

# TECHNICAL SPECIFICATION

ISO/TS  
4549

First edition  
2023-07

## Orthotics — Method for testing the reliability of microprocessor- controlled ankle moment units of ankle-foot orthoses

STANDARDSISO.COM : Click to view the full PDF on ISO/TS 4549:2023



Reference number  
ISO/TS 4549:2023(E)

© ISO 2023

STANDARDSISO.COM : Click to view the full PDF of ISO/TS 4549:2023



**COPYRIGHT PROTECTED DOCUMENT**

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office  
CP 401 • Ch. de Blandonnet 8  
CH-1214 Vernier, Geneva  
Phone: +41 22 749 01 11  
Email: [copyright@iso.org](mailto:copyright@iso.org)  
Website: [www.iso.org](http://www.iso.org)

Published in Switzerland

## Contents

|                                                                                                                     | Page |
|---------------------------------------------------------------------------------------------------------------------|------|
| <b>Foreword</b>                                                                                                     | iv   |
| <b>Introduction</b>                                                                                                 | v    |
| <b>1 Scope</b>                                                                                                      | 1    |
| <b>2 Normative references</b>                                                                                       | 1    |
| <b>3 Terms and definitions</b>                                                                                      | 1    |
| <b>4 Designations and symbols</b>                                                                                   | 2    |
| <b>5 Requirements</b>                                                                                               | 3    |
| 5.1 General                                                                                                         | 3    |
| 5.2 Definition of Test parameters                                                                                   | 3    |
| 5.2.1 General                                                                                                       | 3    |
| 5.2.2 Test without integrated sensors                                                                               | 3    |
| 5.2.3 Example of a set of test levels                                                                               | 4    |
| 5.3 Test preparation                                                                                                | 4    |
| <b>6 Set-up conditions</b>                                                                                          | 5    |
| 6.1 General                                                                                                         | 5    |
| 6.2 Coordinate system                                                                                               | 5    |
| 6.3 Leg dummy                                                                                                       | 5    |
| 6.4 Loading of the leg dummy                                                                                        | 5    |
| 6.5 Essential properties of orthoses to test                                                                        | 6    |
| 6.6 Vertical loading of the Orthoses                                                                                | 6    |
| 6.7 Angular profile of the tilting plate                                                                            | 6    |
| <b>7 Test procedure</b>                                                                                             | 8    |
| 7.1 Static test for motion resistance of the ankle joint dummy                                                      | 8    |
| 7.2 Cyclic test                                                                                                     | 9    |
| <b>8 Test report</b>                                                                                                | 9    |
| <b>9 Compliance</b>                                                                                                 | 10   |
| 9.1 Compliance to motion resistance of the ankle joint dummy                                                        | 10   |
| 9.2 Compliance to cyclic test                                                                                       | 10   |
| 9.3 Identifier of Compliance                                                                                        | 10   |
| 9.3.1 General format                                                                                                | 11   |
| <b>Annex A (informative) Measurement system for the acquisition of load data of an orthosis for the lower limbs</b> | 12   |
| <b>Bibliography</b>                                                                                                 | 15   |

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see [www.iso.org/directives](http://www.iso.org/directives)).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at [www.iso.org/patents](http://www.iso.org/patents). ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see [www.iso.org/iso/foreword.html](http://www.iso.org/iso/foreword.html).

This document was prepared by Technical Committee ISO/TC 168, *Prosthetics and orthotics*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at [www.iso.org/members.html](http://www.iso.org/members.html).

## Introduction

Orthoses of the lower limb are used to treat a wide variety of pathologies. To partly compensate functional deficits, orthoses are used, which provide appropriate functions. The more functionality is provided by orthoses, the more important their functional reliability is.

Structural strength of orthoses, supporting the limb by stabilizing its joints against motion, is as important as stabilisation of movement of joints between limb segments, when mobility is aimed in rehabilitation.

Testing reliability of the controlled ankle moment units of orthoses, which stabilise joint movement, requires to introduce motion into the strength test.

The reliability of microprocessor-controlled ankle moment units of orthosis, supporting the anatomical ankle joint in plantar- and dorsiflexion motion, can be tested by repetitively loading and driving the ankle joint in an appropriate angular and force profile, resulting in the moment profile to test.

Current technologies for acquiring loading and motion-data of orthotic ankle joints in real use are the basis to derive test conditions, which simulate repetitive loading for the microprocessor-controlled ankle moment units in a laboratory environment.

Orthoses of the lower limb are operating aside the leg of the orthosis user. For testing the reliability of microprocessor-controlled ankle moment units in a laboratory test, it is essential to mimic the orthosis user's extremity in such a way, that the orthosis shows its functional capabilities and its reliability. The chapter "leg dummy" in this document describes essential properties of the leg dummy, mimicking the orthosis user's leg.

Covering high loading events during intended use, to be generated by the control elements repetitively in the test, provides a safety factor also for lower loading scenarios of less demanding pathologies.

The Osaka Electro-Communication University in Japan has developed a system of miniaturised sensors with associated data acquisition and data analysis, which can be integrated into an ankle-foot orthosis to measure the multi-axial loading and angular movement of orthotic ankle joints. This system has been used by 50 ankle-foot orthosis users to explore the assessment processes for the reliability of microprocessor-controlled ankle moment elements provided in this document.

STANDARDSISO.COM : Click to view the full PDF of ISO/TS 4549:2023

# Orthotics — Method for testing the reliability of microprocessor-controlled ankle moment units of ankle-foot orthoses

## 1 Scope

This document specifies a method for testing the reliability of microprocessor-controlled ankle moment units of ankle-foot orthosis, moving in plantar- and dorsiflexion direction.

This document specifies categories of locomotion profiles to be applied together with appropriate loading profiles, to generate plantar- and dorsiflexion ankle moment loads for the microprocessor-controlled ankle moment units. It also defines which measured outcome of the test allows to claim compliance to this document, and how the compliance is documented in the IFU.

This document solely addresses the resistance of microprocessor-controlled ankle moment units in motion. Geometrical constrains like end stops, where motion is stopped instead of sustaining it, can be tested in repetitive quasi static tests instead.

A method to derive test parameters for the reliability test of microprocessor-controlled ankle moment units is described.

This document is applicable to unilateral ankle-foot orthoses and to bilateral jointed orthoses where either both joints are controlled or where one joint is controlled and the other is not controlled.

## 2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 22675:2016, *Prosthetics — Testing of ankle-foot devices and foot units — Requirements and test methods*

ISO 22523:2006, *External limb prostheses and external orthoses — Requirements and test methods*

## 3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

### 3.1

#### **microprocessor-controlled ankle moment unit**

flexing and extending element, bearing loads and generating ankle moment, located medial or lateral to the anatomical upper ankle joint, providing or varying ankle moment when moved in the direction of dorsiflexion and plantarflexion

**3.2****passive ankle joint**

flexing and extending element, located preferably medial to the ankle joint, mainly bearing loads parallel to its plane of motion

Note 1 to entry: The passive ankle joint stabilises the controlled ankle moment unit on the opposite side of the anatomical ankle joint with regard to forces and rotational moments, especially in frontal- and transversal plane.

**3.3****load distribution ring**

rigid ring located above the proximal end of the orthosis, to distribute the test force on the orthosis upper brace and to avoid pressure spots

**3.4****shank element**

strait rod or tube, located in the tibia region of an anatomical leg, which transfers the load from the dummy's knee to the dummy's foot; it also guides the load distribution ring and aligns the ring in the transverse plane on a level, suitable to load the interface component of the orthoses parallel to the shank element

**3.5****outer shank element**

ring, connected to the lower surface of the load distribution ring, which positions the upper brace of the orthosis relative to the shank element

Note 1 to entry: The height of the ring is adapted to the height of the upper brace of the orthosis.

Note 2 to entry: The contour and compliance of the outer shank element may not stabilize the orthotic frame with regards to its deflection in either plane.

**3.6****orthotic frame**

connecting element(s) which connect the upper brace of the orthosis to the ankle joint element(s)

Note 1 to entry: The frame can be designed by using side bars or by a brace structure.

**3.7****leg dummy**

an assembly of modified prosthetic componentry, mimicking the lower leg of the user of an orthosis in the test setup

**3.8****ankle moment measured**

readout of the ankle moment value, measured with calibrated and validated sensors, which are integrated in the orthotic systems bearing structure for studies and/or for testing or which are part of the microprocessor-controlled ankle moment units

## 4 Designations and symbols

The designations and symbols of all relevant test forces and moments are listed in [Table 1](#).

**Table 1 — Designations and symbols of test forces and moments**

| Designation                                                               | Symbol                    |
|---------------------------------------------------------------------------|---------------------------|
| Test force                                                                | $F_u$                     |
| 1 <sup>st</sup> and 2 <sup>nd</sup> maximum value of pulsating test force | $F_{1cmax}$ , $F_{2cmax}$ |
| Minimum moment measured                                                   | $M_{min}$                 |
| Maximum moment measured                                                   | $M_{max}$                 |

## 5 Requirements

### 5.1 General

The selection of test levels and test force related to the intended use are defined by the manufacturer/submitter with justification and documented in the test report prior testing (see [Clause 8](#)).

In order to claim compliance with this document, all relevant settings in the specific adjustments shall be tested and the strength requirements specified in ISO 22523:2006, 4.4 shall be met.

The selection criteria for the samples to be tested shall be in accordance with ISO 22675.

In order to test the reliability of microprocessor-controlled ankle moment units, the ankle joint of the leg dummy shall not limit the motion of the orthotic joint(s) under load. Suitability of an ankle joint in the leg dummy shall be demonstrated in the static test for motion-resistance of the ankle joint dummy, defined in [7.1](#) before conducting the cyclic test.

### 5.2 Definition of Test parameters

#### 5.2.1 General

Depending on the intended use, the manufacturer/submitter provides sufficient information to derive the appropriate test parameters by defining angular range, loading parameters and cycle number to generate the ankle moment loading of the microprocessor-controlled ankle moment unit in the laboratory test for the test lab. This information can be gained with orthoses which are equipped with calibrated and validated sensors, worn by the intended user group, performing the intended use in a representative size of the user group. The orthoses used to acquire the data in use, fitted to the leg dummy (see below) also provides the data which is needed to adapt the angular range and the test load profile to simulate the ankle moment loadings for further test samples. The chosen test force reference value ( $F$ ),  $F_{1cmax}$ , shall be documented in the test report and indicated on the identifier.

If parameters are derived in studies using criteria of lower levels where higher levels are intended for use, the levels of the intended use apply.

If parameters derived in studies are between the defined test levels of this document, the reliability of the motion resistance has to be tested on the next higher test level.

Test forces and test loads already include a safety factor for walking on level ground. A higher safety margin shall be tested by testing on a single higher level or on a variety of higher test levels.

#### 5.2.2 Test without integrated sensors

For testing test samples from normal production, where integrated sensors influence the structure of the orthosis, equivalent sensors shall be installed in the test setup, which provide an equivalent to the ankle moment measured, proportional to the ankle moment. These sensors are validated with the orthoses used to acquire the data in use. The transfer function of characteristics and magnitudes is documented in the test report prior test. The test then can be conducted, using samples from production without modification.

**NOTE** Suitable equivalent sensors are for example, force plates in the tilting plate, measuring the trajectory of the centre of pressure or force sensors measuring the force applied by the upper brace of the orthosis to the outer shank element in transversal plane.

### 5.2.3 Example of a set of test levels

For testing the reliability of the motion resistance of the microprocessor-controlled ankle moment units for slow walking on level ground only, the following test conditions were derived from the results gained by the system shown in [Annex A](#):

- Force of body mass:  $F_U$  500 [N];
- Level of vertical force on load distribution ring  $F_B$ :  $L_2$  (see [Table 2](#));
- Angular range:  $A_1$  (see [Table 3](#));
- Cycle number related to expected service life:  $C_5$  (see [Table 4](#));
- Level of adjusted Dorsiflexion resistance:  $D_4$  (see [Table 5](#));
- Level of adjusted plantarflexion resistance:  $P_2$  (see [Table 6](#)).

### 5.3 Test preparation

The orthosis is applied to the leg dummy by using the interface components (upper brace, footplate) of the orthoses and/or footwear, which should be used when using the orthosis.

**Table 2 — Vertical load applied to the load distribution ring related to the maximum vertical load  $F_{1cmax}$**

| Level | $L_0$ | $L_1$ | $L_2$ | $L_3$ | $L_4$ |
|-------|-------|-------|-------|-------|-------|
| %     | 0     | 10    | 20    | 50    | 100   |

**Table 3 — Levels of Angular range**

| Level                                | $A_1$ | $A_2$ | $A_3$  | $A_4$ |
|--------------------------------------|-------|-------|--------|-------|
| Min. Angle, static and cyclic [deg.] | -5    | -10   | -15    | -20   |
| Max. Angle, static and cyclic [deg.] | 10    | 20    | 30     | 40    |
| Angle $F_{1cmax}$ [deg.]             | -3,75 | -7,5  | -11,25 | -15   |
| Angle $F_{2cmax}$ [deg.]             | 5     | 10    | 15     | 20    |

**Table 4 — Levels of cycle numbers**

| Level | $C_1$ | $C_2$ | $C_3$           | $C_4$           | $C_5$           | $C_6$           | $C_7$           | $C_8$           | $C_9$           | $C_{10}$        |
|-------|-------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1     | 2 000 | 5 000 | $1 \times 10^4$ | $2 \times 10^4$ | $5 \times 10^4$ | $1 \times 10^5$ | $2 \times 10^5$ | $5 \times 10^5$ | $1 \times 10^6$ | $2 \times 10^6$ |

**Table 5 — Levels dorsiflexion resistance**

| Level | $D_1$ | $D_2$ | $D_3$ | $D_4$ | $D_5$ | $D_6$ | $D_7$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| Nm    | 10    | 20    | 30    | 40    | 60    | 80    | 100   |

**Table 6 — Levels plantarflexion resistance**

| Level | $P_1$ | $P_2$ | $P_3$ | $P_4$ | $P_5$ | $P_6$ | $P_7$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| Nm    | 5     | 10    | 15    | 20    | 30    | 40    | 50    |

## 6 Set-up conditions

### 6.1 General

Plantar and dorsiflexion movement of an ankle regularly occurs in the rollover process during each step. The cyclic test of ISO 22675 defines both, the rollover motion and the loading throughout stance-phase. Prosthetic feet provide stabilization of the body during gait and in addition store and restore energy in that phase. Therefore, an adapted ISO 22675 Test procedure is defined in this document to test the reliability of microprocessor-controlled ankle moment units of ankle foot orthosis. Necessary adaptations to test controlled ankle moment units are described below.

### 6.2 Coordinate system

The coordinate system and test configurations specified in ISO 22675:2016, Clause 6, are used, except that the top load application point,  $P_T$ , is placed parallel to the u-axis above midfoot at a fixed height of 700 mm, see ISO 22675:2016, Figure 2.

### 6.3 Leg dummy

The leg dummy is an assembly of a modified prosthetic foot, an ankle joint, a shank element, an outer shank element and a load distribution ring. These Elements are mounted in the test frame to load and orientate the orthosis under test.

The (modified) prosthetic foot (dummy foot) applies loading and provides geometrical alignment to the sole element of the orthosis.

- a) To distribute the loading from the ankle joint dummy to the sole of that foot, its connection to the heel, to midfoot and to the ball of the foot shall be sufficiently stiff to keep the ankle joint dummy aside or within the orthotic joint(s) under load. The ankle moment unit shall not move more than 20 mm away from its unloaded position in the plane of motion, in relation to the ankle moment unit.
- b) The foot-dummy shall be equipped with very soft or jointed toes, which do not stiffen the toe region of the foot plate of the orthosis. If the ankle moment unit is coupled to the toe elements, supporting the ankle moment unit, the independent movement of the toes is to be demonstrated with the procedure defined in [7.1](#) but rolling over on the ball of the foot.
- c) The mechanical height and design of the foot dummy shall allow for positioning the modified ankle joint dummy aside or within the orthotic ankle moment unit(s).

The ankle joint simulates the ankle joint of the orthosis user. It does not limit the motion of the joint(s) of the orthoses under load in the intended range of motion. The appropriate low resistance of the dummy ankle joint is demonstrated by the static test defined in [7.1](#).

A shank element transfers the load from the dummy's knee to the dummy's foot and guides the load distribution ring. The guiding mechanism is a low friction unit, which does not apply forces along the shank element above 20 N for unloaded guiding.

Loading the load distribution ring eccentrically generates tilting moments, which tend to increase friction between the shank element and the load distribution ring. It shall be validated that the load applied by the load distribution ring loads the upper brace of the orthosis as intended.

The assembled leg dummy including the orthosis is illustrated in [Figure 1](#).

### 6.4 Loading of the leg dummy

The cyclic loading specified in ISO 22675:2016, 7.2, loads the leg dummy. Its maximum value  $F_{1cmax}$  is adapted according to the intended use and documented prior test. The loading profile is specified between heel strike angle and toe-off angle.

Depending on the type of controller unit of the microprocessor-controlled ankle moment unit, the angular velocity influences the plantar and dorsiflexion resistance. In order to test the resistance reliably, both, the test parameters of angular range of the tilting plate the test force, the test frequency and the settings of the microprocessor-controlled ankle moment unit shall be taken into account to generate the appropriate plantar and dorsiflexion resistance.

## 6.5 Essential properties of orthoses to test

In order to test the reliability of microprocessor-controlled ankle moment units (also see the terms [3.1](#) "microprocessor-controlled ankle moment unit", [3.2](#) "passive ankle joint" and [3.6](#) "orthotic frame"), the orthotic frame shall be sufficiently stiff in relation to the controlled ankle moment units, to introduce the motion in the ankle moment unit needed to generate the ankle moment to be tested.

Design variations, for example showing large or a small upper braces, their opening anterior or posterior, medial or lateral, covering the side bars with brace material or keeping them uncovered, shall follow the stiffness criterion above.

If the orthosis is not equipped with sensors by default, the orthotic design shall allow for integration of sensors close to the ankle moment unit(s), which allow for the acquisition of the ankle moment in use as well as during test.

The calibration of ankle moment sensors integrated for testing, shall be validated in the orthotic assembly again.

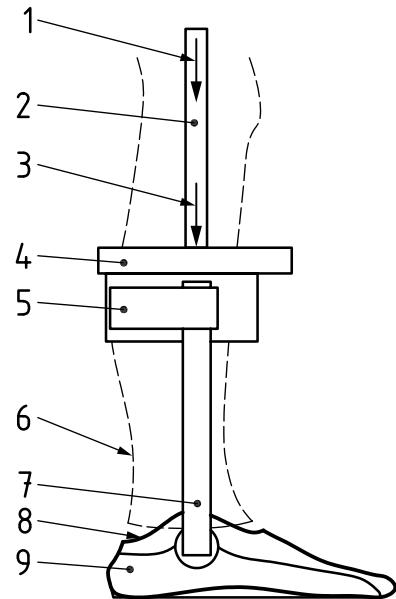
**NOTE** If the orthotic frame weakens during test and thereby the ankle moment units are moved less compared to the beginning of the test, the motion resistance will probably decrease. Compliance cannot be claimed, exceeding the compliance criteria of [9.2](#), when caused by a weak orthotic frame.

Orthoses, which are not intended to move during loading and so require a stiff ankle in the leg dummy, are not intended to be tested with the test procedure of this document.

## 6.6 Vertical loading of the Orthoses

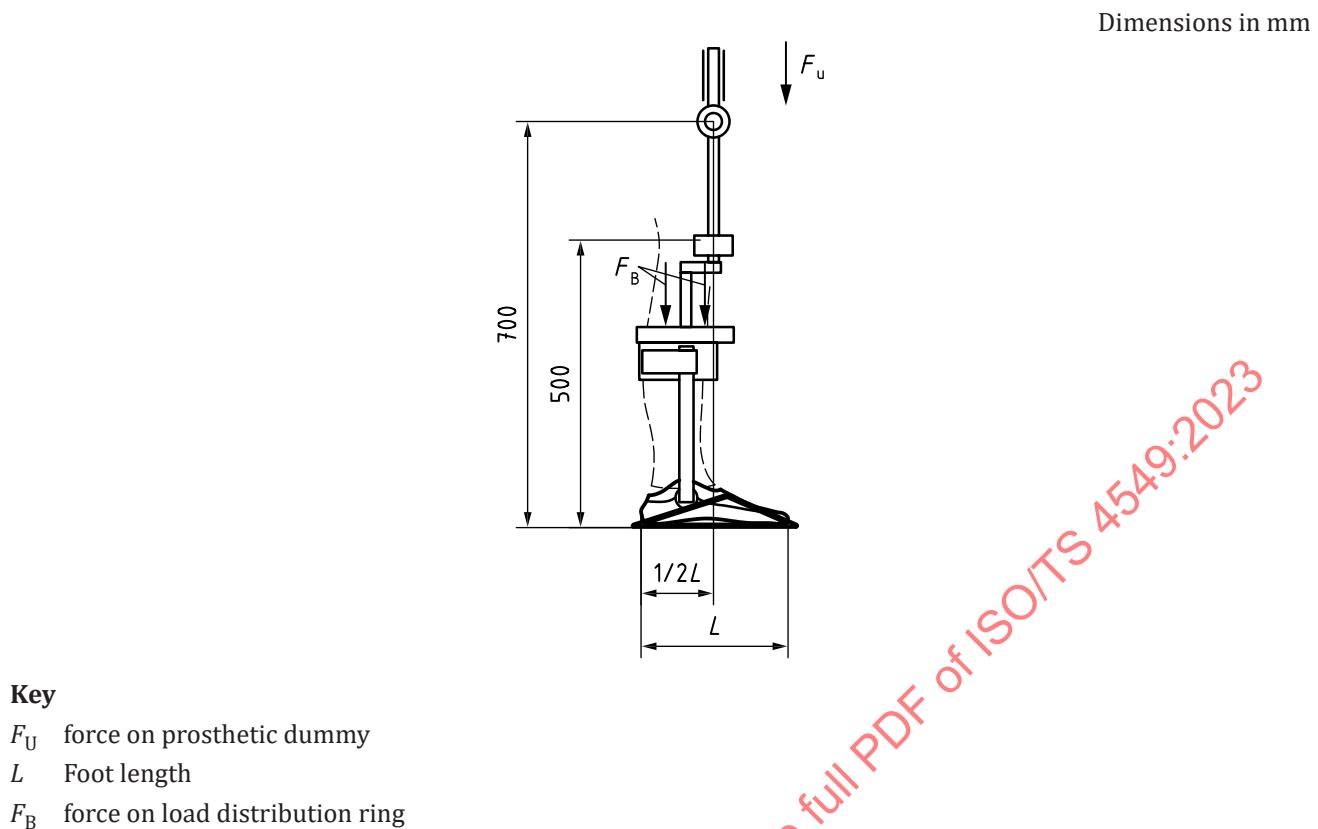
The orthosis is loaded proximally by the load distribution ring that loads the upper brace of the orthosis, see [Figure 1](#), Key 1 and Key 3. The magnitude of load is proportional to the load profile of the leg dummy and the maximum value is specified by the loading parameter  $L_x$  (see [Table 2](#)) prior the test and documented.

## 6.7 Angular profile of the tilting plate


The reference angular motion of the tilting plate  $\beta(t)$  can be specified with sufficient accuracy by a polynomial of the fifth degree.

For the period of  $0 \text{ ms} \leq t \leq 600 \text{ ms}$ , corresponding to a loading period of 600 ms, the polynomial reads, for the angular range of  $-20^\circ \leq \beta \leq 40^\circ$ , see [6.7, Formula \(1\)](#):

$$\beta(t) = 2,450\ 74 \times 10^{-12} \times t^5 - 3,759\ 84 \times 10^{-9} \times t^4 + 1,775\ 19 \times 10^{-6} \times t^3 - 1,084\ 09 \times 10^{-4} \times t^2 + 2,072\ 17 \times 10^{-2} \times t - 20,041 \quad (1)$$


For angular profiles on different angular test levels ( $A_1$  though  $A_4$ , see [Table 3](#)), where the angular range of the motion profile is different to the reference profile( $A_4$ ), the profile shall be adapted by keeping the characteristics of the trajectory but adapting max. plate angle and min. plate angle. The resulting angular profile of the test shall be documented in the test report.

**NOTE** Peak forces of the loading profile occur during rollover at 25 % and 75 % of the loading phase (150 ms and 450 ms).

**Key**

- 1 force on prosthetic dummy  $F_U$
- 2 bearing structure of prosthetic dummy
- 3 force on load distribution ring  $F_B$
- 4 load distribution ring
- 5 orthotic brace
- 6 outer shape prosthetic dummy
- 7 orthotic ankle joint
- 8 prosthetic foot dummy
- 9 orthotic foot brace

**Figure 1 — Sample setup of cyclic test**



**Figure 2 — Dummy prosthesis and orthoses in test rig**

## 7 Test procedure

### 7.1 Static test for motion resistance of the ankle joint dummy

The test for motion resistance of the ankle joint dummy, related to the maximum test levels of the test, is performed in the following consecutive steps.

- a) The leg dummy is aligned into the test apparatus according to 6.2 of this document.
- b) Before starting the test, the leg dummy assembly is unloaded.
- c) The plate angle of the tilting-plate is set to Angle  $F_{1cmax}$ .
- d) The leg dummy is loaded to 10 % of  $F_{1cmax}$  in a rate between 100 N/s and 10 000 N/s.
- e) The leg dummy is unloaded and lifted that high, that the leg dummy is not touching the tilting plate when it turns to Angle  $F_{2cmax}$ . The tilting-plate is turned to a plate angle of Angle  $F_{2cmax}$ .
- f) The leg dummy is loaded to 10 % of  $F_{2cmax}$  in a rate between 100 N/s and 10 000 N/s.
- g) The leg dummy is unloaded and lifted that high, that the leg dummy is not touching the tilting plate when it turns to Angle  $F_{1cmax}$ .
- h) The steps 7.1 b) to 7.1 g) are repeated once without manipulating the leg-dummy.
- i) The leg-dummy is unloaded.

## 7.2 Cyclic test

The cyclic test is performed in the following consecutive steps.

- a) The orthosis and leg dummy assembly is aligned into the test apparatus according to [6.2](#) of this document.
- b) The orthosis and leg dummy assembly is loaded according to [6.4](#), [6.6](#) and [6.7](#) of this document in the number of cycles defined in the test settings documented.
- c) The parameters of the controlled ankle moment unit are set to generate the resistance values, whose reliability shall be demonstrated.
- d) Maintenance intervals and maintenance actions are performed as documented in the test report prior test.
- e) If the monitored maximum/minimum “moment measured” of the 1 000<sup>th</sup> is exceed by  $\pm 20\% M_{\max}$  or  $\pm 20\% M_{\min}$  before reaching the final cycle number, the test is stopped and the cycle number is registered. The leg-dummy is inspected and the compliance to the sufficiently low motion resistance of the ankle joint dummy is tested by performing the related test of [9.1](#). If the leg-dummy does not show compliance to the sufficiently low motion resistance of the ankle joint dummy, the test can be continued with a leg-dummy which complies to the compliance criterion of [9.1](#).
- f) The maximum/minimum “moment measured” of the 1 000<sup>th</sup> and the final cycle for plantarflexion- and dorsiflexion motion are registered and the compliance to the sufficiently low motion resistance of the ankle joint dummy is shown by performing the related test of [9.1](#).

## 8 Test report

- a) The test report shall include the following parameters, defined by the manufacturer/submitter:
  - 1) description of the orthosis;
  - 2) intended use;
  - 3) size of foot;
  - 4) peak value of the force profile  $F_{1c\max}$  applied to the leg dummy and peak force of the load distribution ring;
  - 5) angular range of the motion profile for cyclic test;
  - 6) worst case scenario testing, groups of test levels related to the intended use, and the resulting magnitude ankle moment to be tested and measured;
  - 7) number of test cycles;
  - 8) maintenance intervals and actions in service, to be conducted during test as required in the IFU;
  - 9) justification of the documented parameters.
- b) The test lab shall report:
  - 1) detailed description of the entire leg dummy and the description of the load distribution ring and its way of operation;
  - 2) angular positions of the tilting plate for static tests;
  - 3) result of static test to motion resistance of the ankle joint dummy;
  - 4) description of the resulting angular profile(s) of the tilting plate;

- 5) description of the resulting force profile(s) of the cyclic test;
- 6) tested cycle number for each group of test levels;
- 7) transfer function of test orthoses measured ankle moment to measured data of equivalent sensors, when equivalent sensors are used;
- 8) lowest adjustable measured max./min. ankle moment during plantar- and dorsiflexion motion;
- 9) highest adjustable measured max./min. ankle moment during plantar- and dorsiflexion motion;
- 10) Initially adjusted measured max./min. ankle moment during plantar- and dorsiflexion motion;
- 11) measured plantar- and dorsiflexion ankle moment during motion at the 1 000<sup>th</sup> cycle;
- 12) final measured plantar- and dorsiflexion ankle moment during motion and the cycle number when measured;
- 13) compliance result of the cyclic test;
- 14) compliance result of the initial test of [9.1](#);
- 15) compliance result of the final test of [9.1](#);
- 16) intermediate events when max./min. "moment measured" of the 1 000<sup>th</sup> test cycle is exceed by  $\pm 20\% M_{\max}$  or  $\pm 20\% M_{\min}$  before reaching the final cycle number, and the measures to regain suitability of the leg dummy for the test.

## 9 Compliance

### 9.1 Compliance to motion resistance of the ankle joint dummy

Compliance to the sufficiently low motion resistance of the ankle joint dummy requirement can be claimed, if at the static angular value for heel load of [7.1 d](#)) the forefoot visibly touches the tilting plate, and in forefoot loading condition of [7.1 f](#)) the heel visibly touches the tilting plate; twice, in the first run and in its repetition.

### 9.2 Compliance to cyclic test

Compliance to the cyclic test criteria of this document can be claimed, if the plantarflexion and dorsiflexion ankle moment  $M$ , of the cycles of each cyclic group of test levels, does not exceed  $\pm 20\% M_{\max}$  or  $\pm 20\% M_{\min}$  of the ankle joint moments measured at the 1 000<sup>th</sup> test cycle.

### 9.3 Identifier of Compliance

Orthoses, for which compliance of the reliably of motion resistance of microprocessor-controlled ankle units, demonstrated by the methods of this document, is claimed, shall be identified with an identifier in the IFU. The statements on the identifier shall be given independent of any specific information on the intended use of the orthosis, supplied by the manufacturer/submitter with the device.

### 9.3.1 General format

The general format is given in [Figure 3](#).

ISO 4549 - LI - Aa - Cc - Dd - Pp

**Figure 3 — Example**