greater (67.1 mph)
-- The value 31 shall indicate that the speed is unavailable
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_SnapshotDistance	<ASN> , and
DF	DF_SnapshotTime	<ASN> , and
DF	DF_SpeedProfileMesurement	<ASN>

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note the conversion guidance provided in 11.5 when units of mph and m/s are mixed.

7.52 Data Element: DE_HeadingConfidence

Use: The DE_HeadingConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_Heading, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide the listener with information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. The frame of reference and axis of rotation used shall be in accordance with that defined Section 11.

ASN.1 Representation:

```
HeadingConfidence ::= ENUMERATED {
  unavailable  (0), -- B'000  Not Equipped or unavailable
  prec10deg    (1), -- B'010  10    degrees
  prec05deg    (2), -- B'011  5     degrees
  prec01deg    (3), -- B'100  1     degrees
  prec0-1deg   (4), -- B'101  0.1   degrees
  prec0-05deg  (5), -- B'110  0.05  degrees
  prec0-01deg  (6), -- B'110  0.01  degrees
  prec0-0125deg(7) -- B'111  0.0125 degrees, aligned with heading LSB
} -- Encoded as a 3 bit value
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_ConfidenceSet	<ASN> , and
DF	DF_Speed Heading Throttle Confidence	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.53 Data Element: DE_Heading

Use: The DE_Heading data element provides the current heading of the sending device, expressed in unsigned units of 0.0125 degrees from north such that 28799 such degrees represent 359.9875 degrees. North shall be defined as the axis prescribed by the WGS-84 coordinate system and its reference ellipsoid. Headings “to the east” are defined as the positive direction. A value of 28800 shall be used when unavailable. This element indicates the direction of motion of the device. When the sending device is stopped and the trajectory (path) over which it traveled to reach that location is well known, the past heading may be used.

ASN.1 Representation:

```
Heading ::= INTEGER (0..28800)
  -- LSB of 0.0125 degrees
  -- A range of 0 to 359.9875 degrees
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note that other heading data elements of various sizes and precisions are found in other parts of this standard and in ITS. This element should no longer be used for new work: the DE_Angle entry is preferred.

7.54 Data Element: DE_HeadingSlice

Use: The DE_HeadingSlice data element is used to define a set of sixteen 22.5 degree slices of a unit circle (defined as 0~360 degrees of heading) which, when a given slice is set to one, indicates that travel, or motion, or message applicability along that slice of angles is allowed. Typically used to indicate a gross range of the direction to which the enclosing message or data frame applies. For example, in a use case indicating what directions of travel are to be considered, a value of 0x8181 would indicate travel in the direction of either due east or due west with a 45 degree cone about each of the cardinal axis.

ASN.1 Representation:

```
HeadingSlice ::= BIT STRING {  
  -- Each bit 22.5 degree starting from  
  -- North and moving Eastward (clockwise) as one bit  
  -- a value of noHeading means no bits set, while a  
  -- a value of allHeadings means all bits would be set  
  
  from000-0to022-5degrees  (0),  
  from022-5to045-0degrees  (1),  
  from045-0to067-5degrees  (2),  
  from067-5to090-0degrees  (3),  
  
  from090-0to112-5degrees  (4),  
  from112-5to135-0degrees  (5),  
  from135-0to157-5degrees  (6),  
  from157-5to180-0degrees  (7),  
  
  from180-0to202-5degrees  (8),  
  from202-5to225-0degrees  (9),  
  from225-0to247-5degrees  (10),  
  from247-5to270-0degrees  (11),  
  
  from270-0to292-5degrees  (12),  
  from292-5to315-0degrees  (13),  
  from315-0to337-5degrees  (14),  
  from337-5to360-0degrees  (15)  
} (SIZE (16))
```

Used By: This entry is directly used by the following seven other data structures in this standard:

DF	DF_EventDescription	<ASN> , and
DF	DF_GeographicalPath	<ASN> , and
DF	DF_GeometricProjection	<ASN> , and
DF	DF_RoadSignID	<ASN> , and
DF	DF_ValidRegion	<ASN> , and
MSG	MSG_ProbeDataManagement (PDM)	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: See also the heading DE used to define a specific single heading value found in other parts of the V2X message set.

7.55 Data Element: DE_HumanPropelledType

Use: The DE_HumanPropelledType data element is used to describe the propulsion type that is performed by human user. When used in a message, the element PersonalDeviceUserType would be set to the value aPEDESTRIAN.

ASN.1 Representation:

```
HumanPropelledType ::= ENUMERATED {
  unavailable          (0),
  otherTypes           (1), -- any method not listed below
  onFoot               (2),
  skateboard            (3),
  pushOrKickScooter    (4),
  wheelchair            (5), -- implies manually powered
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [PropelledInformation](#) `<ASN>`. In addition, this item may be used by data structures in other ITS standards.

7.56 Data Element: DE_IntersectionID

Use: The IntersectionID is used within a region to uniquely define an intersection within that country or region in a 16-bit field. Assignment rules are established by the regional authority associated with the RoadRegulatorID under which this IntersectionID is assigned. Within the region the policies used to ensure an assigned value's uniqueness before that value is reused (if ever) is the responsibility of that region. Any such reuse would be expected to occur over a long epoch (many years).

ASN.1 Representation:

```
IntersectionID ::= INTEGER (0..65535)
  -- The values zero through 255 are allocated for testing purposes
  -- Note that the value assigned to an intersection will be
  -- unique within a given regional ID only
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionReferenceID](#) `<ASN>`. In addition, this item may be used by data structures in other ITS standards.

7.57 Data Element: DE_IntersectionStatusObject

Use: The Intersection Status Object contains Advanced Traffic Controller (ATC) status information that may be sent to local OBUs as part of the SPAT process.

ASN.1 Representation:

```
IntersectionStatusObject ::= BIT STRING {  
    manualControlIsEnabled          (0),  
        -- Timing reported is per programmed values, etc. but person  
        -- at cabinet can manually request that certain intervals are  
        -- terminated early (e.g., green).  
    stopTimeIsActivated             (1),  
        -- And all counting/timing has stopped.  
    failureFlash                   (2),  
        -- Above to be used for any detected hardware failures,  
        -- e.g., conflict monitor as well as for police flash  
    preemptIsActive                (3),  
    signalPriorityIsActive         (4),  
  
    -- Additional states  
    fixedTimeOperation             (5),  
        -- Schedule of signals is based on time only  
        -- (i.e., the state can be calculated)  
    trafficDependentOperation      (6),  
        -- Operation is based on different levels of traffic parameters  
        -- (requests, duration of gaps or more complex parameters)  
    standbyOperation               (7),  
        -- Controller: partially switched off or partially amber flashing  
    failureMode                   (8),  
        -- Controller has a problem or failure in operation  
    off                           (9),  
        -- Controller is switched off  
  
    -- Related to MAP and SPAT bindings  
    recentMAPmessageUpdate         (10),  
        -- Map revision with content changes  
    recentChangeInMAPassignedLanesIDsUsed (11),  
        -- Change in MAP's assigned lanes used (lane changes)  
        -- Changes in the active lane list description  
    noValidMAPisAvailableAtThisTime (12),  
        -- MAP (and various lanes indexes) not available  
    noValidSPATisAvailableAtThisTime (13)  
        -- SPAT system is not working at this time  
  
        -- Bits 14,15 reserved at this time and shall be zero  
    } (SIZE(16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_IntersectionState <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: All zeros indicate normal operating mode with no recent changes. The duration of the term “recent” is defined by the system performance requirement in use.

7.58 Data Element: DE_IsDolly

Use: A DE_IsDolly data element is a flag which is set to true to indicate that the described element is a dolly type rather than a trailer type of object. It should be noted that dollies (like trailers) may or may not pivot at the front and back connection points, and that they do not carry cargo or placards. Dollies do have an outline and connection point offsets like a trailer. Dollies have some form of draw bar to connect to the power unit (the vehicle or trailer in front of it). The term “bogie” is also used for dolly in some markets. In this standard, there is no differentiation between a dolly for a full trailer and a semi-trailer or a converter dolly. The only difference between an A-dolly (single coupling point) and a C-dolly (a dolly with two coupling points arranged side by side) is the way in which the pivoting flag is set. (As a rule, a C-dolly does not pivot.)

ASN.1 Representation:

IsDolly ::= BOOLEAN -- When false indicates a trailer unit

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerUnitDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.59 Data Element: DE_Iso3833VehicleType

Use: The DE_Iso3833VehicleType data element represents the value domain provided by ISO 3833 for general vehicle types. It is a European list similar to the list used for the Highway Performance Monitoring System (HPMS) in the U.S. region. In this standard, the HPMS list is used in the data concept named VehicleType.

ASN.1 Representation:

Iso3833VehicleType ::= INTEGER (0..100)

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_RequestorType	<ASN>, and
DF	DF_VehicleClassification	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.60 Data Element: DE_ITISTextPhrase

Use: The DE_ITISTextPhrase data element is used to provide very short sections of text interspersed between the ITIS codes to create phrases. In general, this is used for expressing proper nouns, such as street names reflecting local expressions that do not appear in the ITIS tables.

ASN.1 Representation:

ITISTextPhrase ::= IA5String (SIZE(1..16))

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_ITIS_Phrase_ExitService	<ASN>, and
DF	DF_ITIS_Phrase_GenericSignage	<ASN>, and
DF	DF_ITIS_Phrase_SpeedLimit	<ASN>, and
DF	DF_ITIS_Phrase_WorkZone	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.61 Data Element: DE_J1939-71-Axle Location

Use: A data element re-used from the SAE J1939 standard and to be encoded as: 256 states/8 bit, 0 offset, Range: 0 to +255. Low order 4 bits represent a position number, counting left to right when facing the direction of normal vehicle travel. High order 4 bits represent a position number, counting front to back on the vehicle. See SPN 928, PGN reference 65258.

ASN.1 Representation:

AxleLocation ::= INTEGER (0..255)

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.62 Data Element: DE_J1939-71-Axle Weight

Use: A data element re-used from the SAE J1939 standard and to be encoded as: 0.5 kg/bit, 0 offset, Range: 0 to +32127.5 kg. See SPN 582, PGN reference 65258.

ASN.1 Representation:

```
AxleWeight ::= INTEGER (0..64255)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.63 Data Element: DE_J1939-71-Cargo Weight

Use: A data element re-used from the SAE J1939 standard and encoded as: 2 kg/bit, 0 offset, Range: 0 to +128510 kg. See SPN 181, PGN reference 65258.

ASN.1 Representation:

```
CargoWeight ::= INTEGER (0..64255)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.64 Data Element: DE_J1939-71-Drive Axle Lift Air Pressure

Use: A data element re-used from the SAE J1939 standard and encoded as: Units of 4 kPa/bit, 0 offset, Range: 0 to +1000 kPa. See SPN 579, PGN reference 65273.

ASN.1 Representation:

```
DriveAxeLiftAirPressure ::= INTEGER (0..1000)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.65 Data Element: DE_J1939-71-Drive Axle Location

Use: A data element re-used from the SAE J1939 standard and encoded as: 256 states/8 bit, 0 offset, Range: 0 to +255. Low order 4 bits represent a position number, counting left to right when facing the direction of normal vehicle travel. High order 4 bits represent a position number, counting front to back on the vehicle. See SPN 930, PGN reference 65273.

ASN.1 Representation:

```
DriveAxeLocation ::= INTEGER (0..255)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.66 Data Element: DE_J1939-71-Drive Axle Lube Pressure

Use: A data element re-used from the SAE J1939 standard and encoded as: 4 kPa/bit, 0 offset, Range: 0 to +1000 kPa. See SPN 2613, PGN reference 65273.

ASN.1 Representation:

```
DriveAxeLubePressure ::= INTEGER (0..250)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.67 Data Element: DE_J1939-71-Drive Axle Temperature

Use: A data element re-used from the SAE J1939 standard and encoded as: 1 °C/bit, -40 °C offset, Range: -40 to +210 °C. Note that in this definition of the value, which uses UPER encoding, the offset in the range is handled by the ASN encoder layer. See SPN 578, PGN reference 65273.

ASN.1 Representation:

```
DriveAxeTemperature ::= INTEGER (-40..210)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.68 Data Element: DE_J1939-71-Steering Axle Lube Pressure

Use: A data element re-used from the SAE J1939 standard and encoded as: 4 kPa/bit, 0 offset, Range: 0 to +1000 kPa. See SPN 2614, PGN reference 65273.

ASN.1 Representation:

```
SteeringAxeLubePressure ::= INTEGER (0..250)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.69 Data Element: DE_J1939-71-Steering Axle Temperature

Use: A data element re-used from the SAE J1939 standard and encoded as: 1 °C/bit, -40 °C offset, Range: -40 to +210 °C. Note that in this definition of the value, which uses UPER encoding, the offset in the range is handled by the ASN encoder layer. See SPN 75, PGN reference 65273.

ASN.1 Representation:

```
SteeringAxeTemperature ::= INTEGER (-40..210)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.70 Data Element: DE_J1939-71-Tire Leakage Rate

Use: A data element re-used from the SAE J1939 standard and encoded as: 0.1 Pa/s per bit, 0 offset, Range: 0 to +6425.5 Pa/s. See SPN 2586, PGN reference 65268.

ASN.1 Representation:

```
TireLeakageRate ::= INTEGER (0..64255)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.71 Data Element: DE_J1939-71-Tire Location

Use: A data element re-used from the SAE J1939 standard and encoded as: 256 states/8 bit, 0 offset, Range: 0 to 255. Low order 4 bits represent a position number, counting left to right when facing the direction of normal vehicle travel. High order 4 bits represent a position number, counting front to back on the vehicle. See SPN 3190, PGN reference 64953.

ASN.1 Representation:

```
TireLocation ::= INTEGER (0..255)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.72 Data Element: DE_J1939-71-Tire Pressure Threshold Detection

Use: A measure of the relative tire pressure observed. Encoded as per the value set used in SAE J1939. See SPN 2587, PGN reference 65268.

ASN.1 Representation:

```
TirePressureThresholdDetection ::= ENUMERATED {  
    noData          (0),  -- B'000'  
    overPressure     (1),  -- B'001'  
    noWarningPressure (2), -- B'010'  
    underPressure    (3),  -- B'011'  
    extremeUnderPressure (4), -- B'100'  
    undefined        (5),  -- B'101'  
    errorIndicator   (6),  -- B'110'  
    notAvailable     (7)   -- B'111'  
}  -- Encoded as a 3 bit value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.73 Data Element: DE_J1939-71-Tire Pressure

Use: A data element re-used from the SAE J1939 standard and encoded as: 4 kPa/bit, 0 offset, Range: 0 to +1000 kPa. See SPN 241, PGN reference 65268.

ASN.1 Representation:

```
TirePressure ::= INTEGER (0..250)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.74 Data Element: DE_J1939-71-Tire Temp

Use: A data element re-used from the SAE J1939 standard and encoded as: 0.03125 °C /bit, -273 °C offset, Range: -273 to +1734.96875 °C. See SPN 242, PGN reference 65268.

ASN.1 Representation:

```
TireTemp ::= INTEGER (-8736..55519)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.75 Data Element: DE_J1939-71-Trailer Weight

Use: A data element re-used from the SAE J1939 standard and encoded as: 2 kg/bit, 0 degree offset, Range: 0 to +128510 kg. See SPN 180, PGN reference 65258.

ASN.1 Representation:

```
TrailerWeight ::= INTEGER (0..64255)
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_J1939-Data Items	<ASN> , and
DF	DF_VehicleData	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: The term “weight” is used in SAE J1939, while the term “mass” is used in SAE J2735.

7.76 Data Element: DE_J1939-71-Wheel End Elect. Fault

Use: A data element re-used from the SAE J1939 standard and encoded in UPER to match values defined in that standard. See SPN 1697, PGN reference 65268.

ASN.1 Representation:

```
WheelEndElectFault ::= ENUMERATED {  
    isOk          (0), -- No fault  
    isNotDefined  (1),  
    isError       (2),  
    isNotSupported (3)  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.77 Data Element: DE_J1939-71-Wheel Sensor Status

Use: A data element re-used from the SAE J1939 standard to encode status values. See SPN 1699, PGN reference 65268.

ASN.1 Representation:

```
WheelSensorStatus ::= ENUMERATED {  
    off          (0),  
    on           (1),  
    notDefined   (2),  
    notSupported (3)  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_J1939-Data Items <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.78 Data Element: DE_LaneAttributes-Barrier

Use: The LaneAttributes-Barrier data element relates specific properties found in a barrier or median lane type (a type of lane object used to separate traffic lanes). It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Barrier ::= BIT STRING {  
    -- With bits as defined:  
    median-RevocableLane      (0),  
                               -- this lane may be activated or not based  
                               -- on the current SPAT message contents  
                               -- if not asserted, the lane is ALWAYS present  
    median                  (1),  
    whiteLineHashing         (2),  
    stripedLines            (3),  
    doubleStripedLines      (4),  
    trafficCones            (5),  
    constructionBarrier     (6),  
    trafficChannels         (7),  
    lowCurbs                (8),  
    highCurbs               (9)  
    -- Bits 10~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.79 Data Element: DE_LaneAttributes-Bike

Use: The LaneAttributes-Bike data element relates specific properties found in a bicycle lane type. It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Bike ::= BIT STRING {  
    -- With bits as defined:  
    bikeRevocableLane      (0),  
    -- this lane may be activated or not based  
    -- on the current SPAT message contents  
    -- if not asserted, the lane is ALWAYS present  
    pedestrianUseAllowed   (1),  
    -- The path allows pedestrian traffic,  
    -- if not set, this mode is prohibited  
    isBikeFlyOverLane      (2),  
    -- path of lane is not at grade  
    fixedCycleTime         (3),  
    -- the phases use preset times  
    -- i.e., there is not a 'push to cross' button  
    biDirectionalCycleTimes (4),  
    -- ped walk phases use different SignalGroupID  
    -- for each direction. The first SignalGroupID  
    -- in the first Connection represents 'inbound'  
    -- flow (the direction of travel towards the first  
    -- node point) while second SignalGroupID in the  
    -- next Connection entry represents the 'outbound'  
    -- flow. And use of RestrictionClassID entries  
    -- in the Connect follow this same pattern in pairs.  
    isolatedByBarrier      (5),  
    unsignalizedSegmentsPresent (6)  
    -- The lane path consists of one or more segments  
    -- which are not part of a signal group ID  
  
    -- Bits 7~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.80 Data Element: DE_LaneAttributes-Crosswalk

Use: The LaneAttributes-Crosswalk data element relates specific properties found in a crosswalk lane type. It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Crosswalk ::= BIT STRING {  
    -- With bits as defined:  
    -- MUTCD provides no suitable "types" to use here  
    crosswalkRevocableLane (0),  
        -- this lane may be activated or not based  
        -- on the current SPAT message contents  
        -- if not asserted, the lane is ALWAYS present  
    bicycleUseAllowed (1),  
        -- The path allows bicycle traffic,  
        -- if not set, this mode is prohibited  
    isXwalkFlyOverLane (2),  
        -- path of lane is not at grade  
    fixedCycleTime (3),  
        -- ped walk phases use preset times  
        -- i.e., there is not a 'push to cross' button  
    biDirectionalCycleTimes (4),  
        -- ped walk phases use different SignalGroupID  
        -- for each direction. The first SignalGroupID  
        -- in the first Connection represents 'inbound'  
        -- flow (the direction of travel towards the first  
        -- node point) while second SignalGroupID in the  
        -- next Connection entry represents the 'outbound'  
        -- flow. And use of RestrictionClassID entries  
        -- in the Connect follow this same pattern in pairs.  
    hasPushToWalkButton (5),  
        -- Has a demand input  
    audioSupport (6),  
        -- audio crossing cues present  
    rfSignalRequestPresent (7),  
        -- Supports RF push to walk technologies  
    unsignalizedSegmentsPresent (8)  
        -- The lane path consists of one or more segments  
        -- which are not part of a signal group ID  
    -- Bits 9~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.81 Data Element: DE_LaneAttributes-ParkingLane

Use: The LaneAttributes-Parking data element relates specific properties found in a vehicle parking lane type. It should be noted that various common lane attribute properties can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Parking ::= BIT STRING {  
    -- With bits as defined:  
    -- Parking use details, note that detailed restrictions such as  
    -- allowed hours are sent by way of ITIS codes in the TIM message  
    parkingRevocableLane      (0),  
    -- this lane may be activated or not based  
    -- on the current SPAT message contents  
    -- if not asserted, the lane is ALWAYS present  
    parallelParkingInUse     (1),  
    headInParkingInUse       (2),  
    doNotParkZone            (3),  
    -- used to denote fire hydrants as well as  
    -- short disruptions in a parking zone  
    parkingForBusUse         (4),  
    parkingForTaxiUse        (5),  
    noPublicParkingUse       (6),  
    -- private parking, as in front of  
    -- private property  
    -- Bits 7~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.82 Data Element: DE_LaneAttributes-Sidewalk

Use: The LaneAttributes-Sidewalk data element relates specific properties found in a sidewalk lane type. It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Sidewalk ::= BIT STRING {  
    -- With bits as defined:  
    sidewalk-RevocableLane  (0),  
    -- this lane may be activated or not based  
    -- on the current SPAT message contents  
    -- if not asserted, the lane is ALWAYS present  
    bicycleUseAllowed       (1),  
    -- The path allows bicycle traffic,  
    -- if not set, this mode is prohibited  
    isSidewalkFlyOverLane   (2),  
    -- path of lane is not at grade  
    walkBikes               (3),  
    -- bike traffic must dismount and walk  
    -- Bits 4~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.83 Data Element: DE_LaneAttributes-Striping

Use: The LaneAttributes-Striping data element relates specific properties found in various types of ground striping lane types. This includes various types of painted lane ground striping and iconic information needs to convey information in a complex intersection. Typically, this consists of visual guidance for drivers to assist them to connect across the intersection to the correct lane. Such markings are typically used with restraint and only under conditions when the geometry of the intersection makes them more beneficial than distracting. It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Striping ::= BIT STRING {  
  -- With bits as defined:  
  stripeToConnectingLanesRevocableLane      (0),  
  -- this lane may be activated or not activated based  
  -- on the current SPAT message contents  
  -- if not asserted, the lane is ALWAYS present  
  stripeDrawOnLeft                      (1),  
  stripeDrawOnRight                     (2),  
  -- which side of lane to mark  
  stripeToConnectingLanesLeft           (3),  
  stripeToConnectingLanesRight          (4),  
  stripeToConnectingLanesAhead          (5)  
  -- the stripe type should be  
  -- presented to the user visually  
  -- to reflect stripes in the  
  -- intersection for the type of  
  -- movement indicated  
  -- Bits 6~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.84 Data Element: DE_LaneAttributes-TrackedVehicle

Use: The LaneAttributes-Special data element relates specific properties found in a tracked vehicle lane types (trolley and train lanes). The term “rail vehicle” can be considered synonymous. In this case, the term does not relate to vehicle types with tracks or treads. It should be noted that various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries. It should also be noted that often this type of lane object does not clearly relate to an approach in the traditional traffic engineering sense, although the message set allows assigning a value when desired.

ASN.1 Representation:

```
LaneAttributes-TrackedVehicle ::= BIT STRING {  
  -- With bits as defined:  
  spec-RevocableLane      (0),  
  -- this lane may be activated or not based  
  -- on the current SPAT message contents  
  -- if not asserted, the lane is ALWAYS present  
  spec-commuterRailRoadTrack (1),  
  spec-lightRailRoadTrack   (2),  
  spec-heavyRailRoadTrack  (3),  
  spec-otherRailType        (4)  
  -- Bits 5~15 reserved and set to zero  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.85 Data Element: DE_LaneAttributes-Vehicle

Use: The LaneAttributes-Vehicle data element relates specific properties found in a vehicle lane type. This data element provides a means to denote that the use of a lane is restricted to certain vehicle types. Various common lane attribute properties (such as travel directions and allowed movements or maneuvers) can be found in other entries.

ASN.1 Representation:

```
LaneAttributes-Vehicle ::= BIT STRING {  
  -- With bits as defined:  
  isVehicleRevocableLane      (0),  
  -- this lane may be activated or not based  
  -- on the current SPAT message contents  
  -- if not asserted, the lane is ALWAYS present  
  isVehicleFlyOverLane        (1),  
  -- path of lane is not at grade  
  hovLaneUseOnly              (2),  
  restrictedToBusUse          (3),  
  restrictedToTaxiUse          (4),  
  restrictedFromPublicUse     (5),  
  hasIRbeaconCoverage        (6),  
  permissionOnRequest         (7) -- e.g., to inform about a lane for e-cars  
} (SIZE (8,...))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneTypeAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.86 Data Element: DE_LaneConnectionID

Use: The LaneConnectionID data entry is used to state a connection index for a lane to lane connection. It is used to relate this connection between the lane (defined in the MAP) and any dynamic clearance data sent in the SPAT. It should be noted that the index may be shared with other lanes (for example, two left turn lanes may share the same dynamic clearance data). It should also be noted that a given lane to lane connection may be part of more than one GroupID due to signal phase considerations, but will only have one ConnectionID.

ASN.1 Representation:

```
LaneConnectionID ::= INTEGER (0..255)
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_Connection	<ASN> , and
DF	DF_ConnectionManeuverAssist	<ASN> , and
DF	DF_IntersectionAccessPoint	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that the LaneConnectionID is used as a means to index to a connection description between two lanes. It is not the same as the laneID, which is the unique index to each lane itself.

7.87 Data Element: DE_LaneDirection

Use: The LaneDirection data element is used to denote the allowed direction of travel over a lane object. By convention, the lane object is always described from the stop line outwards away from the intersection. Therefore, the ingress direction is from the end of the path to the stop line and the egress direction is from the stop line outwards. It should be noted that some lane objects are not used for travel and that some lane objects allow bi-directional travel.

ASN.1 Representation:

```
LaneDirection ::= BIT STRING {  
  -- With bits as defined:  
  -- Allowed directions of travel in the lane object  
  -- All lanes are described from the stop line outwards  
  ingressPath      (0),  
  -- travel from rear of path to front  
  -- is allowed  
  egressPath      (1)  
  -- travel from front of path to rear  
  -- is allowed  
  -- Notes: No Travel, i.e., the lane object type does not support  
  -- travel (medians, curbs, etc.) is indicated by not  
  -- asserting any bit value  
  -- Bi-Directional Travel (such as a ped crosswalk) is  
  -- indicated by asserting both of the bits  
} (SIZE (2))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneAttributes](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.88 Data Element: DE_Laneld

Use: The DE_Laneld data element conveys an assigned index that is unique within an intersection. It is used to refer to that lane by other objects in the intersection map data structure. Lanes may be ingress (inbound traffic) or egress (outbound traffic) in nature, as well as barriers and other types of specialty lanes. Each lane (each lane object) is assigned a unique ID. The lane ID, in conjunction with the intersection ID, forms a regionally unique way to address a specific lane in that region.

ASN.1 Representation:

```
LaneID ::= INTEGER (0..255)  
  -- the value 0 shall be used when the lane ID is  
  -- not available or not known  
  -- the value 255 is reserved for future use
```

Used By: This entry is directly used by the following eight other data structures in this standard:

DF	DF_ApproachOrLane	<ASN> , and
DF	DF_ComputedLane	<ASN> , and
DF	DF_ConnectingLane	<ASN> , and
DF	DF_EnabledLaneList	<ASN> , and
DF	DF_GenericLane	<ASN> , and
DF	DF_IntersectionAccessPoint	<ASN> , and
DF	DF_OverlayLaneList	<ASN> , and
DF	DF_VehicleToLanePosition_EU	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In this edition of the standard the data concept “LaneNumber” has been renamed “LaneID” to more clearly state its use as an index and to remain consistent with the naming of similar indexes used elsewhere in the standard. The terminology “Lane Number” is often used by traffic engineers to refer to a single lane within a given approach. For example, the “number one lane” may refer to the right-most or left-most lane (depending on regional conventions) of an inbound approach. In such a case, a similar terminology would be assigned to other lanes in other approaches within the same single intersection. By contrast, the LaneID value is a unique value assignment to a single lane object within the intersection. Deployments should remain aware of this distinction to avoid confusion.

7.89 Data Element: DE_LaneSharing

Use: The DE_LaneSharing data element is used to denote the presence of other user types (travel modes) who have an equal right to access and use the lane. There may also be another lane object describing their use of a lane. This data concept is used to indicate lanes and/or users that travel along the same path, and not those that simply cross over the lane’s segments path (such as a pedestrian crosswalk crossing a lane for motor vehicle use). The typical use is to alert the user of the MAP data that additional traffic of another mode may be present in the same spatial lane.

ASN.1 Representation:

```
LaneSharing ::= BIT STRING {  
    -- With bits as defined:  
    overlappingLaneDescriptionProvided (0),  
    -- Assert when another lane object is present to describe the  
    -- path of the overlapping shared lane  
    -- this construct is not used for lane objects which simply cross  
    multipleLanesTreatedAsOneLane (1),  
    -- Assert if the lane object path and width details represents  
    -- multiple lanes within it that are not further described  
  
    -- Various modes and type of traffic that may share this lane:  
    otherNonMotorizedTrafficTypes (2), -- horse drawn etc.  
    individualMotorizedVehicleTraffic (3),  
    busVehicleTraffic (4),  
    taxiVehicleTraffic (5),  
    pedestriansTraffic (6),  
    cyclistVehicleTraffic (7),  
    trackedVehicleTraffic (8),  
    reserved (9)  
} (SIZE (10))  
-- All zeros would indicate 'not shared' and 'not overlapping'
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneAttributes <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.90 Data Element: DE_LaneWidth

Use: The DE_LaneWidth data element conveys the width of a lane in LSB units of 1 cm. Maximum value for a lane is 327.67 m in width

ASN.1 Representation:

```
LaneWidth ::= INTEGER (0..32767) -- units of 1 cm
```

Used By: This entry is directly used by the following five other data structures in this standard:

DF	DF_GeographicalPath	<ASN> , and
DF	DF_GeometricProjection	<ASN> , and
DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_RoadSegment	<ASN> , and
DF	DF_ShapePointSet	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that one half the lane width is used to find the outer “edges” of the lane, as measured from its center, described by the corner points of the polygon region defined by the current segment (the last two centerline node points projected by the lane width) as described in the node list for the lane object in question. In other words, to project a point from the lane centerline to the edge of the lane, one half the LaneWidth value is used. For lane width values which are odd values, the value used for representing one half the width may round up to the next whole centimeter value.

7.91 Data Element: DE_Latitude

Use: The geographic latitude of an object, expressed in 1/10th integer microdegrees, as a 31 bit value, and with reference to the horizontal datum then in use. The value 900000001 shall be used when unavailable.

ASN.1 Representation:

```
Latitude ::= INTEGER (-900000000..900000001)
-- LSB = 1/10 microdegree
-- Providing a range of plus-minus 90 degrees
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
DF	DF_Node_LLmD_64b	<ASN> , and
DF	DF_Position3D	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.92 Data Element: DE_LayerID

Use: The DE_LayerID is a data element used to uniquely identify the layers of a geographic map fragment such as an intersection. Note that the layer ID is used simply as a means to express a layer within a transmitted message; it has no value as a unique or permanent naming system for the map object (such as an intersection or any of its component parts).

ASN.1 Representation:

```
LayerID ::= INTEGER (0..100)
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\)](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.93 Data Element: DE_LayerType

Use: The DE_LayerType is a data element used to uniquely identify the type of information to be found in a layer of a geographic map fragment such as an intersection.

ASN.1 Representation:

```
LayerType ::= ENUMERATED {  
    none,  
    mixedContent, -- two or more of the below types  
    generalMapData,  
    intersectionData,  
    curveData,  
    roadwaySectionData,  
    parkingAreaData,  
    sharedLaneData,  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MapData \(MAP\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.94 Data Element: DE_LightbarInUse

Use: The DE_LightbarInUse is a data element in which the named bits are set to one if any sort of additional visible lighting-alerting system is currently in use by a vehicle. This includes light bars and the various symbols they can indicate as well as arrow boards, flashing lights (including back up alerts), and any other form of lighting not found on normal vehicles of this type or related to safety systems. Used to reflect any type or style of visual alerting when a vehicle is progressing and transmitting V2X messages to other nearby vehicles about its path.

ASN.1 Representation:

```
LightbarInUse ::= ENUMERATED {  
    unavailable          (0), -- Not Equipped or unavailable  
    notInUse             (1), -- none active  
    inUse                (2),  
    yellowCautionLights (3),  
    schooldBusLights     (4),  
    arrowSignsActive    (5),  
    slowMovingVehicle   (6),  
    freqStops            (7)  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_EmergencyDetails](#) [<ASN>](#), and

DF [DF_VehicleStatus](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: See also the entry for ExteriorLights.

7.95 Data Element: DE_Longitude

Use: The geographic longitude of an object, expressed in 1/10th integer microdegrees, as a 32-bit value, and with reference to the horizontal datum then in use. The value 1800000001 shall be used when unavailable.

ASN.1 Representation:

```
Longitude ::= INTEGER (-1799999999..1800000001)
-- LSB = 1/10 microdegree
-- Providing a range of plus-minus 180 degrees
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_FullPositionVector	<ASN> , and
DF	DF_Node_LLmD_64b	<ASN> , and
DF	DF_Position3D	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.96 Data Element: DE_MAYDAY_Location_quality_code

Use: A value representing the accuracy of the position estimate. The element is used to convey the relative quality of a GPS-generated location. This quality value is enumerated as shown below.

ASN.1 Representation:

```
Location-quality ::= ENUMERATED {
  loc-qual-bt1m      (0), -- quality better than 1 meter
  loc-qual-bt5m      (1), -- quality better than 5 meters
  loc-qual-bt12m     (2), -- quality better than 12.5 meters
  loc-qual-bt50m     (3), -- quality better than 50 meters
  loc-qual-bt125m    (4), -- quality better than 125 meters
  loc-qual-bt500m    (5), -- quality better than 500 meters
  loc-qual-bt1250m   (6), -- quality better than 1250 meters
  loc-qual-unknown   (7)  -- quality value unknown
} -- 3 bits, appends with loc-tech to make one octet (0..7)
```

Remarks: This element was originally defined in SAE J2313 Section 8.35 "Location-Quality." This element is used by the IEEE Incident Management standards effort relating to the accuracy of location information.

7.97 Data Element: DE_MAYDAY_Location_tech_code

Use: The technology used to determine the position of the vehicle. This element is used to convey what type of technology was used to determine the position estimate. The nav-system flag in the sender flag word shall be set to reflect the device technologies available.

ASN.1 Representation:

```
Location-tech ::= ENUMERATED {
  loc-tech-unknown   (0), -- technology type unknown
  loc-tech-GNSS      (1), -- GNSS technology only
  loc-tech-DGPS      (2), -- differential GNSS (DGPS) technology
  loc-tech-RTK       (3), -- differential GNSS (RTK) technology
  loc-tech-PPP       (4), -- precise point positioning (PPP) technology
  loc-tech-drGPS     (5), -- dead reckoning system w/GPS
  loc-tech-drDGPS    (6), -- dead reckoning system w/DGPS
  loc-tech-dr        (7), -- dead reckoning only
  loc-tech-nav       (8), -- autonomous navigation system on-board
  loc-tech-fault     (9), -- feature is not working
  ...
}
```

Remarks: This element was originally defined in SAE J2313, 8.15.

7.98 Data Element: DE_MergeDivergeNodeAngle

Use: The angle at which another lane path meets the current lanes at the node point. Typically found in the node attributes and used to describe the angle of the departing or merging lane. Note that oblique and obtuse angles are allowed.

ASN.1 Representation:

```
MergeDivergeNodeAngle ::= INTEGER (-180..180)
  -- In units of 1.5 degrees from north
  -- the value -180 shall be used to represent
  -- data is not available or unknown
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneDataAttribute <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.99 Data Element: DE_MessageBLOB

Use: The MessageBLOB data element contains a UPER encoded message expressed as a sequence of octets (a BLOB) using the normal UPER encoding complete with any trailing filler bits to complete the final octet.

ASN.1 Representation:

```
MessageBLOB ::= OCTET STRING (SIZE(10..2000))
  -- Final size range may be further
  -- limited by the transport layer used
```

Remarks: In the 2015 edition of the standard this was called DE_UPER_Blob and was used to contain the UPER encoding placed inside a DER wrapper. In that edition, both DER and UPER encoding was supported. In the current edition, only UPER message encoding is provided.

7.100 Data Element: DE_MinuteOfTheYear

Use: The DE_MinuteOfTheYear data element expresses the number of elapsed minutes of the current year in the time system being used (typically UTC time). It is typically used to provide a longer range time stamp indicating when a message was created. Taken together with the DSecond data element, it provides a range of one full year with a resolution of 1mSecond.

ASN.1 Representation:

```
MinuteOfTheYear ::= INTEGER (0..527040)
  -- the value 527040 shall be used for invalid
```

Used By: This entry is directly used by the following 18 other data structures in this standard:

DF	DF_Header	<ASN>, and
DF	DF_IntersectionState	<ASN>, and
DF	DF_SignalRequestPackage	<ASN>, and
DF	DF_SignalStatusPackage	<ASN>, and
DF	DF_TravelerDataFrame	<ASN>, and
MSG	MSG_CommonSafetyRequest (CSR)	<ASN>, and
MSG	MSG_EmergencyVehicleAlert (EVA)	<ASN>, and
MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN>, and
MSG	MSG_MapData (MAP)	<ASN>, and

MSG	MSG_NMEAcorrections (NMEA)	<ASN> , and
MSG	MSG_ProbeDataManagement (PDM)	<ASN> , and
MSG	MSG_ProbeVehicleData (PVD)	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> , and
MSG	MSG_RTCMcorrections (RTCM)	<ASN> , and
MSG	MSG_SignalPhaseAndTiming Message (SPAT)	<ASN> , and
MSG	MSG_SignalRequestMessage (SRM)	<ASN> , and
MSG	MSG_SignalStatusMessage (SSM)	<ASN> , and
MSG	MSG_TravelerInformation Message (TIM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that at the yearly roll-over point there is no “zero” minute, in the same way that there was never a “year zero” at the very start of the common era (BC → AD). By using the number of elapsed whole minutes here this issue is avoided and the first valid value of every new year is zero, followed by one, etc. Leap years are accommodated, as are leap seconds in the DSecond data concept.

7.101 Data Element: DE_MinutesDuration

Use: The duration, in units of whole minutes, that a object persists for. A value of 32000 means that the object persists forever. The range 0..32000 provides for about 22.2 days of maximum duration.

ASN.1 Representation:

```
MinutesDuration ::= INTEGER (0..32000) -- units of minutes
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note also the DE_Extent element used for spatial duration.

7.102 Data Element: DE_MotorizedPropelledType

Use: The DE_MotorizedPropelledType data element is used to describe the propulsion type that is performed by an motor(s).

ASN.1 Representation:

```
MotorizedPropelledType ::= ENUMERATED {
  unavailable          (0),
  otherTypes           (1), -- any method not listed below
  wheelChair            (2),
  bicycle               (3),
  scooter               (4),
  selfBalancingDevice  (5), -- such as Segway
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [PropelledInformation](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.103 Data Element: DE_MovementPhaseState

Use: The DE_MovementPhaseState data element provides the overall current state of the movement (in many cases, a signal state), including its core phase state and an indication of whether this state is permissive or protected.

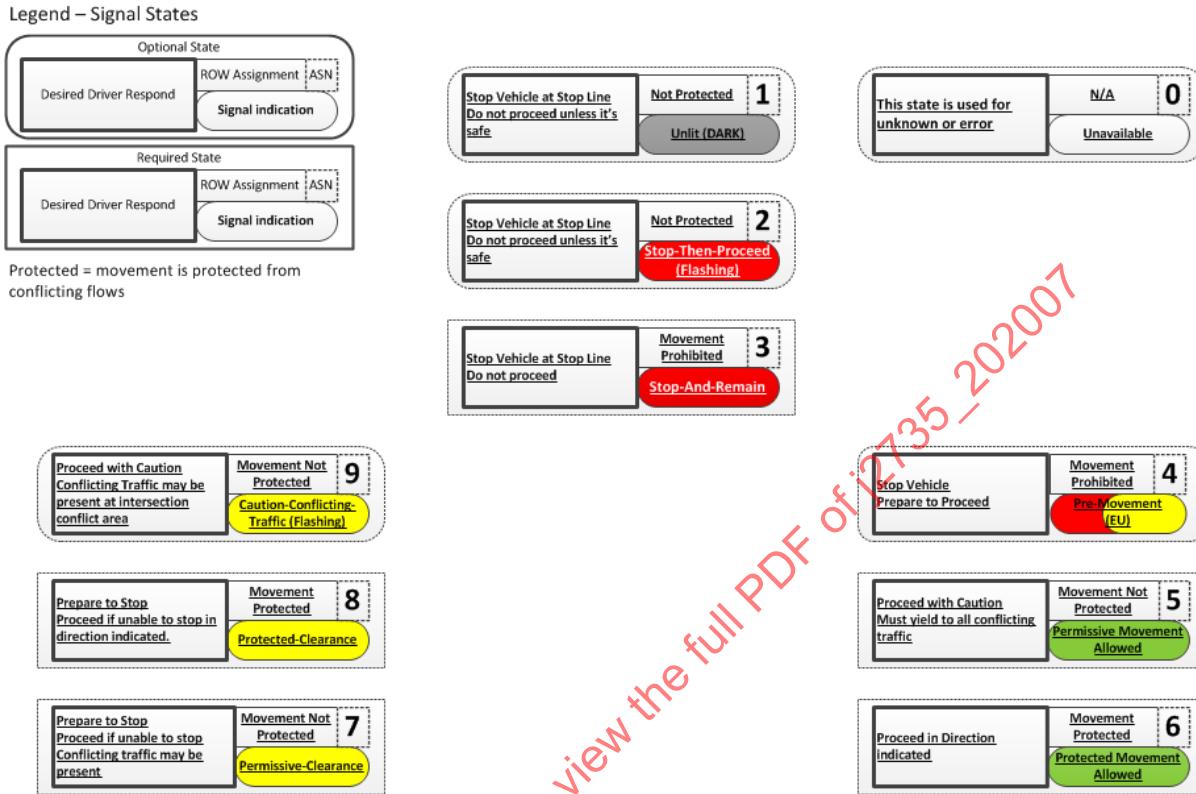


Figure 1 - State diagram

It is expected that the allowed transitions from one state to another will be defined by regional deployments. Not all regions will use all states; however, no new states are to be defined. In most regions, a regulatory body provides precise legal definitions of these state changes. For example, in the U.S., the MUTCD is used, as is indicated in the U.S. regional variant of the above image. In various regions and modes of transportation, the visual expression of these states varies (the precise meaning of various color combinations, shapes, and/or flashing, etc.). The below definition is designed to be independent of these regional conventions.

In the U.S., permissive is often referred to as a “round ball,” while protected implies it has a directional arrow associated with it. The allowed single maneuver for a given lane to lane connection can be used to disambiguate this in the ConnectsTo data frame for that lane.

ASN.1 Representation:

```
MovementPhaseState ::= ENUMERATED {  
    -- Note that based on the regions and the operating mode not every  
    -- phase will be used in all transportation modes and that not  
    -- every phase will be used in all transportation modes
```

```
    unavailable (0),  
    -- This state is used for unknown or error  
    dark (1),  
    -- The signal head is dark (unlit)
```

-- Reds

```
    stop-Then-Proceed (2),  
    -- Often called 'flashing red' in US  
    -- Driver Action:  
    -- Stop vehicle at stop line.  
    -- Do not proceed unless it is safe.  
    -- Note that the right to proceed either right or left when  
    -- it is safe may be contained in the lane description to  
    -- handle what is called a 'right on red'  
    stop-And-Remain (3),  
    -- e.g., called 'red light' in US  
    -- Driver Action:  
    -- Stop vehicle at stop line.  
    -- Do not proceed.  
    -- Note that the right to proceed either right or left when  
    -- it is safe may be contained in the lane description to  
    -- handle what is called a 'right on red'
```

-- Greens

```
    pre-Movement (4),  
    -- Not used in the US, red+yellow partly in EU  
    -- Driver Action:  
    -- Stop vehicle.  
    -- Prepare to proceed (pending green)  
    -- (Prepare for transition to green/go)  
    permissive-Movement-Allowed (5),  
    -- Often called 'permissive green' in US  
    -- Driver Action:  
    -- Proceed with caution,  
    -- must yield to all conflicting traffic  
    -- Conflicting traffic may be present  
    -- in the intersection conflict area  
    protected-Movement-Allowed (6),  
    -- Often called 'protected green' in US  
    -- Driver Action:  
    -- Proceed, tossing caution to the wind,  
    -- in indicated (allowed) direction.
```

-- Yellows/Ambers

**-- The vehicle is not allowed to cross the stop bar if it is possible
-- to stop without danger.**

```
    permissive-clearance (7),  
    -- Often called 'permissive yellow' in US  
    -- Driver Action:  
    -- Prepare to stop.  
    -- Proceed if unable to stop,  
    -- Clear Intersection.  
    -- Conflicting traffic may be present  
    -- in the intersection conflict area  
    protected-clearance (8),
```

```
-- Often called 'protected yellow' in US
-- Driver Action:
-- Prepare to stop.
-- Proceed if unable to stop,
-- in indicated direction (to connected lane)
-- Clear Intersection.

caution-Conflicting-Traffic (9)
-- Often called 'flashing yellow' in US
-- Often used for extended periods of time
-- Driver Action:
-- Proceed with caution,
-- Conflicting traffic may be present
-- in the intersection conflict area
}
-- The above number assignments are not used with UPER encoding
-- and are only to be used with DER or implicit encoding
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_MovementEvent <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: The value assigned to each enumerated MovementPhaseState state is normative. Those transport layers that may reassign these values over the air for effective bandwidth reduction (such as UPER) may need to restore these values when the message value is exchanged with others in the higher layers (the application layers).

7.104 Data Element: DE_MsgCount

Use: The DE_MsgCount data element is used to provide a sequence number within a stream of messages with the same DSRCmsgID and from the same sender. A sender may initialize this element to any value in the range of zero to 127 when sending the first message with a given DSRCmsgID, or if the sender has changed identity (e.g., by changing its TemporaryID) since sending the most recent message with that DSRCmsgID. Depending on the application the sequence number may change with every message or may remain fixed during a stream of messages when the content within each message has not changed from the prior message sent. For this element, the value after 127 is zero.

The receipt of a non-sequential MsgCount value (from the same sending device and message type) implies that one or more messages from that sending device may have been lost, unless MsgCount has been re-initialized due to an identity change.

ASN.1 Representation:

```
MsgCount ::= INTEGER (0..127)
```

Used By: This entry is directly used by the following 16 other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_Header	<ASN> , and
DF	DF_IntersectionGeometry	<ASN> , and
DF	DF_IntersectionState	<ASN> , and
DF	DF_RoadSegment	<ASN> , and
DF	DF_SignalRequesterInfo	<ASN> , and
DF	DF_SignalStatus	<ASN> , and
MSG	MSG_CommonSafetyRequest (CSR)	<ASN> , and

MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN> , and
MSG	MSG_MapData (MAP)	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> , and
MSG	MSG_RTCMcorrections (RTCM)	<ASN> , and
MSG	MSG_SignalRequestMessage (SRM)	<ASN> , and
MSG	MSG_SignalStatusMessage (SSM)	<ASN> , and
MSG	MSG_TravelerInformation Message (TIM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the absence of additional requirements defined in a standard using this data element, the follow guidelines shall be used.

In usage, some devices change their temporary ID frequently, to prevent identity tracking, while others do not. A change in temporary ID data element value (which also changes the message contents in which it appears) implies that the MsgCount may also change value.

If a sender is composing a message with new content with a given DSRCmsgID, and the TemporaryID has not changed since it sent the previous message, the sender shall increment the previous value.

If a sender is composing a message with new content with a given DSRCmsgID, and the TemporaryID has changed since it sent the previous message, the sender may set the MsgCount element to any valid value in the range (including incrementing the previous value).

If a sender is composing a message with the same content as the most recent message with the same DSRCmsgID, and less than 10 seconds have elapsed since it sent the previous message with that DSRCmsgID, the sender will use the same MsgCount as sent in the previous message.

If a sender is composing a message with the same content as the most recent message with the same DSRCmsgID, and at least 10 seconds have elapsed since it sent the previous message with that DSRCmsgID, the sender may set the MsgCount element to any valid value in the range; this includes the re-use of the previous value.

If a sending device sends more than one stream of messages from message types that utilize the MsgCount element, it shall maintain a separate MsgCount state for each message type so that the MsgCount value in a given message identifies its place in the stream of that message type. The MsgCount element is a function only of the message type in a given sending device, not of the one or more applications in that device which may be sending the same type of message.

7.105 Data Element: DE_MsgCRC

Use: The DE_MsgCRC data element is a 2 octet value calculated over the payload octets of the message, starting with the initial sequence and ending with the last data element before the CRC itself and including all tag, length, and values octets found in between. It is always placed as the very last 2 octets in the octet stream to which it applies. The generating polynomial used is the "CRC-CCITT" commonly expressed as $x^{16} + x^{12} + x^5 + 1$. An initial seed value of zero shall be used. Note that the first octet of every BLOB to be encoded must never be zero, or framing errors due to incorrectly clocking initial zero values will occur. Note that the MSB octet is always transmitted first, following the typical ASN octet ordering (this is sometimes called "network order"). When a well-formed V2X message (including its last 2 octets holding the CRC value) is decoded and input to the CRC process, the resulting CRC should always be the value zero.

ASN.1 Representation:

```
MsgCRC ::= OCTET STRING (SIZE(2)) -- created with the CRC-CCITT polynomial
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RoadSignID <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.106 Data Element: DE_MultiVehicleResponse

Use: DE_MultiVehicleResponse is a data element which is set if the vehicle transmitting believes that more than one vehicle (regardless of the dispatch or command and control organization of those vehicles or their agency) are currently en-route or involved in the response to the event. When received in a message by another vehicle OBU, this data element indicates to other vehicles that additional response vehicles may be converging to the same location and that additional caution is warranted.

Used to indicate that more than one vehicle is responding and traveling in a closely aligned fashion (one after the other in a loose platoon formation). This DE is intended to be used with the V2X “public safety vehicle operating in the area” use case.

ASN.1 Representation:

```
MultiVehicleResponse ::= ENUMERATED {  
    unavailable (0), -- Not Equipped or unavailable  
    singleVehicle (1),  
    multiVehicle (2),  
    reserved (3) -- for future use  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_EmergencyDetails <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.107 Data Element: DE_MUTCDCode

Use: The DE_MUTCDCode data element is used to define what basic MUTCD type a sign expression falls into.

ASN.1 Representation:

```
MUTCDCode ::= ENUMERATED {  
    none (0), -- non-MUTCD information  
    regulatory (1), -- "R" Regulatory signs  
    warning (2), -- "W" warning signs  
    maintenance (3), -- "M" Maintenance and construction  
    motoristService (4), -- Motorist Services  
    guide (5), -- "G" Guide signs  
    rec (6), -- Recreation and Cultural Interest  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RoadSignID <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: If sent, a value of zero shall be used (for “generic sign”) for general ITIS codes not meeting a MUTCD definition.

7.108 Data Element: DE_NMEA_MsgType

Use: The NMEA-MsgType data element provides the message sentence values defined in the 0183 NMEA standards for each message. The NMEA messages are short strings referred to as sentences in that work.

ASN.1 Representation:

```
NMEA-MsgType ::= INTEGER (0..32767)
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_NMEAcorrections \(NMEA\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.109 Data Element: DE_NMEA_Payload

Use: The NMEA Payload data element contains the stream of octets in the actual NMEA 0183 message that is being sent.

ASN.1 Representation:

```
NMEA-Payload ::= OCTET STRING (SIZE(1..1023))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_NMEAcorrections \(NMEA\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.110 Data Element: DE_NMEA_Revision

Use: The DE_NMEA_Revision data element conveys the specific revision of the NMEA standard which is being used (if present). This is needed to indicate the precise mapping of the message types to their definitions, as well as some minor transport layer ordering details when received in the mobile unit.

ASN.1 Representation:

```
NMEA-Revision ::= ENUMERATED {  
    unknown      (0), -- default value  
    reserved     (1),  
    rev1         (2),  
    rev2         (3), -- used for 2.x  
    rev3         (4), -- used for 3.x  
    rev4         (5), -- used for 4.x (NMEA 4.00 Published November 2008)  
    rev5         (6),  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_NMEAcorrections \(NMEA\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.111 Data Element: DE_NodeAttributeLL

Use: The DE_NodeAttributeXY data element is an enumerated list of attributes which can pertain to the current node point. The “scope” of these values is limited to the node itself. That is, unlike other types of attributes which can be switched on or off at any given node (and hence pertain to one or more segments), the DE_NodeAttribute is local to the node in which it is found. These attributes are all binary flags in that they do not need to convey any additional data. Other attributes allow sending short data values to reflect a setting which is set and persists in a similar fashion.

ASN.1 Representation:

```
NodeAttributeLL ::= ENUMERATED {
  -- Various values which pertain only to the current node point

  -- General Items
  reserved,
  stopLine,           -- point where a mid-path stop line exists
                      -- See also 'do not block' for segments

  -- Path finish details
  roundedCapStyleA,  -- Used to control final path rounded end shape
                      -- with edge of curve at final point in a circle
  roundedCapStyleB,  -- Used to control final path rounded end shape
                      -- with edge of curve extending 50% of width past
                      -- final point in a circle

  -- Topography Points (items with no concept of a distance along the path)
  mergePoint,         -- Japan merge with 1 or more lanes
  divergePoint,       -- Japan diverge with 1 or more lanes
  downstreamStopLine, -- Japan style downstream intersection
                      -- (a 2nd intersection) stop line
  downstreamStartNode, -- Japan style downstream intersection
                      -- (a 2nd intersection) start node

  -- Pedestrian Support Attributes
  closedToTraffic,   -- where a pedestrian may NOT go
                      -- to be used during construction events
  safeIsland,         -- a pedestrian safe stopping point
                      -- also called a traffic island
                      -- This usage described a point feature on a path,
                      -- other entries can describe a path
  curbPresentAtStepOff, -- the sidewalk to street curb is NOT
                      -- angled where it meets the edge of the
                      -- roadway (user must step up/down)

  -- Lane geometry details (see standard for defined shapes)
  hydrantPresent,    -- Or other services access
  ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeLLLList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.112 Data Element: DE_NodeAttributeXY

Use: The DE_NodeAttributeXY data element is an enumerated list of attributes which can pertain to the current node point. The 'scope' of these values is limited to the node itself. That is, unlike other types of attributes which can be switched on or off at any given node (and hence pertains to one or more segments), the DE_NodeAttribute is local to the node in which it is found. These attributes are all binary flags in that they do not need to convey any additional data. Other attributes allow sending short data values to reflect a setting which is set and persists in a similar fashion.

ASN.1 Representation:

```

NodeAttributeXY ::= ENUMERATED {
  -- Various values which pertain only to the current node point

  -- General Items
  reserved,
  stopLine,           -- point where a mid-path stop line exists
                      -- See also 'do not block' for segments

  -- Path finish details
  roundedCapStyleA,  -- Used to control final path rounded end shape
                      -- with edge of curve at final point in a circle
  roundedCapStyleB,  -- Used to control final path rounded end shape
                      -- with edge of curve extending 50% of width past
                      -- final point in a circle

  -- Topography Points (items with no concept of a distance along the path)
  mergePoint,         -- Japan merge with 1 or more lanes
  divergePoint,       -- Japan diverge with 1 or more lanes
  downstreamStopLine, -- Japan style downstream intersection
                      -- (a 2nd intersection) stop line
  downstreamStartNode, -- Japan style downstream intersection
                      -- (a 2nd intersection) start node

  -- Pedestrian Support Attributes
  closedToTraffic,   -- where a pedestrian may NOT go
                      -- to be used during construction events
  safeIsland,         -- a pedestrian safe stopping point
                      -- also called a traffic island
                      -- This usage described a point feature on a path,
                      -- other entries can describe a path
  curbPresentAtStepOff, -- the sidewalk to street curb is NOT
                      -- angled where it meets the edge of the
                      -- roadway (user must step up/down)

  -- Lane geometry details (see standard for defined shapes)
  hydrantPresent,    -- Or other services access
  ...
}

```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_NodeAttributeXYList](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.113 Data Element: DE_NumberOfParticipantsInCluster

Use: The DE_NumberOfParticipantsInCluster data element is used to describe the number of participants of a cluster crossing an intersection or roadway to help vehicles assess the crossing time and minimize unnecessary warnings. It can be used to minimize unnecessary PSM transmission by other members of the cluster. The formation of clusters is handled in other standards.

ASN.1 Representation:

```

NumberOfParticipantsInCluster ::= ENUMERATED {
  unavailable (0),
  small (1),    -- 2-5
  medium (2),   -- 6-10
  large (3),    -- >10
  ...
}

```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.114 Data Element: DE_ObjectCount

Use: The DE_ObjectCount provides a count of various types of objects. The object type and sizes may vary as needed. The data concept may also be used as a count of octets in messages. It should be observed that octet counts in general are not required to be transmitted when an ASN encoding is used.

ASN.1 Representation:

```
ObjectCount ::= INTEGER (0..1023) -- a count of objects
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_NMEAcorrections \(NMEA\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.115 Data Element: DE_ObstacleDirection

Use: As a companion data element to Obstacle Distance, this data element draws from the output of a forward sensing system to report the obstacle direction from the perspective of the vehicle detecting and reporting the obstacle. The data is expressed in degrees as azimuth relative to forward direction of vehicle.

ASN.1 Representation:

```
ObstacleDirection ::= Angle
```

7.116 Data Element: DE_ObstacleDistance

Use: This data element draws from the output of a forward sensing system to report the presence of an obstacle and its measured distance from the vehicle detecting and reporting the obstacle. This information can be used by road authorities to investigate and remove the obstacle, as well as by other vehicles in advising drivers or on-board systems of the obstacle location. Distance is expressed in meters.

ASN.1 Representation:

```
ObstacleDistance ::= INTEGER (0..32767) -- LSB units of meters
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_ObstacleDetection](#) [<ASN>](#), and

DF [DF_VehicleStatus](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.117 Data Element: DE_Offset_B09

Use: A 9-bit delta offset in X, Y, or Z direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B09 ::= INTEGER (-256..255)  
-- a range of +- 2.55 meters
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AntennaOffsetSet <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.118 Data Element: DE_Offset_B10

Use: A 10-bit delta offset in X, Y, or Z direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B10 ::= INTEGER (-512..511)
-- a range of +- 5.11 meters
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_AntennaOffsetSet	<ASN> , and
DF	DF_Node_XY_20b	<ASN> , and
DF	DF_NodeAttributeSetLL	<ASN> , and
DF	DF_NodeAttributeSetXY	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.119 Data Element: DE_Offset_B11

Use: An 11-bit delta offset in X or Y direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B11 ::= INTEGER (-1024..1023)
-- a range of +- 10.23 meters
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_Node_XY_22b	<ASN> , and
DF	DF_PivotPointDescription	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.120 Data Element: DE_Offset_B12

Use: A 12-bit delta offset in X, Y, or Z direction from some known point. For non-vehicle centric coordinate frames of reference, non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B12 ::= INTEGER (-2048..2047)
-- a range of +- 20.47 meters
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_AntennaOffsetSet	<ASN> , and
DF	DF_Node_XY_24b	<ASN> , and
DF	DF_TrailerUnitDescription	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.121 Data Element: DE_Offset_B13

Use: A 13-bit delta offset in X or Y direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B13 ::= INTEGER (-4096..4095)  
-- a range of +- 40.95 meters
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_XY_26b <ASN>](#).
In addition, this item may be used by data structures in other ITS standards.

7.122 Data Element: DE_Offset_B14

Use: A 14-bit delta offset in X or Y direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions.

ASN.1 Representation:

```
Offset-B14 ::= INTEGER (-8192..8191)  
-- a range of +- 81.91 meters
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_XY_28b <ASN>](#).
In addition, this item may be used by data structures in other ITS standards.

7.123 Data Element: DE_Offset_B16

Use: A 16-bit delta offset in X, Y, or Z direction from some known point. For non-vehicle centric coordinate frames of reference, offset is positive to the east (X) and to the north (Y) directions. The most negative value shall be used to indicate an unknown value.

ASN.1 Representation:

```
Offset-B16 ::= INTEGER (-32768..32767)  
-- a range of +- 327.68 meters
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_XY_32b <ASN>](#).
In addition, this item may be used by data structures in other ITS standards.

7.124 Data Element: DE_OffsetLL-B12

Use: A 12-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

ASN.1 Representation:

```
OffsetLL-B12 ::= INTEGER (-2048..2047)  
-- A range of +- 0.0002047 degrees  
-- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_LL_24B <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.125 Data Element: DE_OffsetLL-B14

Use: A 14-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

ASN.1 Representation:

```
OffsetLL-B14 ::= INTEGER (-8192..8191)
  -- A range of +- 0.0008191 degrees
  -- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_LL_28B <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.126 Data Element: DE_OffsetLL-B16

Use: A 16-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

ASN.1 Representation:

```
OffsetLL-B16 ::= INTEGER (-32768..32767)
  -- A range of +- 0.0032767 degrees
  -- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_Node_LL_32B	<ASN>, and
DF	DF_RegionOffsets	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.127 Data Element: DE_OffsetLL-B18

Use: An 18-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

The above methodology is used when the offset is incorporated in data frames other than DF_PathHistoryPoint. Refer to the Use paragraph of DF_PathHistory for the methodology to calculate this data element for use in DF_PathHistoryPoint.

ASN.1 Representation:

```
OffsetLL-B18 ::= INTEGER (-131072..131071)
  -- A range of +- 0.0131071 degrees
  -- The value +131071 shall be used for values >= than +0.0131071 degrees
  -- The value -131071 shall be used for values <= than -0.0131071 degrees
  -- The value -131072 shall be used unknown
  -- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_Node_LL_36B](#) [<ASN>](#), and
DF [DF_PathHistoryPoint](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.128 Data Element: DE_OffsetLL-B22

Use: A 22-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

ASN.1 Representation:

```
OffsetLL-B22 ::= INTEGER (-2097152..2097151)
  -- A range of +- 0.2097151 degrees
  -- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_LL_44B](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.129 Data Element: DE_OffsetLL-B24

Use: A 24-bit delta offset in lat or long direction from the last point. The offset is positive to the east and to the north directions. In LSB units of 0.1 microdegrees (unless a zoom is employed). The most negative value shall be used to indicate an unknown value. It should be noted that while the precise range of the data element in degrees is a constant value, the equivalent length in meters will vary with the position on the earth that is used.

ASN.1 Representation:

```
OffsetLL-B24 ::= INTEGER (-8388608..8388607)
  -- A range of +- 0.8388607 degrees
  -- In LSB units of 0.1 microdegrees (unless a zoom is employed)
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Node_LL_48B](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.130 Data Element: DE_PayloadData

Use: A stream of octets to be exchanged.

ASN.1 Representation:

```
PayloadData ::= OCTET STRING (SIZE(1..2048))
```

7.131 Data Element: DE_PedestrianBicycleDetect

Use: The PedestrianBicycleDetect data element is used to provide an indication of whether pedestrians and/or bicyclists have been detected in the crossing lane.

ASN.1 Representation:

```
PedestrianBicycleDetect ::= BOOLEAN
  -- true if ANY Pedestrians or Bicyclists are
  -- detected crossing the target lane or lanes
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ConnectionManeuverAssist](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.132 Data Element: DE_PersonalAssistive

Use: The DE_PersonalAssistive data element is used to imply a special need of a person associated with the message in which this element is transmitted. A service may be provided based on this information.

ASN.1 Representation:

```
PersonalAssistive ::= BIT STRING {  
    unavailable      (0),  
    otherType        (1),  
    vision           (2),  
    hearing          (3),  
    movement         (4),  
    cognition        (5)  
} (SIZE (6, ...))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.133 Data Element: DE_PersonalClusterRadius

Use: The DE_PersonalClusterRadius data element is used to describe the radius of nonmotorized user clusters. The center of the cluster is the position described by the standard which defines its use.

ASN.1 Representation:

```
PersonalClusterRadius ::= INTEGER (0..100) -- units of meters
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.134 Data Element: DE_PersonalCrossingInProgress

Use: The DE_PersonalCrossingInProgress data element is used to indicate whether a VRU is currently crossing a street.

ASN.1 Representation:

```
PersonalCrossingInProgress ::= BOOLEAN -- Use:  
    -- True = Yes, is in maneuver  
    -- False = No
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.135 Data Element: DE_PersonalCrossingRequest

Use: The DE_PersonalCrossingRequest data element is used to indicate the VRU's intention to cross the street. It is a binary value.

ASN.1 Representation:

```
PersonalCrossingRequest ::= BOOLEAN  
    -- Use:  
    -- True = On (request crossing)  
    -- False = Off (no request)
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.136 Data Element: DE_PersonalDeviceUsageState

Use: The DE_PersonalDeviceUsageState data element describes the VRU device usage state, mostly applicable to devices such as smart phones. It can be used to indicate the level of pedestrian distraction. The data element (if used) implies that the wireless transmitter is integrated in a device capable of interfacing with a human for one or more other purposes.

ASN.1 Representation:

```
PersonalDeviceUsageState ::= BIT STRING {  
    unavailable      (0), -- Not specified  
    other            (1), -- Used for states not defined below  
    idle             (2), -- Human is not interacting with device  
    listeningToAudio (3), -- Any audio source other than calling  
    typing            (4), -- Including texting, entering addresses  
                      -- and other manual input activity  
    calling           (5),  
    playingGames     (6),  
    reading           (7),  
    viewing            (8) -- Watching dynamic content, including following  
                      -- navigation prompts, viewing videos or other  
                      -- visual contents that are not static  
} (SIZE (9, ...))  
-- All bits shall be set to zero when unknown state
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.137 Data Element: DE_PersonalDeviceUserType

Use: The DE_PersonalDeviceUserType data element is used to describe the type of pedestrian or non-vehicular road users. The information relates to same person whose state information appears in the same message.

ASN.1 Representation:

```
PersonalDeviceUserType ::= ENUMERATED {  
    unavailable      (0),  
    aPEDESTRIAN      (1), -- Further details may be provided elsewhere  
    aPEDALCYCLIST    (2), -- Presumed to be human propelled,  
                          -- unless PropelledInformation indicates motorized  
    aPUBLICSAFETYWORKER (3),  
    anANIMAL          (4),  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.138 Data Element: DE_PivotingAllowed

Use: The DE_PivotingAllowed data element is a flag set to true when the described connection point allows pivoting to occur. It is used to describe a trailer or dolly connection point.

ASN.1 Representation:

```
PivotingAllowed ::= BOOLEAN
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PivotPointDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.139 Data Element: DE_PositionConfidence

Use: The DE_PositionConfidence entry is used to provide the 95% confidence level for the currently reported value of entries such as the DE_Position entries, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. It is used in the horizontal plane. This data element is only to provide the listener with information on the limitations of the sensing system; not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. The frame of reference and axis of rotation used shall be accordance with that defined in Section 11 of this standard.

ASN.1 Representation:

```
PositionConfidence ::= ENUMERATED {  
    unavailable (0), -- B'0000 Not Equipped or unavailable  
    a500m (1), -- B'0001 500m or about 5 * 10 ^ -3 decimal degrees  
    a200m (2), -- B'0010 200m or about 2 * 10 ^ -3 decimal degrees  
    a100m (3), -- B'0011 100m or about 1 * 10 ^ -3 decimal degrees  
    a50m (4), -- B'0100 50m or about 5 * 10 ^ -4 decimal degrees  
    a20m (5), -- B'0101 20m or about 2 * 10 ^ -4 decimal degrees  
    a10m (6), -- B'0110 10m or about 1 * 10 ^ -4 decimal degrees  
    a5m (7), -- B'0111 5m or about 5 * 10 ^ -5 decimal degrees  
    a2m (8), -- B'1000 2m or about 2 * 10 ^ -5 decimal degrees  
    a1m (9), -- B'1001 1m or about 1 * 10 ^ -5 decimal degrees  
    a50cm (10), -- B'1010 0.50m or about 5 * 10 ^ -6 decimal degrees  
    a20cm (11), -- B'1011 0.20m or about 2 * 10 ^ -6 decimal degrees  
    a10cm (12), -- B'1100 0.10m or about 1 * 10 ^ -6 decimal degrees  
    a5cm (13), -- B'1101 0.05m or about 5 * 10 ^ -7 decimal degrees  
    a2cm (14), -- B'1110 0.02m or about 2 * 10 ^ -7 decimal degrees  
    a1cm (15) -- B'1111 0.01m or about 1 * 10 ^ -7 decimal degrees  
}  
-- Encoded as a 4 bit value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PositionConfidenceSet <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Observe that the relationships between degrees of latitude or longitude and the distances given are for the general area of North America. These values will, of course, change with the exact position of the user on the face of the earth.

7.140 Data Element: DE_PrioritizationResponseStatus

Use: The PrioritizationResponseStatus data element is used in the PrioritizationResponse data frame to indicate the general status of a prior prioritization request.

ASN.1 Representation:

```
PrioritizationResponseStatus ::= ENUMERATED {
  unknown          (0),
    -- Unknown state
  requested        (1),
    -- This prioritization request was detected
    -- by the traffic controller
  processing       (2),
    -- Checking request
    -- (request is in queue, other requests are prior)
  watchOtherTraffic (3),
    -- Cannot give full permission,
    -- therefore watch for other traffic
    -- Note that other requests may be present
  granted          (4),
    -- Intervention was successful
    -- and now prioritization is active
  rejected         (5),
    -- The prioritization or preemption request was
    -- rejected by the traffic controller
  maxPresence      (6),
    -- The Request has exceeded maxPresence time
    -- Used when the controller has determined that
    -- the requester should then back off and
    -- request an alternative.
  reserviceLocked   (7),
    -- Prior conditions have resulted in a reservice
    -- locked event: the controller requires the
    -- passage of time before another similar request
    -- will be accepted
  ...
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_SignalStatusPackage](#) [<ASN>](#), and
DF [DF_PrioritizationResponse_EU](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: The time periods which are to be used for these states are determined by the performance requirements which can be found in the relevant standards.

7.141 Data Element: DE_Priority

Use: A priority for the alert message, giving urgency of this message. A relative degree of merit compared with other similar messages for this type (not other messages being sent by the device, nor a priority of display urgency at the receiver).

At this time, the lower five bits are reserved and shall be set to zero. This effectively reduces the number of priority levels to eight. The value of all zeros shall be used for “routine” messages, such as roadside signage, where not displaying the message to the driver has only modest impact. The value 111xxxx shall be the highest level of priority and shall be considered the most important level. When choices of display order or transmission order are considered, messages with this level of priority shall be given precedence. The remaining six levels shall be used as determined by local conventions.

ASN.1 Representation:

```
Priority ::= OCTET STRING (SIZE(1))
  -- Follow definition notes on setting these bits
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_EventDescription	<ASN> , and
MSG	MSG_RoadSideAlert (RSA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that well-managed priority schemes can be seriously disrupted when an incident occurs and when emergency response equipment enters the transmission zone during the response to the event. Local agreements on practices, including roadside unit (RSU) placement, will be needed to insure correct operation.

7.142 Data Element: DE_PriorityRequestType

Use: The PriorityRequestType data element provides a means to indicate if a request (found in the signal request message) represents a new service request, a request update, or a request cancellation for either preemption or priority services.

ASN.1 Representation:

```
PriorityRequestType ::= ENUMERATED {  
    priorityRequestTypeReserved (0),  
    priorityRequest (1),  
    priorityRequestUpdate (2),  
    priorityCancellation (3),  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SignalRequest](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.143 Data Element: DE_PrivilegedEventFlags

Use: The PrivilegedEventFlags data element conveys various states of the sender (typically a V2X-equipped vehicle) and is most often used by various types of public safety vehicles in response to a service call. These flags are not required by common light duty passenger vehicles.

ASN.1 Representation:

```
PrivilegedEventFlags ::= BIT STRING {  
  
    peUnavailable (0), -- Not Equipped or unavailable  
    peEmergencyResponse (1),  
    -- The vehicle is a properly authorized public safety vehicle,  
    -- is engaged in a service call, and is currently moving  
    -- or is within the roadway. Note that lights and sirens  
    -- may not be evident during any given response call  
  
    -- Emergency and Non Emergency Lights related  
    peEmergencyLightsActive (2),  
    peEmergencySoundActive (3),  
    peNonEmergencyLightsActive (4),  
    peNonEmergencySoundActive (5)  
  
    -- this list is likely to grow with further peer review  
} (SIZE (16))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PrivilegedEvents](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.144 Data Element: DE_ProbeSegmentNumber

Use: The DE_ProbeSegmentNumber (PSN) data frame enables vehicles to identify their trajectory for a limited amount of time or over a limited distance. It is randomly generated by a vehicle every 120 seconds or 1 km, whichever comes last. The interval between PSN changes is a random number of seconds between 0 second and 10 seconds or a random distance between 0 m and 200 m, whichever comes last. When sending messages containing a PSN, each message must contain a single PSN.

For example, when using the PSN in a Probe Data snapshot, all snapshots contained within a single message must contain the same PSN. All remaining snapshots with a PSN that has already been sent to an RSU will be purged when the RSU communication link is broken. Event-based snapshots will not contain a PSN.

ASN.1 Representation:

```
ProbeSegmentNumber ::= INTEGER (0..32767)
  -- value determined by local device
  -- as per standard
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeVehicleData \(PVD\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.145 Data Element: DE_PublicSafetyAndRoadWorkerActivity

Use: The DE_PublicSafetyAndRoadWorkerActivity data element is used to describe the type of activity a worker or workers are engaged in.

ASN.1 Representation:

```
PublicSafetyAndRoadWorkerActivity ::= BIT STRING {
  unavailable          (0), -- Not specified
  workingOnRoad         (1), -- Road workers on foot, in or out of
                            -- a closure, performing activities like:
                            -- construction, land surveying,
                            -- trash removal, or site inspection.
  settingUpClosures    (2), -- Road workers on foot performing
                            -- activities like: setting up signs,
                            -- placing cones/barrels/pylons, or placing
                            -- flares. Note: People are in the road
                            -- redirecting traffic, but the closure is
                            -- not complete, so utmost care is required
                            -- to determine the allowed path to take to
                            -- avoid entering the work zone and/or
                            -- harming the workers.
  respondingToEvents    (3), -- Public safety or other road workers on
                            -- foot performing activities like: treating
                            -- injured people, putting out fires,
                            -- cleaning chemical spills, aiding disabled
                            -- vehicles, criminal investigations,
                            -- or animal control. Note: These events tend
                            -- to be more dynamic than workingOnRoad
  directingTraffic      (4), -- Public safety or other road workers on
                            -- foot directing traffic in situations like:
                            -- a traffic signal out of operation,
                            -- a construction or crash site with a short
                            -- term lane closure, a single lane flagging
                            -- operation, or ingress/egress to a special event.
  otherActivities        (5)  -- Designated by regional authorities
} (SIZE (6, ...))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.146 Data Element: DE_PublicSafetyDirectingTrafficSubType

Use: The DE_PublicSafetyDirectingTrafficSubType data element is used to describe the sub type of activity a worker or workers are engaged in.

ASN.1 Representation:

```
PublicSafetyDirectingTrafficSubType ::= BIT STRING {
    unavailable                               (0),
    -- Default.
    -- to be used if unknown or if the worker type is not otherwise identified
    policeAndTrafficOfficers                 (1),
    -- Law enforcement officers, including traffic control officers,
    -- and adult school crossing guards.
    trafficControlPersons                   (2),
    -- Road workers with special equipment for directing traffic.
    railroadCrossingGuards                 (3),
    -- Railroad crossing guards who notify motorists of approaching trains
    -- at locations like private roads or driveways crossing train tracks
    -- and where automated equipment is disabled or not present.
    civilDefenseNationalGuardMilitaryPolice (4),
    -- while performing their regular duties or during National
    -- or local emergencies
    emergencyOrganizationPersonnel          (5),
    -- Personnel belonging to emergency response organizations such as
    -- fire departments, hospitals, river rescue, or associated with
    -- emergency vehicles including ambulances as designated by the
    -- regional authority (relating to designation of emergency vehicles)
    -- while performing their duties.
    highwayServiceVehiclePersonnel          (6),
    -- Associated with tow trucks and road service vehicles.
} (SIZE (7, ...))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.147 Data Element: DE_PublicSafetyEventResponderWorkerType

Use: The DE_PublicSafetyEventResponderWorkerType data element is used to describe the type of a public safety worker who is responding to an event.

ASN.1 Representation:

```
PublicSafetyEventResponderWorkerType ::= ENUMERATED {
    unavailable                               (0),
    towOperator                               (1),
    fireAndEMSSWorker                         (2),
    aDOTWorker                                (3),
    lawEnforcement                            (4),
    hazmatResponder                           (5), -- also any toxicSubstanceCleanupCrew
    animalControlWorker                       (6),
    otherPersonnel                            (7),
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.148 Data Element: DE_RadiusOfCurvature

Use: The entry DE_RadiusOfCurvature is a data element representing an estimate of the current trajectory of the sender. The value is represented as a first order of curvature approximation, as a circle with a radius R and an origin located at (0,R), where the x-axis is bore sight from the transmitting vehicle's perspective and normal to the vehicle's vertical axis. The vehicle's (x,y,z) coordinate frame follows the SAE convention. Radius R will be positive for curvatures to the right when observed from the transmitting vehicle's perspective. Radii shall be capped at a maximum value supported by the path prediction radius data type. Overflow of this data type shall be interpreted by the receiving vehicle as "a straight path" prediction. The radius can be derived from a number of sources including, but not limited to, map databases, rate sensors, vision systems, and global positioning. The precise algorithm to be used is outside the scope of this document.

ASN.1 Representation:

```
RadiusOfCurvature ::= INTEGER (-32767..32767)
  -- LSB units of 10cm
  -- A straight path to use value of 32767
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PathPrediction](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

7.149 Data Element: DE_Radius

Use: A 12-bit radius offset from a known point in the system of units that is indicated.

ASN.1 Representation:

```
Radius-B12 ::= INTEGER (0..4095)
  -- with the LSB unit value determined elsewhere
  -- the value 4095 shall be used for unknown
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_Circle](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

7.150 Data Element: DE_RainSensor

Use: A general sensor of rainfall intensity which requires further interpretation by the OEM (the systems developer) for precise semantic meaning.

The "rain sensor" Probe Data Element is intended to inform Probe Data Users as to how hard it was raining/snowing in the area the vehicle was traveling at the time the Probe Data snapshot was taken. The value of the rain sensor data element ranges from 0 to 7, with 0 indicating "no rain/snow," 1 indicating "light mist," and 7 indicating "heavy downpour." This information could be sent to vehicles approaching the area to warn drivers of raining/snowing conditions ahead or it could provide Traffic Operation Centers with locations most likely in need of a snowplow.

ASN.1 Representation:

```
RainSensor ::= ENUMERATED {
  none          (0),
  lightMist     (1),
  heavyMist     (2),
  lightRainOrDrizzle (3),
  rain          (4),
  moderateRain  (5),
  heavyRain     (6),
  heavyDownpour (7)
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [\(ASN\)](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: It is recommended that automotive manufacturers divide the range of their rain sensors into eight resistance ranges corresponding to the above scale. For example: a sensor that has a resistance range from 12K Ω (max rain fall) to 250 Ω (no rain fall) will have the following resistance value ranges:

```
# 0=250 to 1749  $\Omega$ 
# 1=1750 to 3249  $\Omega$ 
# 2=3250 to 4749  $\Omega$ 
# 3=4750 to 6249  $\Omega$ 
# 4=6250 to 7749  $\Omega$ 
# 5=7750 to 9249  $\Omega$ 
# 6=9250 to 10749  $\Omega$ 
# 7=10501 to 12000  $\Omega$ 
```

7.151 Data Element: DE_RegionId

Use: The DE_RegionId is a data element used to define regions where unique additional content may be added and used in the message set. The index values defined below represent various regions known at the time of publication. This list is expected to grow over time. The index values assigned here can be augmented by local (uncoordinated) assignments in the allowed range. It should be noted that such a local value is specified in the "REGION" ASN module, so there is no need to edit the ASN specification of the standard. This process is further described in 11.1.

ASN.1 Representation:

```
RegionId ::= INTEGER (0..255)
  noRegion      RegionId ::= 0    -- Use default supplied stubs
  addGrpA       RegionId ::= 1    -- USA
  addGrpB       RegionId ::= 2    -- Japan
  addGrpC       RegionId ::= 3    -- EU
  -- NOTE: new registered regional IDs will be added here
  -- The values 128 and above are for local region use
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_MessageFrame \(FRAME\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.152 Data Element: DE_RequestedItem

Use: The Requested Item data element is used to specify what item (or items) is being requested in a CommonSafetyRequest message sent to other vehicles.

ASN.1 Representation:

```
RequestedItem ::= ENUMERATED {
  reserved,
  itemA,
    -- consisting of 2 elements:
    -- lights          ExteriorLights
    -- lightBar        LightbarInUse

  itemB,
    -- consisting of:
    -- wipers          a SEQUENCE

  itemC,
    -- consisting of:
    -- brakeStatus     BrakeSystemStatus

  itemD,
    -- consisting of 2 elements:
    -- brakePressure   BrakeAppliedPressure
```

```
-- roadFriction      CoefficientOfFriction

itemE,
  -- consisting of 4 elements:
  -- sunData          SunSensor
  -- rainData         RainSensor
  -- airTemp          AmbientAirTemperature
  -- airPres          AmbientAirPressure

itemF,
  -- consisting of:
  -- steering a SEQUENCE

itemG,
  -- consisting of:
  -- accelSets a SEQUENCE

itemI,
  -- consisting of:
  -- fullPos          FullPositionVector

itemJ,
  -- consisting of:
  -- position2D        Position2D

itemK,
  -- consisting of:
  -- position3D        Position3D

itemL,
  -- consisting of 2 elements:
  -- speedHeadC        SpeedandHeadingConfidence

itemM,
  -- consisting of:
  -- vehicleData a SEQUENCE

itemN,
  -- consisting of:
  -- vehicleIdent       VehicleIdent

itemO,
  -- consisting of:
  -- weatherReport a SEQUENCE

itemP,
  -- consisting of:
  -- breadcrumbs        PathHistory

itemQ,
  -- consisting of:
  -- GNSSStatus         GNSSstatus

...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestBarItem](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.153 Data Element: DE_RequestID

Use: The RequestID data element is used to provide a unique ID between two parties for various dialog exchanges. Combined with the sender's VehicleID (consisting of a TempID or a Station ID), this provides a unique string for some mutually defined period of time. A typical example of use would be a signal preemption or priority request dialog containing multiple requests from one sender (denoted by the unique RequestID with each). When such a request is processed and reflected in the signal status messages, the original sender and the specific request can both be determined.

ASN.1 Representation:

```
RequestID ::= INTEGER (0..255)
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_SignalRequest	<ASN> , and
DF	DF_SignalRequesterInfo	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In typical use, this value is simply incremented in a modulo fashion to ensure a unique stream of values for the device creating it. Any needs for uniqueness across multiple dialogs to one or more parties shall be the responsibility of the device to manage. There are often normative restrictions on the device changing its TempID during various dialogs when this data element is used. Further details of these operational concepts can be found in the relevant standards.

7.154 Data Element: DE_RequestImportanceLevel

Use: The RequestImportanceLevel data element is used to state what type of signal request is being made to a signal controller by a V2X device in a defined role (such as a police vehicle). The levels of the request typically convey a sense of urgency or importance with respect to other demands to allow the controller to use predefined business rules to determine how to respond. These rules will vary in terms of how details of overall importance and urgency are to be ranked, so they are to be implemented locally. As a result of this regional process, the list below should be assigned well-defined meanings by the local deployment. These meaning will typically result in assigning a set of values to list for each vehicle role type that is to be supported.

ASN.1 Representation:

```
RequestImportanceLevel ::= ENUMERATED {
  requestImportanceLevelUnKnown (0),
  requestImportanceLevel1 (1), -- The least important request
  requestImportanceLevel2 (2), -- The values here shall be assigned
  requestImportanceLevel3 (3), -- Meanings based on regional needs
  requestImportanceLevel4 (4), -- for each of the basic roles which
  requestImportanceLevel5 (5), -- are defined elsewhere
  requestImportanceLevel6 (6),
  requestImportanceLevel7 (7),
  requestImportanceLevel8 (8),
  requestImportanceLevel9 (9),
  requestImportanceLevel10 (10),
  requestImportanceLevel11 (11),
  requestImportanceLevel12 (12),
  requestImportanceLevel13 (13),
  requestImportanceLevel14 (14), -- The most important request
  requestImportanceReserved (15) -- Reserved for future use
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorType](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.155 Data Element: DE_RequestSubRole

Use: The RequestSubRole data element is used to further define the details of the role which any V2X device might play when making a request to a signal controller. This value is not always needed. For example, perhaps in a deployment all police vehicles are to be treated equally. The taxonomy of what details are selected to be entered into the list is a regional choice but should be devised to allow the controller to use predefined business rules to respond using the data. As another example, perhaps in a regional deployment a cross-city express type of transit vehicle is given a different service response for the same request than another type of transit vehicle making an otherwise similar request. As a result of this regional process, the list below should be assigned well-defined meanings by the local deployment. These meanings will typically result in assigning a set of values to list for each vehicle role type that is to be supported.

ASN.1 Representation:

```
RequestSubRole ::= ENUMERATED {  
    requestSubRoleUnknown      (0),  
    requestSubRole1            (1), -- The first type of sub role  
    requestSubRole2            (2), -- The values here shall be assigned  
    requestSubRole3            (3), -- Meanings based on regional needs  
    requestSubRole4            (4), -- to refine and expand the basic  
    requestSubRole5            (5), -- roles which are defined elsewhere  
    requestSubRole6            (6),  
    requestSubRole7            (7),  
    requestSubRole8            (8),  
    requestSubRole9            (9),  
    requestSubRole10           (10),  
    requestSubRole11           (11),  
    requestSubRole12           (12),  
    requestSubRole13           (13),  
    requestSubRole14           (14), -- The last type of sub role  
    requestSubRoleReserved     (15)  -- Reserved for future use  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorType <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.156 Data Element: DE_ResponseType

Use: The response type and general driving behavior which this vehicle is engaged in at the time the message is being sent. This is the type of response (driving behavior) which a public safety, or other type of authorized vehicle, is engaged in when transmitting alerts. These are used as part of the V2X safety message content for public safety vehicles operating in the area.

ASN.1 Representation:

```
ResponseType ::= ENUMERATED {  
    notInUseOrNotEquipped      (0),  
    emergency                  (1), -- active service call at emergency level  
    nonEmergency               (2), -- also used when returning from service call  
    pursuit                    (3), -- sender driving may be erratic  
    stationary                 (4), -- sender is not moving, stopped along roadside  
    slowMoving                 (5), -- such as mowers, litter trucks, etc.  
    stopAndGoMovement          (6), -- such as school bus or garbage truck  
    ...  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_EmergencyDetails](#) [<ASN>](#), and

MSG [MSG_EmergencyVehicleAlert \(EVA\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.157 Data Element: DE_RestrictionAppliesTo

Use: The `RestrictionAppliesTo` data element provides a short list of common vehicle types which may have one or more special movements at an intersection. In general, these movements are not visible to other traffic with signal heads, but the SPAT data reflects the state of the movement. Various restricted movements at an intersection can be expressed using this element to indicate where the movement applies.

ASN.1 Representation:

```
RestrictionAppliesTo ::= ENUMERATED {
    none,                      -- applies to nothing
    equippedTransit,           -- buses etc.
    equippedTaxis,
    equippedOther,              -- other vehicle types with
                                -- necessary signal phase state
                                -- reception equipment
    emissionCompliant,         -- regional variants with more
                                -- definitive items also exist
    equippedBicycle,
    weightCompliant,
    heightCompliant,
    -- Items dealing with traveler needs serviced by the infrastructure
    -- These end users (which are not vehicles) are presumed to be suitably equipped
    pedestrians,
    slowMovingPersons,
    wheelchairUsers,
    visualDisabilities,
    audioDisabilities, -- hearing
    otherUnknownDisabilities,
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RestrictionUserType](#) ~~DF_RestrictionUserType~~ [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.158 Data Element: DE_RestrictionClassID

Use: The DE_RestrictionClass data element defines an intersection-unique value to convey data about classes of users. The mapping used varies with each intersection and is defined in the MAP message if needed. The defined mappings found there are used to determine when a given class is meant. The typical use of this element is to map additional movement restrictions or rights (in both the MAP and SPAT messages) to special classes of users (trucks, high-sided vehicles, special vehicles, etc.). There is the general presumption that in the absence of this data, any allowed movement extends to all users.

ASN.1 Representation:

RestrictionClassID ::= INTEGER (0..255)
-- An index value to identify data about classes of users
-- the value used varies with each intersection's
-- needs and is defined in the map to the assigned
-- classes of supported users.

Used By: This entry is directly used by the following three other data structures in this standard:

DF	<u>DF_AdvisorySpeed</u>	<u><ASN></u> , and
DF	<u>DF_Connection</u>	<u><ASN></u> , and
DF	<u>DF_RestrictionClassAssignment</u>	<u><ASN></u> .

In addition, this item may be used by data structures in other ITS standards.

7.159 Data Element: DE_RoadRegulatorID

Use: The RoadRegulatorID is a 16-bit globally unique identifier assigned to an entity responsible for assigning Intersection IDs in the region over which it has such authority. The value zero shall be used for testing, and should only be used in the absence of a suitable assignment. A single entity which assigns intersection IDs may be assigned several RoadRegulatorIDs. These assignments are presumed to be permanent.

ASN.1 Representation:

RoadRegulatorID ::= INTEGER (0..65535)

-- The value zero shall be used for testing only

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_IntersectionReferenceID](#) <ASN>, and

DF [DF_RoadSegmentReferenceID](#) <ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.160 Data Element: DE_RoadSegmentID

Use: The RoadSegmentID is used to uniquely define a section of roadway within a country or region in a 16-bit field. Assignment rules for this value are established elsewhere and may use regional assignment schemas that vary. Within the region the policies used to ensure an assigned value's uniqueness before that value is reused is the responsibility of that region. Such reuse is expected to occur, but over somewhat lengthy epoch (months).

ASN.1 Representation:

RoadSegmentID ::= INTEGER (0..65535)

-- The values zero to 255 shall be used for testing only

-- Note that the value assigned to an RoadSegment will be

-- unique within a given regional ID only during its use

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RoadSegmentReferenceID](#) <ASN>. In addition, this item may be used by data structures in other ITS standards.

7.161 Data Element: DE_RoadwayCrownAngle

Use: The RoadwayCrownAngle data element relates the gross tangential angle of the roadway surface with respect to the local horizontal axis and is measured at the indicated part of the lane. This measurement is typically made at the crown (centerline) or at an edge of the lane path. Its typical use is to relate data used in speed warning and traction calculations for the lane segment or roadway segment in which the measurement is taken.

ASN.1 Representation:

RoadwayCrownAngle ::= INTEGER (-128..127)

-- In LSB units of 0.3 degrees of angle

-- over a range of -38.1 to + 38.1 degrees

-- The value -128 shall be used for unknown

-- The value zero shall be used for angles

-- which are between -0.15 and +0.15

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_LaneDataAttribute](#) <ASN>. In addition, this item may be used by data structures in other ITS standards.

7.162 Data Element: DE_RTCM_Revision

Use: The RTCM-Revision data element provides the specific revision of the RTCM standard which is being used. This is helpful to know precisely the mapping of the message types to their definitions, as well as some minor transport layer ordering details when received in the mobile unit. All RTCM SC-104 messages follow a common message numbering method (wherein all defined messages are given unique values) which can be decoded from the initial octets of the message. This operation is typically performed by the GNSS rover that consumes the messages, so it is transparent at the V2X message set level.

ASN.1 Representation:

```
RTCM-Revision ::= ENUMERATED {  
    unknown      (0),  
    rtcmRev2     (1), -- Std 10402.x et al  
    rtcmRev3     (2), -- Std 10403.x et al  
    reserved      (3),  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_RTCMcorrections \(RTCM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: In order to fully support the use of networked transport of RTCM corrections (so-called Ntrip systems), the enumerated list of protocol types provides for all the common types outlined in RTCM Standard 10410.0, Appendix B. It is anticipated that revisions 3.x and 2.3 will predominate in practice as they do today. It should also be noted that RTCM standards use the term "byte" for an 8-bit value, while in this standard the term "octet" is used.

7.163 Data Element: DE_RTCMmessage

Use: The RTCMmessage data element contains the stream of octets of the actual RTCM message that is being sent. The message's contents are defined in RTCM Standard 10403.1 and in RTCM Standard 10402.1 and its successors. Note that most RTCM messages are considerably smaller than the size limit defined here, but that some messages may need to be broken into smaller messages (as per the rules defined in the RTCM work) in order to be transmitted using V2X communications.

ASN.1 Representation:

```
RTCMmessage ::= OCTET STRING (SIZE(1..1023))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RTCMmessageList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.164 Data Element: DE_Scale_B12

Use: A 12-bit signed scaling factor supporting scales from zero (which is not used) to >200%. In this data element, the value zero is taken to represent a value of one (scale 1:1). Values above and below this add or remove exactly 0.05% from the initial value of 100%. Hence, a value of 2047 adds 102.35 to 100%, resulting in a scale of 202.35% exactly (the largest valid scale value). Negative values which would result in an effective final value below zero are not supported. The smallest valid value allowed is -1999 and the remaining negative values are reserved for future definition.

ASN.1 Representation:

```
Scale-B12 ::= INTEGER (-2048..2047) -- in steps of 0.05 percent
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_ComputedLane <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.165 Data Element: DE_SecondOfTime

Use: The DE_SecondOfTime data element defines the time interval between actions or events over a 60 second span. This is used, for example, to define the interval between transmissions of probe messages. It is not normally used for clock seconds.

ASN.1 Representation:

```
SecondOfTime ::= INTEGER (0..61) -- units of seconds
  -- The value 60 shall be used for leap seconds
  -- or to indicate a full minute.
  -- The value 61 indicates that the value is unavailable
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_SnapshotTime	<ASN> , and
MSG	MSG_ProbeDataManagement (PDM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.166 Data Element: DE_SegmentAttributeLL

Use: The DE_SegmentAttributeLL data element is an enumerated list of attributes about the current lane segment which may be enabled or disabled to indicate the presence or absence of the selected attribute on the segment. A segment is one or more of the straight lines formed between each set of node points. It is common for a segment attribute to persist for more than one set of node points if there is any curvature in the lane itself. The described attributes are all binary flags in that they do not need to convey any additional data. Other attributes allow sending short data values to reflect a setting which is set and persists in a similar fashion.

ASN.1 Representation:

```
SegmentAttributeLL ::= ENUMERATED {
  -- Various values which can be Enabled and Disabled for a lane segment

  -- General Items
  reserved
  doNotBlock
  whiteLine
  , -- segment where a vehicle
  , -- may not come to a stop
  , -- segment where lane crossing is not allowed
  , -- such as the final few meters of a lane

  -- Porous Lane states, merging, turn outs, parking etc.
  mergingLaneLeft
  mergingLaneRight
  , -- indicates porous lanes
  , -- indicates presence of curbs
  curbOnLeft
  curbOnRight
  , -- loading or drop off zones
  loadingzoneOnLeft
  loadingzoneOnRight
  , -- opening to adjacent street/alley/road
  turnOutPointOnLeft
  turnOutPointOnRight
  , -- side of road parking
  adjacentParkingOnLeft
  adjacentParkingOnRight
  , -- presence of marked bike lanes
  adjacentBikeLaneOnLeft
  adjacentBikeLaneOnRight
  , -- right of way is shared with bikes
  , -- who may occupy entire lane width
  sharedBikeLane
  bikeBoxInFront
  , -- any form of bus/transit loading
  transitStopOnLeft
```

```
transitStopOnRight      , -- with pull in-out access to lane on left
transitStopInLane       , -- any form of bus/transit loading
                         -- with pull in-out access to lane on right
                         -- any form of bus/transit loading
                         -- in mid path of the lane
sharedWithTrackedVehicle, -- lane is shared with train or trolley
                           -- not used for crossing tracks
```

-- Pedestrian Support Attributes

```
safeIsland              , -- begin/end a safety island in path
lowCurbsPresent         , -- for ADA support
rumbleStripPresent      , -- for ADA support
audibleSignalingPresent, -- for ADA support
adaptiveTimingPresent   , -- for ADA support
rfSignalRequestPresent , -- Supports RF push to walk technologies
partialCurbIntrusion    , -- path is blocked by a median or curb
                           -- but at least 1 meter remains open for use
                           -- and at-grade passage
```

-- Lane geometry details (see standard for defined shapes)

```
taperToLeft             , -- Used to control final path shape
taperToRight             , -- Used to control final path shape
taperToCenterLine        , -- Used to control final path shape
```

-- Parking Lane and Curb Attributes

```
parallelParking          , --
headInParking            , -- Parking at an angle with the street
freeParking               , -- no restriction on use of parking
timeRestrictionsOnParking, -- Parking is not permitted at all times
                           -- typically used when the 'parking' lane
                           -- becomes a driving lane at times
costToPark                , -- Used where parking has a cost
midBlockCurbPresent      , -- a protruding curb near lane edge
unevenPavementPresent    , -- a disjoint height at lane edge
...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SegmentAttributeLLLList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: A description of how to correctly encode and decode the types of this data element as well as examples of use may be developed by SAE in another volume. This entry is expected to be developed further.

7.167 Data Element: DE_SegmentAttributeXY

Use: The DE_SegmentAttributeXY data element is an enumerated list of attributes about the current lane segment which may be enabled or disabled to indicate the presence or absence of the selected attribute on the segment. A segment is one or more of the straight lines formed between each set of node points. It is common for a segment attribute to persist for more than one set of node points if there is any curvature in the lane itself. The described attributes are all binary flags in that they do not need to convey any additional data. Other attributes allow sending short data values to reflect a setting which is set and persists in a similar fashion.

ASN.1 Representation:

```
SegmentAttributeXY ::= ENUMERATED {
  -- Various values which can be Enabled and Disabled for a lane segment

  -- General Items
  reserved
  doNotBlock
  whiteLine

  -- Porous Lane states, merging, turn outs, parking etc.
  mergingLaneLeft
  mergingLaneRight

  curbOnLeft
  curbOnRight

  loadingzoneOnLeft
  loadingzoneOnRight

  turnOutPointOnLeft
  turnOutPointOnRight

  adjacentParkingOnLeft
  adjacentParkingOnRight

  -- Bike Lane Needs
  adjacentBikeLaneOnLeft
  adjacentBikeLaneOnRight
  sharedBikeLane
  bikeBoxInFront

  -- Transit Needs
  transitStopOnLeft
  transitStopOnRight
  transitStopInLane
  sharedWithTrackedVehicle

  -- Pedestrian Support Attributes
  safeIsland
  lowCurbsPresent
  rumbleStripPresent
  audibleSignalingPresent
  adaptiveTimingPresent
  rfSignalRequestPresent
  partialCurbIntrusion

  -- Lane geometry details (see standard for defined shapes)
  taperToLeft
  taperToRight
  taperToCenterLine}
```

SAENORM.COM: Click to view the full PDF of j2735-202007

```
-- Parking Lane and Curb Attributes
parallelParking      , -- parallel parking
headInParking        , -- parking at an angle with the street
freeParking          , -- no restriction on use of parking
timeRestrictionsOnParking , -- parking is not permitted at all times
                           -- typically used when the 'parking' lane
                           -- becomes a driving lane at times
costToPark           , -- used where parking has a cost
midBlockCurbPresent , -- a protruding curb near lane edge
unevenPavementPresent, -- a disjoint height at lane edge
...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SegmentAttributeXYList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: A description of how to correctly encode and decode the types of this data element as well as examples of use may be developed by SAE in another volume.

7.168 Data Element: DE_SemiMajorAxisAccuracy

Use: The DE_SemiMajorAxisAccuracy data element is used to express the radius (length) of the semi-major axis of an ellipsoid representing the accuracy which can be expected from a GNSS system in 5 cm steps, typically at a one sigma level of confidence.

ASN.1 Representation:

```
SemiMajorAxisAccuracy ::= INTEGER (0..255)
  -- semi-major axis accuracy at one standard dev
  -- range 0-12.7 meter, LSB = .05m
  -- 254 = any value equal or greater than 12.70 meter
  -- 255 = unavailable semi-major axis value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PositionalAccuracy <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.169 Data Element: DE_SemiMajorAxisOrientation

Use: The DE_SemiMajorAxisOrientation data element is used to orientate the angle of the semi-major axis of an ellipsoid representing the accuracy which can be expected from a GNSS system with respect to the coordinate system.

ASN.1 Representation:

```
SemiMajorAxisOrientation ::= INTEGER (0..65535)
  -- orientation of semi-major axis
  -- relative to true north (0~359.9945078786 degrees)
  -- LSB units of 360/65535 deg = 0.0054932479
  -- a value of 0 shall be 0 degrees
  -- a value of 1 shall be 0.0054932479 degrees
  -- a value of 65534 shall be 359.9945078786 deg
  -- a value of 65535 shall be used for orientation unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PositionalAccuracy <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.170 Data Element: DE_SemiMinorAxisAccuracy

Use: The DE_SemiMinorAxisAccuracy data element is used to express the radius of the semi-minor axis of an ellipsoid representing the accuracy which can be expected from a GNSS system in 5 cm steps, typically at a one sigma level of confidence.

ASN.1 Representation:

```
SemiMinorAxisAccuracy ::= INTEGER (0..255)
  -- semi-minor axis accuracy at one standard dev
  -- range 0-12.7 meter, LSB = .05m
  -- 254 = any value equal or greater than 12.70 meter
  -- 255 = unavailable semi-minor axis value
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_PositionalAccuracy <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.171 Data Element: DE_SignalGroupID

Use: The SignalGroupID is an index used to map between the internal state machine of one or more signal controllers (or other types of traffic flow devices) and a common numbering system that can represent all possible combinations of active states (movements and phases in U.S. traffic terminology). All possible movement variations are assigned a unique value within the intersection. Conceptually, the ID represents a means to provide a list of lanes in a set which would otherwise need to be enumerated in the message. The values zero and 255 are reserved, so there may be up to 254 different signal group IDs within one single intersection. The value 255 represents a protected-Movement-Allowed or permissive-Movement-Allowed condition that exists at all times. This value is applied to lanes, with or without traffic control devices, that operate as free-flow lanes. Typically referred to as channelized right/left turn lanes (in right/left-hand drive countries).

ASN.1 Representation:

```
SignalGroupID ::= INTEGER (0..255)
  -- The value 0 shall be used when the ID is
  -- not available or not known
  -- the value 255 is reserved to indicate a
  -- permanent green movement state
  -- therefore a simple 8 phase signal controller
  -- device might use 1..9 as its groupIDs
```

Used By: This entry is directly used by the following four other data structures in this standard:

DF	DF_Connection	<ASN>, and
DF	DF_MovementState	<ASN>, and
DF	DF_PrioritizationResponse_EU	<ASN>, and
DF	DF_SignalHeadLocation_EU	<ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.172 Data Element: DE_SignalReqScheme

Use: The SignalReqScheme data element is used in a priority or preempt request frame to select which preempt or priority controller sequence is to be activated. The data element has either a priority value or a preemption value, depending on the setting of the most significant bit and what data frame it is used in.

A value of B'1111' indicates a request for cabinet flash when the data element is used in a preempt. The value B'0111' is reserved when used for a priority request. The value B'0000' is reserved.

ASN.1 Representation:

```
SignalReqScheme ::= OCTET STRING (SIZE(1))
  -- Encoded as follows:
  -- upper nibble: Preempt #:
  -- Bit 7 (MSB) 1 = Preempt and 0 = Priority
  -- Remaining 3 bits:
  -- Range of 0..7. The values of 1..6 represent
  -- the respective controller preempt or Priority
  -- to be activated. The value of 7 represents a
  -- request for a cabinet flash preempt,
  -- while the value of 0 is reserved.

  -- lower nibble: Strategy #:
  -- Range is 0..15 and is used to specify a desired
  -- strategy (if available).
  -- Currently no strategies are defined and this
  -- should be zero.
```

Remarks: In use, the vehicle must determine which preempt number or priority number to request by analyzing its location relative to the map layer information.

7.173 Data Element: DE_SignPriority

Use: The relative importance of the sign, on a scale from zero (least important) to seven (most important).

ASN.1 Representation:

```
SignPriority ::= INTEGER (0..7)
  -- 0 as least, 7 as most
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.174 Data Element: DE_SirenInUse

Use: A data element which is set if any sort of audible alarm is being emitted from the vehicle. This includes various common sirens as well as backup beepers and other slow speed maneuvering alerts.

Used to reflect any type or style of audio alerting when a vehicle is progressing and transmitting V2X messages to others about its path. Intended to be used as part of the V2X safety message for public safety vehicles (and others which alert during maneuvers) operating in the area.

ASN.1 Representation:

```
SirenInUse ::= ENUMERATED {
  unavailable  (0), -- Not Equipped or unavailable
  notInUse     (1),
  inUse        (2),
  reserved     (3)  -- for future use
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_EmergencyDetails <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.175 Data Element: DE_SpeedAdvice

Use: This data element represents the recommended velocity of an object, typically a vehicle speed along a roadway, expressed in unsigned units of 0.1 m/s.

ASN.1 Representation:

```
SpeedAdvice ::= INTEGER (0..500)
  -- LSB units are 0.1 m/s^2
  -- the value 499 shall be used for values at or greater than 49.9 m/s
  -- the value 500 shall be used to indicate that speed is unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AdvisorySpeed](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note the conversion guidance provided in 11.5 for situations in which units of mph and m/s are mixed.

7.176 Data Element: DE_SpeedConfidence

Use: The DE_SpeedConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_Speed, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide the listener with information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. The frame of reference and axis of rotation used shall be in accordance with that defined Section 11.

ASN.1 Representation:

```
SpeedConfidence ::= ENUMERATED {
  unavailable (0), -- Not Equipped or unavailable
  prec100ms (1), -- 100 meters/sec
  prec10ms (2), -- 10 meters/sec
  prec5ms (3), -- 5 meters/sec
  prec1ms (4), -- 1 meters/sec
  prec0-1ms (5), -- 0.1 meters/sec
  prec0-05ms (6), -- 0.05 meters/sec
  prec0-01ms (7) -- 0.01 meters/sec
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_AdvisorySpeed	<ASN> , and
DF	DF_Speed_Heading_Throttle_Confidence	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.177 Data Element: DE_SpeedLimitType

Use: The SpeedLimitType data element relates the type of speed limit to which a given speed refers.

ASN.1 Representation:

```
SpeedLimitType ::= ENUMERATED {
  unknown, -- Speed limit type not available
  maxSpeedInSchoolZone, -- Only sent when the limit is active
  maxSpeedInSchoolZoneWhenChildrenArePresent, -- Sent at any time
  maxSpeedInConstructionZone, -- Used for work zones, incident zones, etc.
  -- where a reduced speed is present
  vehicleMinSpeed,
  vehicleMaxSpeed, -- Regulatory speed limit for general traffic
  vehicleNightMaxSpeed,
  truckMinSpeed,
  truckMaxSpeed,
```

```
truckNightMaxSpeed,  
vehiclesWithTrailersMinSpeed,  
vehiclesWithTrailersMaxSpeed,  
vehiclesWithTrailersNightMaxSpeed,  
...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RegulatorySpeedLimit <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.178 Data Element: DE_SpeedProfileMeasurement

Use: The DE_SpeedProfileMeasurement data element represents the average measured or reported speed of a series of objects traveling in the same direction over a period of time.

ASN.1 Representation:

```
SpeedProfileMeasurement ::= GrossSpeed
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_SpeedProfileMeasurementList <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note the conversion guidance provided in 11.5 for situations in which units of mph and m/s are mixed.

7.179 Data Element: DE_Speed

Use: This data element represents the vehicle speed expressed in unsigned units of 0.02 m/s. A value of 8191 shall be used when the speed is unavailable.

ASN.1 Representation:

```
Speed ::= INTEGER (0..8191) -- Units of 0.02 m/s  
-- The value 8191 indicates that  
-- speed is unavailable
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_PathHistoryPoint	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: This element has been maintained for use by the BSM message. For all new work, the entry DE_Velocity shall be used.

7.180 Data Element: DE_SSPIindex

Use: The SSP index is included in this document to maintain backward compatibility. It is always set to zero and ignored upon reception.

ASN.1 Representation:

```
SSPIindex ::= INTEGER (0..31)
```

Used By: This element is included in the following four data structures in this standard:

DF	DF_EmergencyDetails	<ASN> , and
DF	DF_PrivilegedEvents	<ASN> , and
DF	DF_TrailerData	<ASN> , and
DF	DF_TravelerDataFrame	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.181 Data Element: DE_StabilityControlStatus

Use: The DE_StabilityControlStatus data element reflects the current state of the stability control system. The element can inform others that the vehicle is not equipped with stability control or, if equipped, if the stability control status is unavailable. If the vehicle is equipped with stability control and the status is available, the element reports whether the system is in an off, on, or engaged state.

ASN.1 Representation:

```
StabilityControlStatus ::= ENUMERATED {
    unavailable (0), -- B'00 Not Equipped with SC
    -- or SC status is unavailable
    off          (1), -- B'01 Off
    on           (2), -- B'10 On or active (but not engaged)
    engaged      (3)  -- B'11 stability control is Engaged
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: A typical stability control unit uses the vehicle's yaw rate to determine how far off-axis a vehicle is while taking a turn. This data is correlated with wheel speed, steering angle and acceleration vectors. If the vehicle is determined to be too far off-axis, corrective action is taken by automatically applying braking force to separate wheels independent of the driver's actions.

7.182 Data Element: DE_StationID

Use: The DE_StationID has been included into SAE J2735 to support the optional European data element "PrioritizationResponse."

ASN.1 Representation:

```
StationID ::= INTEGER (0..4294967295)
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_VehicleID	<ASN> , and
DF	DF_PrioritizationResponse_EU	<ASN> , and
DF	DF_VehicleToLanePosition_EU	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.183 Data Element: DE_SteeringWheelAngleConfidence

Use: The DE_SteeringWheelAngleConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_SteeringWheelAngle, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. The frame of reference and axis of rotation used shall be in accordance with that defined in Section 11.

ASN.1 Representation:

```
SteeringWheelAngleConfidence ::= ENUMERATED {  
    unavailable (0), -- B'00 Not Equipped with Wheel angle  
    -- or Wheel angle status is unavailable  
    prec2deg (1), -- B'01 2 degrees  
    prec1deg (2), -- B'10 1 degree  
    prec0-02deg (3) -- B'11 0.02 degrees  
}
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_AccelSteerYawRateConfidence	<u><ASN></u> , and
DF	DF_ConfidenceSet	<u><ASN></u> and
DF	DF_VehicleStatus	<u><ASN></u> .

In addition, this item may be used by data structures in other ITS standards.

7.184 Data Element: DE_SteeringWheelAngleRateOfChange

Use: The rate of change of the angle of the steering wheel, expressed in signed units of 3 degree/s over a range of 381 degree/s in either direction, to the right being positive. Values beyond this range shall use the last value (-127 or +127).

ASN.1 Representation:

```
SteeringWheelAngleRateOfChange ::= INTEGER (-127..127)  
    -- LSB is 3 degrees per second
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: This element may be used by road maintenance operations to determine the presence of an obstruction or pothole in the roadway.

7.185 Data Element: DE_SteeringWheelAngle

Use: The angle of the driver's steering wheel, expressed in a signed (to the right being positive) value with LSB units of 1.5 degrees.

ASN.1 Representation:

```
SteeringWheelAngle ::= INTEGER (-126..127)  
    -- LSB units of 1.5 degrees, a range of -189 to +189 degrees  
    -- +001 = +1.5 deg  
    -- -126 = -189 deg and beyond  
    -- +126 = +189 deg and beyond  
    -- +127 to be used for unavailable
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: In the prior editions of the standard (pre-2015), this was constructed as a BLOB. It has now been converted for UPER use.

7.186 Data Element: DE_SunSensor

Use: The DE_SunSensor data element is intended to inform others as to the level of sunlight in the area the vehicle was traveling at the time a Probe Data snapshot was taken. The value of the sun sensor data element ranges from 0 to 2000, with zero indicating “complete darkness,” and 2000 indicating “maximum sunlight.” This information can be sent to vehicles approaching the area to tell drivers to be prepared for sunny/clouding/cloudy conditions ahead or to a weather server for monitoring weather conditions in the area.

ASN.1 Representation:

```
SunSensor ::= INTEGER (0..1000)
-- units of watts/m2
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.187 Data Element: DE_TemporaryID

Use: This is the 4 octet random device identifier, called the TemporaryID. When used for a mobile OBU device, this value will change periodically to ensure the overall anonymity of the vehicle, unlike a typical wireless or wired 802 device ID. Because this value is used as a means to identify the local vehicles that are interacting during an encounter, it is used in the message set. Other devices, such as infrastructure (RSUs), may have a fixed value for the temporary ID value. See also DE_StationID which is used in other deployment regions.

ASN.1 Representation:

```
TemporaryID ::= OCTET STRING (SIZE(4))
```

Used By: This entry is directly used by the following six other data structures in this standard:

DF	DF_BSMcoreData	<ASN> , and
DF	DF_VehicleID	<ASN> , and
MSG	MSG_CommonSafetyRequest (CSR)	<ASN> , and
MSG	MSG_EmergencyVehicleAlert (EVA)	<ASN> , and
MSG	MSG_IntersectionCollisionAvoidance (ICA)	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: The circumstances and times at which various V2X devices (notably OBUs) create and change their current temporary ID is a complex application level topic. It should be noted that the temporary ID is not the same as a device MAC value, although when used as a means to uniquely identify a device, both have many common properties. It should further be noted that the MAC value for a mobile OBU device (unlike a typical wireless or wired 802 device) will periodically change to a new random value to ensure the overall anonymity of the vehicle.

7.188 Data Element: DE_TerminationDistance

Use: Provides a Distance-to-Live type of time-out. Allows users to provide the distance driven until the probe management process ceases and the default condition is applied.

ASN.1 Representation:

```
TermDistance ::= INTEGER (1..30000) -- units in meters
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.189 Data Element: DE_TerminationTime

Use: Provides a Time-to-Live type of time-out. Allows users to provide the number of seconds at which time the probe management process ceases and the default condition is applied.

ASN.1 Representation:

```
TermTime ::= INTEGER (1..1800) -- units of sec
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_ProbeDataManagement \(PDM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.190 Data Element: DE_ThrottleConfidence

Use: The DE_ThrottleConfidence data element is used to provide the 95% confidence level for the currently reported value of DE_Throttle, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly. If a fault that triggers the MIL is of a nature to render throttle performance unreliable, then ThrottleConfidence should be represented as "notEquipped."

ASN.1 Representation:

```
ThrottleConfidence ::= ENUMERATED {
  unavailable      (0), -- B'00  Not Equipped or unavailable
  prec10percent    (1), -- B'01  10 percent Confidence level
  prec1percent     (2), -- B'10  1 percent Confidence level
  prec0-5percent   (3)  -- B'11  0.5 percent Confidence level
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_ConfidenceSet](#) <ASN>, and
DF [DF_Speed_Heading_Throttle_Confidence](#) <ASN>.

In addition, this item may be used by data structures in other ITS standards.

7.191 Data Element: DE_ThrottlePosition

Use: The position of the throttle in the vehicle, expressed in units of 0.5% of range of travel, unsigned.

ASN.1 Representation:

```
ThrottlePosition ::= INTEGER (0..200) -- LSB units are 0.5 percent
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.192 Data Element: DE_TimeConfidence

Use: The DE_TimeConfidence data element is used to provide the 95% confidence level for the currently reported value of time, taking into account the current calibration and precision of the sensor(s) used to measure and/or calculate the value. This data element is only to provide information on the limitations of the sensing system, not to support any type of automatic error correction or to imply a guaranteed maximum error. This data element should not be used for fault detection or diagnosis, but if a vehicle is able to detect a fault, the confidence interval should be increased accordingly.

ASN.1 Representation:

```
TimeConfidence ::= ENUMERATED {  
    unavailable          (0), -- Not Equipped or unavailable  
    time-100-000          (1), -- Better than 100 Seconds  
    time-050-000          (2), -- Better than 50 Seconds  
    time-020-000          (3), -- Better than 20 Seconds  
    time-010-000          (4), -- Better than 10 Seconds  
    time-002-000          (5), -- Better than 2 Seconds  
    time-001-000          (6), -- Better than 1 Second  
    time-000-500          (7), -- Better than 0.5 Seconds  
    time-000-200          (8), -- Better than 0.2 Seconds  
    time-000-100          (9), -- Better than 0.1 Seconds  
    time-000-050          (10), -- Better than 0.05 Seconds  
    time-000-020          (11), -- Better than 0.02 Seconds  
    time-000-010          (12), -- Better than 0.01 Seconds  
    time-000-005          (13), -- Better than 0.005 Seconds  
    time-000-002          (14), -- Better than 0.002 Seconds  
    time-000-001          (15), -- Better than 0.001 Seconds  
                           -- Better 1 ms  
    time-000-000-5         (16), -- Better than 0.000,5 Seconds  
    time-000-000-2         (17), -- Better than 0.000,2 Seconds  
    time-000-000-1         (18), -- Better than 0.000,1 Seconds  
    time-000-000-05        (19), -- Better than 0.000,05 Seconds  
    time-000-000-02        (20), -- Better than 0.000,02 Seconds  
    time-000-000-01        (21), -- Better than 0.000,01 Seconds  
    time-000-000-005       (22), -- Better than 0.000,005 Seconds  
    time-000-000-002       (23), -- Better than 0.000,002 Seconds  
    time-000-000-001       (24), -- Better than 0.000,001 Seconds  
                           -- Better than 1  $\mu$ s  
    time-000-000-000-5      (25), -- Better than 0.000,000,5 Seconds  
    time-000-000-000-2      (26), -- Better than 0.000,000,2 Seconds  
    time-000-000-000-1      (27), -- Better than 0.000,000,1 Seconds  
    time-000-000-000-05      (28), -- Better than 0.000,000,05 Seconds  
    time-000-000-000-02      (29), -- Better than 0.000,000,02 Seconds  
    time-000-000-000-01      (30), -- Better than 0.000,000,01 Seconds  
    time-000-000-000-005     (31), -- Better than 0.000,000,005 Seconds  
    time-000-000-000-002     (32), -- Better than 0.000,000,002 Seconds  
    time-000-000-000-001     (33), -- Better than 0.000,000,001 Seconds  
                           -- Better than 1 nanosecond  
    time-000-000-000-000-5    (34), -- Better than 0.000,000,000,5 Seconds  
    time-000-000-000-000-2    (35), -- Better than 0.000,000,000,2 Seconds  
    time-000-000-000-000-1    (36), -- Better than 0.000,000,000,1 Seconds  
    time-000-000-000-000-05    (37), -- Better than 0.000,000,000,05 Seconds  
    time-000-000-000-000-02    (38), -- Better than 0.000,000,000,02 Seconds  
    time-000-000-000-000-01    (39)  -- Better than 0.000,000,000,01 Seconds  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_ConfidenceSet	<ASN> , and
DF	DF_FullPositionVector	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.193 Data Element: DE_TimeIntervalConfidence

Use: This is the statistical confidence for the predicted time of signal group state change. For evaluation, the formula $10^a(x/a)-b$ with $a=82.5$ and $b=1.3$ was used. The values are encoded as probability classes with proposed values listed in the below table in the ASN.1 specification.

ASN.1 Representation:

TimeIntervalConfidence ::= INTEGER (0..15)

Value	Probability
0	21%
1	36%
2	47%
3	56%
4	62%
5	68%
6	73%
7	77%
8	81%
9	85%
10	88%
11	91%
12	94%
13	96%
14	98%
15	100%

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_TimeChangeDetails	<ASN> , and
DF	DF_REG_MovementEvent_JPN	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.194 Data Element: DE_TimeMark

Use: The TimeMark data element is used to relate a moment in UTC (Coordinated Universal Time)-based time when a signal phase is predicted to change, with a precision of 1/10 of a second. A range of 60 full minutes is supported and it can be presumed that the receiver shares a common sense of time with the sender which is kept aligned to within a fraction of a second or better.

When the value to be used is undefined or unknown, a value of 36111 shall be sent. Note that leap seconds are also supported.

ASN.1 Representation:

```
TimeMark ::= INTEGER (0..36111)
-- In units of 1/10th second from UTC time
-- A range of 0~35999 covers one hour
-- The values 36000..36009 are used when a leap second occurs
-- The values 36010..36110 are reserved for future use
-- 36111 is to be used when the value is undefined or unknown
-- Note that this is NOT expressed in GPS time or in local time
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TimeChangeDetails <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.195 Data Element: DE_TimeOffset

Use: The DE_TimeOffset data element is used to convey an offset in time from a known point. It is typically used to relate a set of measurements made in the recent past, such as a set of path points.

The above methodology is used when the offset is incorporated in data frames other than DF_PathHistoryPoint. Refer to the Use paragraph of DF_PathHistory for the methodology to calculate this data element for use in DF_PathHistoryPoint.

ASN.1 Representation:

```
TimeOffset ::= INTEGER (1..65535)
-- LSB units of 10 msec,
-- with a range of 0.01 seconds to 10 minutes and 55.34 seconds
-- a value of 65534 to be used for 655.34 seconds or greater
-- a value of 65535 to be unavailable
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_PathHistoryPoint](#) [<ASN>](#), and

DF [DF_TrailerHistoryPoint](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.196 Data Element: DE_TractionControlStatus

Use: The DE_TractionControlStatus data element reflects the status of the vehicle traction control system. The element can inform others that the vehicle is not equipped with traction control or, if equipped, if the traction control status is unavailable. If the vehicle is equipped with traction control and the status is available, the element reports whether the system is in an off, on, or engaged state.

ASN.1 Representation:

```
TractionControlStatus ::= ENUMERATED {
  unavailable (0), -- B'00  Not Equipped with traction control
                    -- or traction control status is unavailable
  off          (1), -- B'01  traction control is Off
  on           (2), -- B'10  traction control is On (but not Engaged)
  engaged      (3)   -- B'11  traction control is Engaged
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_BrakeSystemStatus <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.197 Data Element: DE_TrailerMass

Use: The DE_TrailerMass data element is used to relate the current mass of a trailer.

ASN.1 Representation:

```
TrailerMass ::= INTEGER (0..255)
  -- object mass with LSB steps of 500 kg (~1100 lbs)
  -- the value zero shall be used for an unknown mass value
  -- the value 255 shall be used any mass larger than 127,500kg
  -- a useful range of 0~127.5 metric tons.
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TrailerUnitDescription](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.198 Data Element: DE_TransitStatus

Use: The TransitStatus data element is used to relate basic information about the transit bus run in progress. This is typically used in a priority request to a signalized system and becomes part of the input processing for how that system will respond to the request.

ASN.1 Representation:

```
TransitStatus ::= BIT STRING {
  none      (0), -- nothing is active
  anADAuse  (1), -- an ADA access is in progress (wheelchairs, kneeling, etc.)
  aBikeLoad (2), -- loading of a bicycle is in progress
  doorOpen   (3), -- a vehicle door is open for passenger access
  occM      (4),
  occL      (5)
  -- bits four and five are used to relate the
  -- the relative occupancy of the vehicle, with
  -- 00 as least full and 11 indicating a
  -- close-to or full condition
} (SIZE(6))
```

Remarks: Most of these values are used to detect that the transit vehicle is not in a state where movement can occur (and that therefore any priority signal should be ignored until the vehicle is again ready to depart). Two bits (bits 4 and 5) are used to relate the relative occupancy of the vehicle.

7.199 Data Element: DE_TransitVehicleOccupancy

Use: The TransitVehicleOccupancy data element is used to relate basic level of current ridership.

ASN.1 Representation:

```
TransitVehicleOccupancy ::= ENUMERATED {
  occupancyUnknown      (0),
  occupancyEmpty        (1),
  occupancyVeryLow     (2),
  occupancyLow          (3),
  occupancyMed          (4),
  occupancyHigh         (5),
  occupancyNearlyFull  (6),
  occupancyFull         (7)
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorDescription](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.200 Data Element: DE_TransitVehicleStatus

Use: The TransitVehicleStatus data element is used to relate basic information about the transit run in progress. This is typically used in a priority request to a signalized system and becomes part of the input processing for how that system will respond to the request.

ASN.1 Representation:

```
TransitVehicleStatus ::= BIT STRING {  
    loading      (0), -- parking and unable to move at this time  
    anADAuse    (1), -- an ADA access is in progress (wheelchairs, kneeling, etc.)  
    aBikeLoad   (2), -- loading of a bicycle is in progress  
    doorOpen    (3), -- a vehicle door is open for passenger access  
    charging     (4), -- a vehicle is connected to charging point  
    atStopLine   (5)  -- a vehicle is at the stop line for the lane it is in  
} (SIZE(8))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_RequestorDescription <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Most of these values are used to detect that the transit vehicle is not in a state where movement can occur (and that therefore any priority signal should be ignored until the vehicle is again ready to depart).

7.201 Data Element: DE_TransmissionState

Use: The DE_TransmissionState data element is used to provide the current state of the vehicle transmission.

ASN.1 Representation:

```
TransmissionState ::= ENUMERATED {  
    neutral      (0), -- Neutral  
    park         (1), -- Park  
    forwardGears (2), -- Forward gears  
    reverseGears (3), -- Reverse gears  
    reserved1    (4),  
    reserved2    (5),  
    reserved3    (6),  
    unavailable  (7)  -- not-equipped or unavailable value,  
    -- Any related speed is relative to the vehicle reference frame used  
}
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_BSMcoreData <ASN>](#), and

DF [DF_TransmissionAndSpeed <ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

7.202 Data Element: DE_TravelerInfoType

Use: The DE_TravelerInfoType data element provides the type of message to follow in the rest of the message frame structure. It is used in the traveler information message, which may contain several such structures.

ASN.1 Representation:

```
TravelerInfoType ::= ENUMERATED {  
    unknown          (0),  
    advisory         (1),  
    roadSignage      (2),  
    commercialSignage (3),  
    ...  
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.203 Data Element: DE_UnderMSG_ID

Use: The DE_UnderMSG_ID data element provides a relatively unique value which can be used to connect to (link to) other supporting messages in other formats.

ASN.1 Representation:

```
UniqueMSGID ::= OCTET STRING (SIZE(9))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_TravelerInformation Message \(TIM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.204 Data Element: DE_URL_Base

Use: A valid internet style URI/URL in the form of a text string which will form the base of a compound string which, when combined with the URL-short data element, will link to the designated resource. The string is to be interpreted as case-insensitive. Lowercase is recommended. The protocol to be used (such as http) should be given in the string. The very last character of the string may be used to differentiate multiple URL-base values in a single system. This allows for a total of up to 26+10=36 such base addresses to exist. This last character is then used to differentiate which base a given short value is to be used with (a matching first character in the URL-short value is also used). These characters are stripped from both the base and short data elements before combining to create the final URL/URI value.

ASN.1 Representation:

```
URL-Base ::= IA5String (SIZE(1..45))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_TravelerInformation Message \(TIM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: It is the responsibility of the local deployment to ensure that all parties can reach the URL given over their own networks, and that the protocols used are acceptable to all. In other words, do not use URLs which depend on private network access to work.

7.205 Data Element: DE_URL_Link

Use: A valid internet style URI/URL in the form of a text string which will link to the designated resource.

ASN.1 Representation:

```
URL-Link ::= IA5String (SIZE(1..255))
```

Remarks: It is the responsibility of the local deployment to ensure that all parties can reach the URL given over their own networks, and that the protocols used are acceptable to all.

7.206 Data Element: DE_URL_Short

Use: A valid internet style URI/URL in the form of a text string which will be used as the final portion of a compound string which, when combined with the URL-Base data element, will link to the designated resource. The string is to be interpreted as case-insensitive. Lower case is recommended. The very first letter of the string shall be used to differentiate which one of multiple URL-Base values in a single system is to be used. This allows for a total of up to $26+10=36$ such base addresses to exist. This initial letter is then stripped off and used to differentiate which base a given short value is to be used with.

ASN.1 Representation:

```
URL-Short ::= IA5String (SIZE(1..15))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_TravelerDataFrame <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: It is the responsibility of the local deployment to ensure that all parties can reach the URL given over their own networks, and that the protocols used are acceptable to all.

7.207 Data Element: DE_UserSizeAndBehaviour

Use: The DE_UserSizeAndBehaviour data element is used to describe the overall stature of a user and user behaviours which may be of special note.

ASN.1 Representation:

```
UserSizeAndBehaviour ::= BIT STRING {  
    unavailable                      (0),  
    smallStature                      (1), -- less than 150 cm high  
    largeStature                      (2),  
    erraticMoving                     (3),  
    slowMoving                        (4)  -- those who move a bit slowly  
} (SIZE (5, ...))
```

Used By: This entry is used directly by one other data structure in this standard, a MSG called [MSG_PersonalSafetyMessage \(PSM\) <ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.208 Data Element: DE_VehicleEventFlags

Use: The vehicle event flags data element conveys the sender's state with regard to a set of events. For each event, the sender has the option to set the flag to one if the stated criteria are met, but it is not required to do so. The set of event flags and their respective minimum criteria are listed below. These definitions and criteria are normative. The Event Flag data element should not be included in a message unless at least one vehicle event flag is set to one. When one or more criteria associated with an event are no longer satisfied, the sender shall set the flag to zero in any vehicle event flag data element it sends. The presence of the vehicle event flag element in a message indicates that an unusual event has occurred. A vehicle receiving such a message might decide to process it differently than a message that does not include the vehicle event flag element. When a given event flag is set to one the message might include related optional data as well. Further details of these operational concepts can be found in the relevant standards.

If no further normative requirements are provided, the below flags shall be used as given below.

- Hazard Lights: The hazard lights are active.
- Stop Line Violation: The vehicle anticipates that it will pass the stop line without coming to a full stop before reaching it.
- ABS: System activated exceeding 100 m/s in length and active.
- Traction Control: System activated exceeding 100 m/s in length and active.
- Stability Control: System activated exceeding 100 m/s in length and active.
- Hazardous Materials: The vehicle is known to be carrying hazardous material and is placarded as such.

- Hard Braking: The vehicle is decelerating at a level of greater than 0.4 g.
- Lights Changed: The status of the external lighting of the vehicle has changed within the last 2 seconds. (The new state of the lights is presented in another element.)
- Wipers Changed: The status of wipers (front or rear) of the vehicle has changed within the last 2 seconds. (The new state of the wipers is presented in another element.)
- Flat Tire: The vehicle has determined that at least one tire has run flat.
- Disabled Vehicle: Any vehicle that considers itself disabled.
- Air Bag Deployment: At least one airbag has been deployed.

ASN.1 Representation:

```
VehicleEventFlags ::= BIT STRING {  
    eventHazardLights          (0),  
    eventStopLineViolation      (1), -- Intersection Violation  
    eventABSactivated          (2),  
    eventTractionControlLoss   (3),  
    eventStabilityControlactivated (4),  
    eventHazardousMaterials    (5),  
    eventReserved1             (6),  
    eventHardBraking           (7),  
    eventLightsChanged          (8),  
    eventWipersChanged          (9),  
    eventFlatTire              (10),  
    eventDisabledVehicle        (11), -- The DisabledVehicle DF may also be sent  
    eventAirBagDeployment       (12)  
} (SIZE (13, ...))
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF [DF_VehicleSafetyExtensions](#) [<ASN>](#), and

MSG [MSG_IntersectionCollisionAvoidance \(ICA\)](#) [<ASN>](#).

In addition, this item may be used by data structures in other ITS standards.

Remarks: This data element appears in the Part II section of the BSM, and is expected to be present when various potentially dangerous events (such as hard braking) have been declared by the sender. Additional data elements in the message may provide more details on the cause of this event.

7.209 Data Element: DE_VehicleHeight

Use: The height of the vehicle, measured from the ground to the highest surface, excluding any antenna(s), and expressed in units of 5 cm. In cases of vehicles with adjustable ride heights, camper shells, and other devices which may cause the overall height to vary, the largest possible height will be used.

ASN.1 Representation:

```
VehicleHeight ::= INTEGER (0..127)  
    -- the height of the vehicle  
    -- LSB units of 5 cm, range to 6.35 meters
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_TrailerUnitDescription	<ASN> , and
DF	DF_VehicleData	<ASN> , and
DF	DF_VehicleStatus	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.210 Data Element: DE_VehicleLength

Use: The length of the vehicle measured from the edge of the front bumper to the edge of the rear bumper expressed in centimeters, unsigned. It should be noted that this value is often combined with a vehicle width value to form a data frame. The value zero shall be sent when data is unavailable.

ASN.1 Representation:

```
VehicleLength ::= INTEGER (0.. 4095) -- LSB units of 1 cm with a range of >40 meters
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_TrailerUnitDescription	<ASN> , and
DF	DF_VehicleSize	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.211 Data Element: DE_VehicleMass

Use: The DE_VehicleMass data element represents the estimated weight of the vehicle over a span of stepwise linear values. The least significant bit step size varies from 50, to 500, to 2000 kg, as noted in the ASN. This provides a value range from zero to in excess of 170000 kg. The weight should reflect the current gross mass of vehicle and contents if known. Otherwise, an average laden value should be established. In cases where the weight is greater than 170000 kg, the value of 254 shall be used.

ASN.1 Representation:

```
VehicleMass ::= INTEGER (0..255)
  -- Values 000 to 080 in steps of 50kg
  -- Values 081 to 200 in steps of 500kg
  -- Values 201 to 253 in steps of 2000kg
  -- The Value 254 shall be used for weights above 170000 kg
  -- The Value 255 shall be used when the value is unknown or unavailable
  -- Encoded such that the values:
  -- 81 represents 4500 kg
  -- 181 represents 54500 kg
  -- 253 represents 170000 kg
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_VehicleData	<ASN> , and
DF	DF_VehicleStatus	<ASN> , and
MSG	MSG_EmergencyVehicleAlert (EVA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: See also the DE_TrailerMass data element.

7.212 Data Element: DE_VehicleStatusDeviceTypeTag

Use: The VehicleStatusDeviceTypeTag element is an enumeration of every possible value which can be found in the VehicleStatusDeviceType data frame. It is used to denote that value (and hence also the length) of the data which follows it.

ASN.1 Representation:

```
VehicleStatusDeviceTypeTag ::= ENUMERATED {
    unknown          (0),
    lights           (1),  -- Exterior Lights
    wipers           (2),  -- Wipers
    brakes           (3),  -- Brake Applied
    stab             (4),  -- Stability Control
    trac             (5),  -- Traction Control
    abs              (6),  -- Anti-Lock Brakes
    sunS             (7),  -- Sun Sensor
    rainS            (8),  -- Rain Sensor
    airTemp          (9),  -- Air Temperature
    steering          (10),
    vertAccelThres  (11), -- Wheel that Exceeded the
    vertAccel        (12), -- Vertical g Force Value
    hozAccelLong     (13), -- Longitudinal Acceleration
    hozAccelLat      (14), -- Lateral Acceleration
    hozAccelCon      (15), -- Acceleration Confidence
    accel4way        (16),
    confidenceSet    (17),
    obDist           (18), -- Obstacle Distance
    obDirect         (19), -- Obstacle Direction
    yaw              (20), -- Yaw Rate
    yawRateCon       (21), -- Yaw Rate Confidence
    dateTime         (22), -- complete time
    fullPos          (23), -- complete set of time and
                           -- position, speed, heading
    position2D        (24), -- lat, long
    position3D        (25), -- lat, long, elevation
    vehicle           (26), -- height, mass, type
    speedHeadC        (27),
    speedC            (28),
    ...
}
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatusRequest<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.213 Data Element: DE_VehicleType

Use: The DE_VehicleType data element is a type list (i.e., a classification list) of the vehicle in terms of overall size. The data element entries follow the definitions defined in the U.S. DOT Highway Performance Monitoring System (HPMS). Many infrastructure roadway operators collect and classify data according to this list for regulatory reporting needs. Within the ITS industry and within the V2X message set standards work, there are many similar lists of types for overlapping needs and uses.

ASN.1 Representation:

```
VehicleType ::= ENUMERATED {
  none          (0),  -- Not Equipped, Not known or unavailable
  unknown       (1),  -- Does not fit any other category
  special        (2),  -- Special use
  moto          (3),  -- Motorcycle
  car           (4),  -- Passenger car
  carOther      (5),  -- Four tire single units
  bus            (6),  -- Buses
  axleCnt2      (7),  -- Two axle, six tire single units
  axleCnt3      (8),  -- Three axle, single units
  axleCnt4      (9),  -- Four or more axle, single unit
  axleCnt4Trailer (10), -- Four or less axle, single trailer
  axleCnt5Trailer (11), -- Five or less axle, single trailer
  axleCnt6Trailer (12), -- Six or more axle, single trailer
  axleCnt5MultiTrailer (13), -- Five or less axle, multi-trailer
  axleCnt6MultiTrailer (14), -- Six axle, multi-trailer
  axleCnt7MultiTrailer (15), -- Seven or more axle, multi-trailer
  ...
}
```

Used By: This entry is directly used by the following five other data structures in this standard:

DF	DF_RequestorType	<ASN> , and
DF	DF_VehicleClassification	<ASN> , and
DF	DF_VehicleIdent	<ASN> , and
DF	DF_VehicleStatus	<ASN> , and
MSG	MSG_EmergencyVehicleAlert (EVA)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

7.214 Data Element: DE_VehicleWidth

Use: The width of the vehicle expressed in centimeters, unsigned. The width shall be the widest point of the vehicle with all factory installed equipment. The value zero shall be sent when data is unavailable.

ASN.1 Representation:

```
VehicleWidth ::= INTEGER (0..1023) -- LSB units are 1 cm with a range of >10 meters
```

Used By: This entry is directly used by the following two other data structures in this standard:

DF	DF_TrailerUnitDescription	<ASN> , and
DF	DF_VehicleSize	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: It should be noted that this data element is often combined with DE_VehicleLength when used.

7.215 Data Element: DE_Velocity

Use: This data element represents the velocity of an object, typically a vehicle speed or the recommended speed of travel along a roadway, expressed in unsigned units of 0.02 m/s. When used with motor vehicles it may be combined with the transmission state to form a data frame for use. A value of 8191 shall be used when the speed is unavailable. Note that Velocity as used here is intended to be a scalar value and not a vector.

ASN.1 Representation:

```
Velocity ::= INTEGER (0..8191) -- Units of 0.02 m/s
-- The value 8191 indicates that
-- velocity is unavailable
```

Used By: This entry is directly used by the following three other data structures in this standard:

DF	DF_RegulatorySpeedLimit	<ASN> , and
DF	DF_TransmissionAndSpeed	<ASN> , and
MSG	MSG_PersonalSafetyMessage (PSM)	<ASN> .

In addition, this item may be used by data structures in other ITS standards.

Remarks: Note the conversion guidance provided in 11.5 for situations in which units of mph and m/s are mixed.

7.216 Data Element: DE_VerticalAccelerationThreshold

Use: A bit string enumerating when a preset threshold for vertical acceleration is exceeded at each wheel.

The “Wheel that Exceeded Vertical G Threshold” data element is intended to inform Probe Data Users which vehicle wheel has exceeded a pre-determined threshold of a percent change in vertical G acceleration at the time a Probe Data snapshot was taken. This element is primarily intended to be used in the detection of potholes and similar road abnormalities. This element only provides information for four-wheeled vehicles. The element informs the user if the vehicle is not equipped with accelerometers on its wheels or that the system is off. When a wheel does exceed the threshold, the element provides details on the particular wheel by specifying left front, left rear, right front, and right rear.

ASN.1 Representation:

```
VerticalAccelerationThreshold ::= BIT STRING {
  notEquipped (0), -- Not equipped or off
  leftFront (1), -- Left Front Event
  leftRear (2), -- Left Rear Event
  rightFront (3), -- Right Front Event
  rightRear (4) -- Right Rear Event
} (SIZE(5))
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_VehicleStatus](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

7.217 Data Element: DE_VerticalAcceleration

Use: A data element representing the signed vertical acceleration of the vehicle along the vertical axis in units of 0.02 G (where 9.80665 m/s^2 is 1 G, i.e., $0.02 \text{ G} = 0.1962 \text{ m/s}^2$).

ASN.1 Representation:

```
VerticalAcceleration ::= INTEGER (-127..127)
-- LSB units of 0.02 G steps over -2.52 to +2.54 G
-- The value +127 shall be used for ranges >= 2.54 G
-- The value -126 shall be used for ranges <= -2.52 G
-- The value -127 shall be used for unavailable
```

Used By: This entry is used directly by one other data structure in this standard, a DF called [DF_AccelerationSet4Way](#) [<ASN>](#). In addition, this item may be used by data structures in other ITS standards.

Remarks: Note: In the 2009 version of this standard, this data element was logarithmically encoded over a different range.