

TECHNICAL REPORT

ISO/TR
22131

Second edition
2023-02

Railway applications — Railway braking — Country specific applications for ISO 20138-1

*Applications ferroviaires — Freinage ferroviaire — Applications
nationales spécifiques de l'ISO 20138-1*

STANDARDSISO.COM : Click to view the full PDF of ISO TR 22131:2023

Reference number
ISO/TR 22131:2023(E)

© ISO 2023

STANDARDSISO.COM : Click to view the full PDF of ISO/TR 22131:2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Slowing or stopping distance calculation using a method implemented in France	1
4.1 General	1
4.2 Symbols and abbreviations	1
4.3 Slowing or stopping distance calculation	2
4.3.1 French model for "G" position	2
4.3.2 Calculation using ISO 20138-1:2018, 5.7.5.1 step model	4
4.4 Example of calculation	4
4.4.1 Test results	4
4.4.2 Comparison of calculation models with test results	5
5 Calculation of braking performance implemented in Japan	5
5.1 General	5
5.2 Brake ratio for a single vehicle	5
5.3 Example for brake ratio calculation	6
5.4 Equivalent response time	7
5.4.1 General	7
5.4.2 Case 1: Determination based on train speed	8
5.4.3 Case 2: Determination based on BC pressure response	8
6 Stopping or slowing distance calculation methods for some particular rolling stock in China	9
6.1 General	9
6.2 Symbols and abbreviations	9
6.3 Train resistance retarding forces	10
6.3.1 Basic running resistance	10
6.3.2 Curve resistance	12
6.4 Train braking force	13
6.4.1 Total braking force of train	13
6.4.2 Real friction coefficient	14
6.4.3 Conversion friction coefficient	14
6.4.4 Real brake block force	15
6.4.5 Nominal values of rigging efficiency	16
6.4.6 Emergency brake cylinder pressure	16
6.4.7 Conversion brake block force	17
6.4.8 Conversion braking ratio	18
6.4.9 Train unit brake ratio	20
6.4.10 Dynamic brake force	20
6.4.11 Coefficient of adhesion	21
6.5 Brake calculation	21
6.5.1 Braking time	21
6.5.2 Free running time	22
6.5.3 Stopping/slowing distance	22
Bibliography	24

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 269, *Railway applications*, Subcommittee SC 2, *Rolling stock*.

This second edition cancels and replaces the first edition (ISO/TR 22131:2018), which has been technically revised.

The main change is: the symbols and terms in [Clause 6](#) have been revised.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Railway applications — Railway braking — Country specific applications for ISO 20138-1

1 Scope

This document provides additional information to assist the understanding and the use of ISO 20138-1. The calculations in this document follow the same principles but they are slightly different.^{1,2,3}

This document contains country specific calculation approaches currently in use and represents the state of knowledge including for calculating:

- stopping and slowing distances;
- equivalent response time;
- brake performance;
- brake ratio.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 20138-1:2018, *Railway applications — Calculation of braking performance (stopping, slowing and stationary braking) — Part 1: General algorithms utilizing mean value calculation*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 20138-1 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

4 Slowing or stopping distance calculation using a method implemented in France

4.1 General

This calculation is based on the alternative method of equivalent response time calculation, as used in the French railway requirements, in particular, for trains operating in "G" position.

4.2 Symbols and abbreviations

For the purpose of [Clause 4](#), the terms, symbols and abbreviations defined in [Table 1](#) apply.

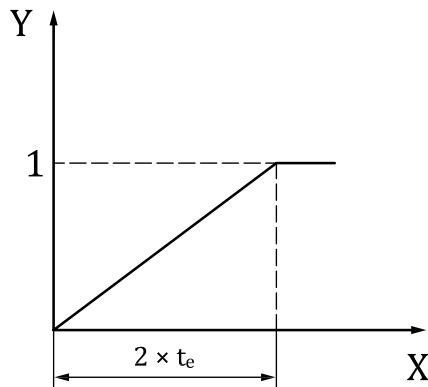
Table 1 — Symbols and abbreviations

Symbol or abbreviation	Description	Unit
1	Point when the brake force, deceleration or pressure has been substantially achieved, typically 95 %	—
a_e	Equivalent deceleration (on level track, without considering gradient effect)	m/s^2
g	Standard acceleration of gravity	m/s^2
“G” position	Distributor valve and distributor isolating devices (as defined in EN 15355 ^[9])	—
i	Gradient of the track (positive rising/negative falling)	—
s_{grad}	Stopping/slowing distance on a gradient	m
s_{tests}	Stopping distances measured during the tests	m
t_a	Delay time	s
t_{ab}	Build-up time	s
t_e	Equivalent response time	s
$2 \cdot t_e$	Equivalent response time multiplied by 2	s
v_0	Initial speed	m/s
v_{fin}	Final speed (= 0 in the case of a stopping distance)	m/s
X	Time	s
Y	Factor of nominal braking force, deceleration or pressure	—

4.3 Slowing or stopping distance calculation

4.3.1 French model for “G” position

This model provides a high level of accuracy for the calculation of stopping distances of trains with long build up time (e.g. “G” position). It is currently used by the infrastructure managers in order to evaluate the conformance of a train with the train control system and the length of the signalling sections.


For this French model of slowing or stopping distance calculation, [Figure 1](#) can be used for trains operating in “G” position for brake systems with retarding forces acting on rail contact point.

The model uses a linear development of the effort from 0 to 1 during a time of $2 \cdot t_e$.

The equivalent response time t_e can be calculated as set out in [Formula \(1\)](#):

$$t_e = t_a + \frac{t_{\text{ab}}}{2} \quad (1)$$

where t_a and t_{ab} are in accordance with ISO 20138-1:2018, 5.5.2.

Key

X time, in s

Y factor of nominal braking force, deceleration or pressure

1 point when the full brake force, deceleration or pressure has been achieved, typically 95 % of maximum value

 t_e equivalent response time, in s**Figure 1 — Model based on a linear development of the effort from 0 to 1 during a time of $2 \cdot t_e$**

The stopping ($v_{\text{fin}} = 0$) or slowing distance can be calculated as set out in [Formula \(2\)](#):

$$s_{\text{grad}} = v_0 \cdot t_e \cdot \frac{a_e}{a_e + g \cdot i} + \frac{v_0^2 - v_{\text{fin}}^2}{2 \cdot (a_e + g \cdot i)} - \frac{a_e \cdot t_e^2 \cdot (a_e + 4 \cdot g \cdot i)}{6 \cdot (a_e + g \cdot i)} \quad (2)$$

NOTE 1 The equivalent deceleration, a_e , does not take the effect of the gradient into account.

[Formula \(2\)](#) is valid for calculating the stopping/slowing distance with a fully established brake, provided that the condition in [Formula \(3\)](#) is fulfilled:

$$v_0 - v_{\text{fin}} \geq (a_e + 2 \cdot i) \cdot t_e \quad (3)$$

where

s_{grad} is the stopping/slowing distance on a gradient, in m;

v_0 is the initial speed, in m/s;

t_e is the equivalent response time, in s;

a_e is the equivalent deceleration (on level track, without considering gradient effect), in m/s^2 ;

g is the standard acceleration of gravity, in m/s^2 ;

i is the gradient of the track (positive rising/negative falling);

v_{fin} is the final speed (= 0 in the case of a stopping distance), in m/s.

NOTE 2 The stopping/slowing distance as calculated by applying [Formula \(2\)](#) is shorter than calculated according to the method described in ISO 20138-1:2018, 5.7.4.

4.3.2 Calculation using ISO 20138-1:2018, 5.7.5.1 step model

ISO 20138-1:2018, 5.7.5.1 gives [Formula \(4\)](#) for calculations on level track ($i = 0$) or with gradient. It uses the model for theoretical response time $t_e = t_a + \frac{t_{ab}}{2}$ as “step” model.

$$s_{\text{grad}} = v_0 \cdot t_e - \frac{1}{2} \frac{m_{\text{st}}}{m_{\text{dyn}}} \cdot g \cdot i \cdot t_e^2 + \frac{\left(v_0 - \frac{m_{\text{st}}}{m_{\text{dyn}}} \cdot g \cdot i \cdot t_e \right)^2 - v_{\text{fin}}^2}{2a_e} \quad (4)$$

With train resistance and dynamic mass which compensate each other and $v_{\text{fin}} = 0$, the formula is simplified as [Formula \(5\)](#):

$$s_{\text{grad}} = v_0 \cdot t_e - \frac{g \cdot i \cdot t_e^2}{2} + \frac{(v_0 - g \cdot i \cdot t_e)^2}{2a_e} \quad (5)$$

where

- s_{grad} is the stopping/slowing distance on a gradient, in m;
- v_0 is the initial speed, in m/s;
- t_e is the equivalent response time, in s;
- m_{st} is the static mass, in kg;
- m_{dyn} is the dynamic mass, in kg;
- g is the standard acceleration of gravity, in m/s^2 ;
- i is the gradient of the track (positive rising/negative falling);
- a_e is the equivalent deceleration (on level track, without considering gradient effect), in m/s^2 ;
- v_{fin} is the final speed ($= 0$ in the case of a stopping distance), in m/s.

4.4 Example of calculation

4.4.1 Test results

This example is based on a long train of 1 000 m in “G” position.

As a reference for further comparison, the tests realized on the tracks have provided the following results for the stopping distances s_{tests} :

Stopping distance on level track	824 m
Stopping distance on a down gradient of 5 %	885 m
Stopping distance on an up gradient of 5 %	776 m

The equivalent response time, t_e (delay time + 1/2 brake build-up time), derived from the results of the tests is 15,5 s.

The equivalent deceleration without including the effect of the gradient, a_e , derived from the results of the tests is $0,89 \text{ m/s}^2$.

4.4.2 Comparison of calculation models with test results

The stopping distances, s_{tests} , calculated using [Formula \(5\)](#) (simplified ISO 20138-1 “step model”) are given in [Table 2](#).

Table 2 — Stopping distances calculated using step model

	v_0 km/h	g m/s ²	i mm/m	t_e s	a_e m/s ²	s_{grad} m	s_{tests} m	$s_{\text{grad}} \text{ vs } s_{\text{tests}}$ difference
Level track	100	9,81	0	15,5	0,89	864,0	824	5 %
Up gradient	100	9,81	5	15,5	0,89	834,7	776	8 %
Down gradient	100	9,81	-5	15,5	0,89	894,0	885	1 %

The stopping distances, s_{tests} , calculated using [Formula \(2\)](#) (French alternative method) are given in [Table 3](#).

Table 3 — Stopping distances calculated using French alternative method

	v_0 km/h	g m/s ²	i mm/m	t_e s	a_e m/s ²	Condition: $v_0 \geq (a_e + 2g \cdot i) t_e$ $v_0 \leq (a_e + 2g \cdot i) t_e$	s_{grad} m	s_{tests} m	$s_{\text{grad}} \text{ vs } s_{\text{tests}}$ difference	
Level track	100	9,81	0	15,5	0,89	27,8 $v_0 \leq (a_e + 2g \cdot i) t_e$	>13,8	828,4	824	<1
Up gradient	100	9,81	5	15,5	0,89	27,8 $v_0 \leq (a_e + 2g \cdot i) t_e$	>15,3	777,7	776	0
Down gradient	100	9,81	-5	15,5	0,89	27,8 $v_0 \leq (a_e + 2g \cdot i) t_e$	>12,3	885,0	885	0

The values in [Table 3](#) demonstrate the following:

- The stopping distances calculated with the French alternative method are shorter than the ones of the simplified “step model” of ISO 20138-1.
- The stopping distances calculated with the French alternative method are more accurate and closer to the test results on the track.

5 Calculation of braking performance implemented in Japan

5.1 General

In Japan, the fundamental law is the Railway Operation Act.^[3] In addition, the Technical Regulatory Standards on Japanese Railway are published by the Ministry of Land, Infrastructure and Transport and Tourism (MLIT). The technical regulation consists of ministerial ordinances and approved model specifications. Explanatory documents which complement the ministerial ordinances and approved model specifications and help users to interpret these correctly have also been published. These documents are generally used as standards as well as Japanese Industrial Standards (JIS)^{[4][5][8]} and Japan Association of Rolling Stock Industries standards (JRIS),^{[5][6]} etc. in Japan.

5.2 Brake ratio for a single vehicle

The brake ratio is used to compare the capability of single vehicles and is used for design assessment.

The braking force for a single vehicle can be calculated as set out in [Formula \(6\)](#):

$$F_{\text{tot}} = n_{\text{cyl}} \cdot A_{\text{tot}} \cdot p_{\text{c}} \cdot i_{\text{tot}} \cdot \eta_{\text{tot}} \quad (6)$$

where

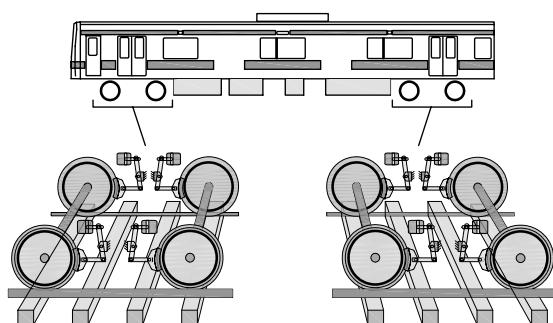
- F_{tot} is the braking force, in kN;
- n_{cyl} is the number of brake cylinders;
- A_{tot} is the area of a cylinder, in m^2 ;
- p_{c} is the brake cylinder pressure, in kPa;
- i_{tot} is the total rigging ratio;
- η_{tot} is the mechanical efficiency.

The brake ratio for a single vehicle can be calculated as set out in [Formula \(7\)](#):

$$\theta = \frac{F_{\text{tot}}}{M_{\text{tot}} \cdot g} \cdot C \cdot 100 \quad (7)$$

with

$$C = \frac{\mu_A}{\mu_C} \quad (8)$$


where

- θ is the brake ratio for a single vehicle, in %;
- F_{tot} is the braking force, in kN;
- M_{tot} is the operational mass of the vehicle plus load, in t;
- g is the standard acceleration of gravity, in m/s^2 ;
- C is the ratio of friction coefficients;
- μ_A is the friction coefficient of applied brake block;
- μ_C is the friction coefficient of cast iron block (assumed to be 0,15).

NOTE The friction coefficient of applied brake block, μ_A , and the acceptance criteria of the brake ratio are outside the scope of this document.

5.3 Example for brake ratio calculation

In case of a vehicle with a tread brake unit per wheel, as shown in [Figure 2](#), input data are shown in [Table 4](#).

Figure 2 — Vehicle with a tread brake unit per wheel

Table 4 — Input data

Description	Symbol	Example value	Unit
Diameter of brake cylinder	d_{cyl}	0,152	m
Standard acceleration of gravity	g	9,807	m/s^2
Total rigging ratio	i_{tot}	3,6	—
Operational mass	m_{op}	31,4	t
Mass per person	m_p	55	kg/person
Number of brake cylinders	n_{cyl}	8	—
Passenger capacity	n_p	153	—
Brake cylinder pressure	p_c	303	kPa
Mechanical efficiency (including counter force)	η_{tot}	1,0	—
Friction coefficient of applied brake block (composite brake block)	μ_A	0,3	—

The braking force of a vehicle can be calculated as set out in [Formula \(6\)](#):

$$F_{\text{tot}} = [(0,152 \text{ m})^2 \cdot \pi / 4] \cdot 8 \cdot 303 \cdot 3,6 \cdot 1,0$$

$$F_{\text{tot}} = 158,4 \text{ kN}$$

The mass of a loaded vehicle can be calculated as set out in [Formula \(9\)](#):

$$M_{\text{tot}} = m_{\text{op}} + n_p \cdot m_p \quad (9)$$

$$M_{\text{tot}} = 31,4 + 153 \cdot \left(\frac{55}{1000} \right)$$

$$M_{\text{tot}} = 39,82 \text{ t}$$

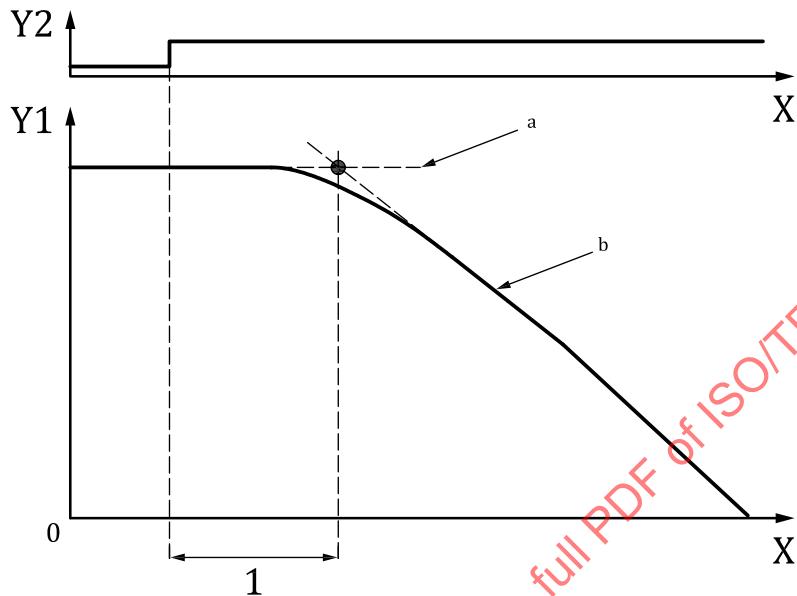
The ratio of friction coefficients, C , using composite brake blocks can be calculated as set out in [Formula \(8\)](#):

$$C = \frac{0,3}{0,15} = 2,0$$

In the end, the brake ratio for a loaded vehicle can be calculated as set out in [Formula \(7\)](#):

$$\theta = \frac{158,4}{39,82 \text{ t} \cdot 9,807} \cdot 2,0 \cdot 100$$

$$\theta = 81 \% \quad \text{STANDARDSISO.COM : Click to view the full PDF of ISO/TR 22131:2023}$$


5.4 Equivalent response time

5.4.1 General

In Japan, an equivalent response time is determined as below.

5.4.2 Case 1: Determination based on train speed

The equivalent response time is determined based on train speed. In this case, the brake command and speed are measured. In the time series chart shown in [Figure 3](#), the horizontal line is extended from the speed at the starting point of the braking. Moreover, another line is extended from around the speed at which the deceleration is almost constant. The equivalent response time is decided as the time between the start of braking and cross point of two extended lines.

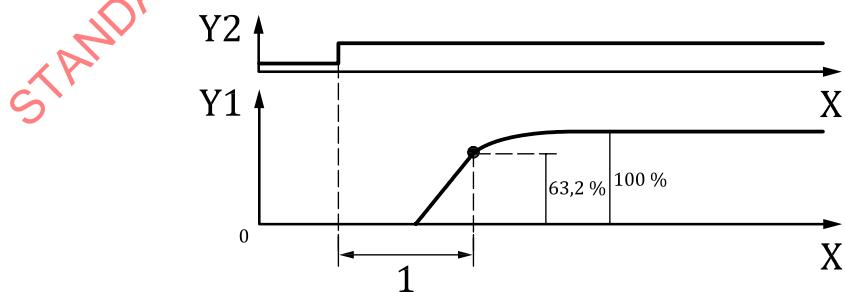
Key

X time, in s

Y2 brake command

Y1 speed

1 equivalent response time


a Extend the horizontal line from the starting point of the braking.

b Deceleration is almost constant.

Figure 3 — Equivalent response time in case 1 “based on train speed”

5.4.3 Case 2: Determination based on BC pressure response

The equivalent response time is determined based on BC pressure response as shown in [Figure 4](#). In this case, it is the time when the brake cylinder pressure reaches about 60 % to 70 % (typically 63,2 %) of set point from the starting point of braking.

Key

X time, in s

Y2 brake command

Y1 brake cylinder pressure

1 equivalent response time

Figure 4 — Equivalent response time in case 2 “BC pressure response”

6 Stopping or slowing distance calculation methods for some particular rolling stock in China

6.1 General

The following text is based on Reference [2].

Until now, some traditional calculation methods have been used for conventional predefined units, for example, long trains hauled by locomotive. The numerical parameters given in this traditional method are based on test data and experience and are used for the vehicle design.

6.2 Symbols and abbreviations

The symbols and abbreviations used in [Clause 6](#) are detailed in Table 5.

Table 5 — Symbols

Description	Symbol	Unit
Total braking force of train	B	kN
Dynamic brake force	B_d	kN
Train unit brake ratio	b	N/kN
Coefficient independent of speed	C_1	N/kN
Coefficient dependent on speed	C_2	N/kN
Coefficient dependent on squared speed	C_3	N/kN
Diameter of brake cylinder	d_z	mm
Hauled mass	G	t
Standard acceleration of gravity	g	m/s ²
Gradient (positive rising/negative falling)	i	%
Calculation gradient	i_j	%
Single brake block force/braking force	K	kN
Brake pad force of each brake pad	K'	kN
Conversion brake block force of train	K_h	kN
Conversion brake block force of locomotive	K'_h	kN
Conversion brake block force of vehicle	K''_h	kN
Total distance along the curve including the transition curve lengths	L_r	m
Equivalent constant curve length	l_r	m
Transition length	l_{yz1}, l_{yz2}	m
Train overall length	l_1	m
Number of vehicles	n	—
Number of brake blocks	n_k	—
Number of brake cylinders	n_z	—
Mass of locomotive	P	t
Cylinder pressure	p_z	kPa
Brake pipe pressure	p_1	kPa
Curve radius	R	m
Wheel radius	R_c	mm
Brake pipe pressure drop	r	kPa
Mean swept radius of the brake pad on the disc face	r_m	mm
Effective braking distance	s_e	m

Table 5 (continued)

Description	Symbol	Unit
Free running distance	s_k	m
Stopping/slowing distance	s_z	m
Effective braking time	t_e	s
Free running time	t_k	s
Braking time	t_z	s
Running speed	v	km/h
Initial speed	v_0	km/h
Particular speeds	$v_1 \dots v_2$	km/h
Angle of constant curve sector	α	°
Service brake coefficient	β_c	—
Rigging ratio	γ_z	—
Rigging efficiency	η_z	—
Conversion braking ratio of train	ϑ_h	
Train conversion brake ratio for service brake	ϑ_{hc}	
Coefficient of adhesion	μ_z	—
Circumference rate	π	—
Conversion friction coefficient	φ_h	—
Friction coefficient of each type of brake block	φ_k	—
Additional curve resistance	ω_r	N/kN
Basic running resistance for a train	ω_0	N/kN
Basic running resistance for a single vehicle	ω'_0	N/kN

6.3 Train resistance retarding forces

6.3.1 Basic running resistance

The basic running resistance for a single vehicle, ω'_0 , can be calculated as set out in [Formula \(10\)](#).

$$\omega'_0 = C_1 + C_2 \cdot v + C_3 \cdot v^2 \quad (10)$$

where

- ω'_0 is the basic running resistance for a single vehicle, in N/kN;
- C_1 is the coefficient independent of speed, in N/kN;
- C_2 is the coefficient dependent on speed, in N/kN × h/km;
- C_3 is the coefficient dependent on squared speed, in N/kN × h²/km²;
- v is the running speed, in km/h.

[Table 6](#) sets out the characteristic coefficients, C_1 , C_2 and C_3 , for specific Chinese vehicles.

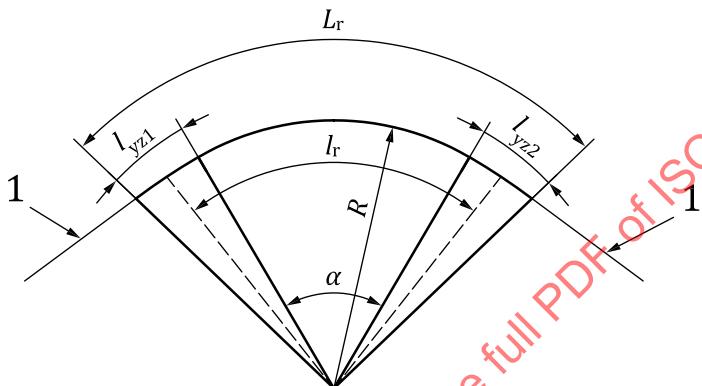
Table 6 — Characteristic coefficients for specific Chinese vehicles

Vehicle type	Characteristic coefficient		
	C_1	C_2	C_3
Electric locomotives			
SS ₁ , SS ₃ and SS ₄	2,25	0,019 0	0,000 320
SS ₇	1,40	0,003 8	0,000 348
SS ₈	1,02	0,003 5	0,000 426
6K	1,02	0,003 5	0,000 426
8G	2,55	0,008 3	0,000 212
Diesel locomotives			
DF	2,93	0,007 3	0,000 27
DF ₂	2,98	0,020 2	0,000 33
DF ₄ (for freight wagon, for passenger coach)	2,28	0,029 3	0,000 178
DF _{4B} (for freight wagon, for passenger coach)			
DF _{4C} (for freight wagon)			
DF ₅	1,31	0,016 7	0,000 391
DF _{7D}	2,28	0,029 3	0,000 178
DF ₈	2,40	0,002 2	0,000 391
DF ₁₁	0,86	0,005 4	0,000 218
DFH ₃	1,96	0,010 5	0,000 549
Steam locomotives			
JS	0,74	0,016 8	0,000 700
QJ	0,70	0,024 3	0,000 673
Passenger coaches			
21, 22 ($v_{max} = 120$ km/h)	1,66	0,007 5	0,000 155
25B, 25G ($v_{max} = 140$ km/h)	1,82	0,010 0	0,000 145
Single deck passenger coach ($v_{max} = 160$ km/h)	1,61	0,004 0	0,000 187
Double deck passenger coach ($v_{max} = 160$ km/h)	1,24	0,003 5	0,000 157
Freight wagons			
Rolling bearing wagon (loaded) ^a	0,92	0,004 8	0,000 125
Sliding bearing wagon (loaded)	1,07	0,001 1	0,000 236
Oil tank wagon trainset (loaded) ^b	0,53	0,012 1	0,000 080
Empty wagon (fit for all types of wagon)	2,23	0,005 3	0,000 675

^a Coefficients are used when oil tank wagon is coupled with other freight wagons.

^b If a train consists of one or several oil tank wagons (not an oil tank wagon trainset), then the basic running resistance for a single oil tank wagon is calculated as rolling bearing wagon.

The basic running resistance of train, ω_0 , is calculated as set out in [Formula \(11\)](#).


$$\omega_0 = \frac{P \cdot \omega'_0 + G \cdot \omega'_0}{P + G} \quad (11)$$

where

- ω_0 is the basic running resistance for a train, in N/kN;
- P is the mass of locomotive, in t;
- ω'_0 is the basic running resistance for a single vehicle, in N/kN;
- G is the hauled mass, in t.

6.3.2 Curve resistance

The curve resistance depends on curve length and radius as shown in [Figure 5](#). The dimensions of the curve-geometry are given by railway map.

Key

- L_r total distance along the curve including the transition curve lengths, in m
- l_r equivalent constant curve length, in m
- l_{yz1}, l_{yz2} transition length, in m
- R curve radius, in m
- α angle of constant curve sector, in °
- 1 track centre line

Figure 5 — Curve lengths

The curve resistance of locomotive and train ω_r can be calculated as set out in [Formulae \(12\), \(13\)](#) and [\(14\)](#).

- Train overall length lower than or equal to equivalent constant curve length, l_r

$$\omega_r = \frac{600}{R} \quad (12)$$

- Train overall length greater than equivalent constant curve length, l_r

$$\omega_r = \frac{10,5 \cdot \alpha}{l_1} \quad (13)$$

or

$$\omega_r = \frac{600}{R} \cdot \frac{l_r}{l_1} \quad (14)$$

The equivalent constant curve length, l_r , can be calculated as set out in [Formula \(15\)](#).

$$l_r = L_r - \frac{1}{2} \cdot (l_{yz1} + l_{yz2}) \quad (15)$$

where

- ω_r is the additional curve resistance, in N/kN;
- R is the curve radius, in m;
- α is the angle of constant curve sector, in °;
- l_1 is the train overall length, in m;
- l_r is the equivalent constant curve length, in m;
- L_r is the total distance along the curve including the transition curve lengths, in m;
- l_{yz1}, l_{yz2} is the transition length, in m.

6.4 Train braking force

6.4.1 Total braking force of train

The total braking force of train, B , is the sum of single brake block forces, K , applied to the brake blocks multiplied by friction coefficient.

- a) The total braking force can be calculated using real brake block force as set out in [Formula \(16\)](#).

$$B = \sum (K \cdot \varphi_k) \quad (16)$$

where

- B is the total braking force of train, in kN;
- K is the single brake block force, in kN;
- φ_k is the friction coefficient of each type of brake block.

- b) The total braking force is calculated using conversion brake block force and conversion friction coefficient.

In order to simplify the total braking force calculation process, the conversion calculation method can be used. The total braking force can be also calculated as set out in [Formula \(17\)](#).

$$B = \sum (\varphi_h \cdot \sum K_h) \quad (17)$$

where

- B is the total braking force of train, in kN;
- φ_h is the conversion friction coefficient;
- K_h is the conversion brake block force of train, in kN.

6.4.2 Real friction coefficient

The real friction coefficient of each type of brake block, φ_k , and brake pad can be calculated as set out in [Formulae \(18\)](#) to [\(21\)](#):

- medium phosphorous cast iron brake block:

$$\varphi_k = 0,64 \frac{K+100}{5K+100} \cdot \frac{3,6v+100}{14v+100} + 0,0007(110-v_0) \quad (18)$$

- high phosphorous cast iron brake block:

$$\varphi_k = 0,82 \frac{K+100}{7K+100} \cdot \frac{17v+100}{60v+100} + 0,0012(120-v_0) \quad (19)$$

- low friction coefficient composite brake block:

$$\varphi_k = 0,25 \frac{K+500}{6K+100} \cdot \frac{4v+150}{10v+150} + 0,0006(100-v_0) \quad (20)$$

- high friction coefficient composite brake block:

$$\varphi_k = 0,41 \frac{K+200}{4K+200} \cdot \frac{v+150}{2v+150} \quad (21)$$

where

φ_k is the friction coefficient of each type of brake block;

K is the single brake block force, in kN;

v is the running speed, in km/h;

v_0 is the initial speed, in km/h.

6.4.3 Conversion friction coefficient

For medium phosphorous cast iron brake block, high phosphorous cast iron brake block and low friction coefficient composite brake block, the conversion friction coefficient, φ_h , is defined with the real friction coefficient using the single brake block force, $K = 25$ kN.

The conversion friction coefficient, φ_h , can be calculated as set out in [Formulae \(22\)](#) to [\(26\)](#):

- medium phosphorous cast iron brake block:

$$\varphi_h = 0,356 \frac{3,6v+100}{14v+100} + 0,0007(110-v_0) \quad (22)$$

- high phosphorous cast iron brake block:

$$\varphi_h = 0,372 \frac{17v+100}{60v+100} + 0,0012(120-v_0) \quad (23)$$

- low friction coefficient composite brake block:

$$\varphi_h = 0,202 \frac{4v+150}{10v+150} + 0,0006(100-v_0) \quad (24)$$

- for high friction coefficient composite brake block, the conversion friction coefficient, φ_h , is defined with the real friction coefficient by the single brake block force, $K = 20$ kN:

$$\varphi_h = 0,322 \frac{v+150}{2v+150} \quad (25)$$

- for composite brake pad, the conversion friction coefficient, φ_h , is defined with the real friction coefficient by the brake pad force, $K' = 20$ kN, which is converted to K at wheel tread:

$$\varphi_h = 0,358 \frac{v+150}{2v+150} \quad (26)$$

The conversion friction coefficient for medium phosphorous cast iron [see [Formula \(22\)](#)] can be used:

- for trains equipped with disc brake and tread brake units up to a speed of 160 km/h;
- for trains consisting of wagons equipped with brake blocks of a mix of medium phosphorous cast iron, high phosphorous cast iron and/or low friction composite brake blocks.

6.4.4 Real brake block force

6.4.4.1 Single brake block force for tread brake

The single brake block force, K , per brake block of locomotive and vehicle can be calculated as set out in [Formula \(27\)](#).

$$K = \frac{\frac{\pi}{4} d_z^2 \cdot p_z \cdot \eta_z \cdot \gamma_z \cdot n_z}{n_k \cdot 10^6} \quad (27)$$

where

- K is the single brake block force, in kN;
- d_z is the diameter of brake cylinder, in mm;
- p_z is the cylinder pressure, in kPa;
- η_z is the rigging efficiency;
- γ_z is the rigging ratio;
- n_z is the number of brake cylinders;
- n_k is the number of brake blocks.

6.4.4.2 Brake pad force for disc brake

The brake pad force of each brake pad, K' , of locomotive and vehicle can be calculated as set out in [Formula \(28\)](#).

$$K' = \frac{\pi}{4} d_z^2 \cdot p_z \cdot \eta_z \cdot \gamma_z \cdot n_z \cdot 10^{-6} \quad (28)$$

where

- K' is the brake pad force of each brake pad, in kN;
- d_z is the diameter of brake cylinder, in mm;
- p_z is the cylinder pressure, in kPa;

η_z is the rigging efficiency;

γ_z is the rigging ratio;

n_z is the number of brake cylinders.

NOTE This formula does not account for resistance from the spring within the brake cylinder, which otherwise would result in a variation of the rigging efficiency with cylinder pressure.

The single brake block force/braking force, K , is converted from brake disc to wheel tread can be calculated as set out in [Formula \(29\)](#).

$$K = \frac{r_m}{R_c} \cdot K' \quad (29)$$

where

K is the single brake block force/ or equivalent brake block force which is converted to wheel tread from the single brake pad (braking force), in kN;

r_m is the mean swept radius of brake pad on the disc face, in mm;

R_c is the wheel radius, in mm;

K' is the brake pad force of each brake pad, in kN.

6.4.5 Nominal values of rigging efficiency

[Table 7](#) sets out the nominal values of rigging efficiency η_z .

Table 7 — Nominal values of rigging efficiency

Vehicle type	Brake equipment type	Rigging efficiency η_z
Locomotive	Tread brake	0,85
Passenger coach	Tread brake	0,85
Passenger coach	Disc brake	
Passenger coach	Tread brake unit	0,90
Freight wagon	Tread brake	0,85

6.4.6 Emergency brake cylinder pressure

[Table 8](#) sets out the emergency brake cylinder pressure for different brake types.

Table 8 — Emergency brake cylinder pressure

Brake type	Load case	Brake pipe pressure		
		p_1 kPa		
		500	600	
Emergency brake cylinder pressure				
kPa				
K ₁ and K ₂	—	360	420	
GK	Loaded	360	420	
	Empty	190	420	
120	Loaded	350	410	
	Empty	190	190	
103	Loaded	360	420	
	Empty	190	230	
104, L3, GL3 (closed supplementary reservoir)	—	—	420	
Distributor valve for locomotive		450	450	

6.4.7 Conversion brake block force

The conversion brake block force of train, K_h , is calculated as set out from [Formulae \(30\)](#) to [\(33\)](#):

- medium phosphorous cast iron brake block:

$$K_h = 1,8 \frac{K + 100}{5K + 100} \cdot K \quad (30)$$

- high phosphorous cast iron brake block:

$$K_h = 2,2 \frac{K + 100}{7K + 100} \cdot K \quad (31)$$

- low friction coefficient composite brake block:

$$K_h = 1,24 \frac{K + 500}{6K + 500} \cdot K \quad (32)$$

- high friction coefficient composite brake block:

$$K_h = 1,273 \frac{K + 200}{4K + 200} \cdot K \quad (33)$$

The conversion brake block force of train, K_h , is calculated as set out in [Formula \(34\)](#):

$$K_h = 1,145 \frac{K + 200}{4K + 200} \cdot K \quad (34)$$

where

K_h is the conversion brake block force of train, in kN;

K is the single brake block force/braking force, in kN.

The conversion brake block force for different types of locomotives and vehicles have been defined in [Table 9](#).

6.4.8 Conversion braking ratio

The conversion braking ratio of train, ϑ_h , is calculated as set out in [Formula \(35\)](#):

$$\vartheta_h = \frac{\sum K'_h + \sum K''_h}{(P + G) \cdot g} \quad (35)$$

where

- ϑ_h is the conversion braking ratio of train;
- K'_h is the conversion brake block force of locomotive, in kN;
- K''_h is the conversion brake block force of vehicle, in kN;
- P is the mass of locomotive, in t;
- G is the hauled mass, in t;
- g is the standard acceleration of gravity, in m/s^2 .

Table 9 — Conversion brake force for locomotive and vehicle

Type of locomotive and vehicle			Brake pipe pressure	
			p_1	600 kPa
			500 kPa	
Freight wagon	Marking load (payload) 50 t and above (include the thermal vehicle ^a with a load of 40 t), equipped with GK, 120 or 103 brake	Load position	250 kN	280 kN
		Empty position	160 kN	160 kN
	Marking load (payload) 50 t and above, equipped with K2 brake		160 kN	190 kN
	Marking load (payload) 40 t and (include the thermal vehicle ^a with a load level between 25 t and 40 t), equipped with K2 brake		140 kN	170 kN
	Marking load (payload) 30 t, equipped with K2 brake		120 kN	140 kN
	Guard's van	Four axles	90 kN	110 kN
		Two axles	50 kN	60 kN
Passenger coach	L ₃ , GL ₃ (closed supplementary reservoir), 104		—	330 kN
	104 brake, equipped with disc brake unit (without tread brake unit)	Single deck passenger coach	—	210 kN
	104 brake, equipped with disc brake unit (with tread brake unit)	Double deck passenger coach	—	200 kN
		Single deck passenger coach	—	160 kN
	Equipped with disc brake unit (with tread brake unit), 104 brake (no distinction between single deck coach and double deck coach)		—	—
Locomotive	Electrical locomotive	SS1, SS3	700 kN	700 kN
			400 kN	400 kN
		SS7	840 kN	840 kN
		8G	520 kN	520 kN
		6K	920 kN	920 kN
		SS8 (equipped with powder metallurgy brake block)	280 kN	280 kN
	Diesel locomotive	DF, DFH3	550 kN	550 kN
		DF4 (for freight wagon and passenger coach), DF4B (for freight wagon and passenger coach), DF4C (for freight wagon) DF8, DF11	650 kN	650 kN
		ND5 (equipped with high friction coefficient brake block)	420 kN	420 kN
		ND2	700 kN	700 kN
		DF7D (equipped with low friction coefficient brake block)	720 kN	720 kN
	Steam locomotive	QJ	650 kN	650 kN
		JS	600 kN	600 kN

^a Freezer/refrigerated vehicle.

NOTE This table does not indicate the brake block type medium phosphorous cast iron.

When service brake is applied, the train conversion brake ratio for service brake, ϑ_{hc} , is calculated as set out in [Formula \(36\)](#):

$$\vartheta_{hc} = \vartheta_h \cdot \beta_c \quad (36)$$

where

ϑ_{hc} is the train conversion brake ratio for service brake;

ϑ_h is the conversion braking ratio of train;

β_c is the service brake coefficient.

The service brake coefficient values are presented in [Table 10](#).

Table 10 — Service brake coefficient

Vehicle type	Brake pipe pressure p_1 kPa	Brake pipe pressure drop												
		r kPa												
		50	60	70	80	90	100	110	120	130	140	150	160	
Service brake coefficient														
β_c														
Passenger coach	600	0,19	0,29	0,39	0,47	0,55	0,61	0,69	0,76	0,82	0,88	0,93	0,98	
Freight wagon	600	0,17	0,28	0,37	0,46	0,53	0,60	0,67	0,73	0,78	0,83	0,88	0,93	
	500	0,19	0,32	0,42	0,52	0,60	0,68	0,75	0,82	0,89	0,95	—	—	

6.4.9 Train unit brake ratio

The train unit brake ratio, b , is calculated as set out in [Formula \(37\)](#) or [Formula \(38\)](#):

$$b = \frac{B \cdot 10^3}{(P + G) \cdot g} \quad (37)$$

or

$$b = 1\,000 \cdot \vartheta_h \cdot \varphi_h \quad (38)$$

where

b is the train unit brake ratio, in N/kN;

B is the total braking force of train, in kN;

P is the mass of locomotive, in t;

G is the hauled mass, in t;

g is the standard acceleration of gravity, in m/s²;

ϑ_h is the conversion braking ratio of train;

φ_h is the conversion friction coefficient.

6.4.10 Dynamic brake force

Dynamic brake force, B_d , includes the rheostatic brake (electrical locomotive and diesel locomotive) and regenerative brake (electrical locomotive) and is defined.