INTERNATIONAL ISO/IEC
STANDARD 19770-2

First edition
2009-11-15

Information technology — Software asset
management —

Part 2:
Software identification tag

Technologies de l'information — Gestion de biens de logiciel —
Partie 2: Etiquette d'idehtification du logiciel

Reference number
ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

COPYRIGHT PROTECTED DOCUMENT

ISO copyright office
Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11
Fax + 4122749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Table of Contents Page
0T =310 o \'
011 o e LW 2§) o vi
oy S S EELLL L L LT O S re— 1
.1 T 4 o o T P S . R 1
.2 Field of application ... e mmee e (e ST e e 1
3 Limitations ... s sn s dann e e s 1
2 L0071 0 3 .4 F- 1 1 T T A S 2
2.1 £ 7= 1= - | L S 2
2.2 Product conformanceccciccciirincsnrinsers s s sssssse s ssssssesssbalbe besssnn s sssssns s sssee s ssnne e 2
2.3 Organizational CONfOIMANCE.........cciiiccccerrr s s s ssmane e Se e e s s e s s snmn e e e e eessnssnhreeeesannnn 5
2.4 Agreement COMPLIANCEcocveviiiiiiiieieirer s eresssssssssssssssssssssssnsnsnsados budunmnnnnnnnnnnnnnnnnnnnnnsnnnanchessnnnnnnns 6
NOIrmMative referenCesS...... e st h b s s smnm b nnnn 6
Terms, definitions and abbreviated terms.......c.oueeiiiiic s N e e e e 6
4.1 Terms and definitions ... T e e e s s s s s n s s nsnsnnnnnsssnnnnnnsesnchensnnnnnnns 6
4.2 Abbreviated terms..........ooooo i Kefur e s s n s s s nsnnnsnnnsnnanseseenshenennnnns 12
Alignment and rationalization with prior standards ... 12
5.1 Statement of alignment for this part of ISO/IEC 19770............covcmiriiiimiininnss b 12
5.2 Alignment with ISO/IEC 19770-1:2006 Information technology — Software asset
management — Part 1: ProCessescccoafdiissssssssssssssssssssssssssssssssssssdhsssssnns 12
5.3 Alignment with ISO/IEC 20000-1:2005 Information technology — Service management —
o= T e RS oY= o3 o 1T) o T S SRR SR 13
5.4 Alignment with ISO/IEC 20000-2:20051nformation technology — Service management +
Part 2: Code Of PractiCecccceeemirinrcsseeririiiissssssssseree s rsssssssssssss e s sssssssssmssssssessssssssmssnessessnsnsnsherssannes 14
Implementation of software identification tagging processesccccoiiiiiicciiicnnicccccec e, 14
.1 General requirements and-gUidanCec.ccoiiiicciinmrinr e 14
.2 Software identification tagging life cycle: operational breakdown..............cccooooniiininnicciic e, 22
Platform requirementsiand guidancCe...........cccoiemmminnmr 24
.1 Types of platforms e 24
.2 Basic platform SerVICeso e s 25
.3 Virtual eNVIFONMENLES........coiiiiiiirr s as s apan e e 25
.4 Virtual MAachifes....... .o s 26
.5 Support-for'software installed on removable mediacccccciiiiiicccicrre b 26
.6 Hardware and platform identification...........ccccomriiicccccciin e e 26
=T 3 =] N A 27
.1 L= o 1= - | S 27
3.2 Element NAMES ... s s s s s s e e e e e e e e e e e e e nnn m s nahnnnnnnnn 27
8.3 Mandatory elements.........ccocciiiiiii 28
2 Optionatetements T e e e 33
8.5 Extended @lements......... . e e nnnn 60
8.6 Data type definitions ..o ——————————— 61
Annex A (informative) Software identification tagging principles ... s 67
Annex B (informative) Software provider use cases and guidancecccccceiiccccceerren e 73
Annex C (informative) Tool provider use cases and guidancCeccccerirrimrrirrisrerinssme s 78
Annex D (informative) Software consumer use cases and guidance........cccccccvvccceirmerrnrnnncsccssssseeee e sesssnns 81
Annex E (informative) Software identification tags for items other than software............cccccoeriirrnncnnn. 85
Annex F (informative) Copyright and software identification tags.........ccccccmriiiiccciemrnicccccceeeree s 86

© ISO/IEC 2009 — All rights reserved iii

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Annex G (normative) XML schema definition (XSD).....cccccvccciivsmmrmimiiinscssssserressssssssssssssssesssssssssssssssssssssssssnns 87
Annex H (informative) Extended eXamples........cccvicccccmmmmrriiiiiicsssceres s e ssssssssssssesssssssssssssssessssssssssssssssssssssnssns 95
Figures Page
Figure 1 — Software identification tag lifecycle.........cccovvmiiiiiiinii 22
Figure A.1 — Life cycle of a software identification tag...........cccovvvmiiniisniis e 67
Tables Page
Table 1 1 Examples of regid values...........cccuiimminiii e e s s s s 15
Table 2 { Examples of tag locations on different platformsoo e s 16
Table 3 { Microsoft Vista® APls for software identification tag management...........ccccccoviiimnniiiinniccineen, 16

iv © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
stablished by the respeciive organizafion to deal with particular fields of technical activity. ISO|and IEC
teéchnical committees collaborate in fields of mutual interest. Other international organizations, govgrnmental
nd non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the field\of information

technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part .

n International Standard requires approval by at least 75 % of the national bedies casting a vote.

>

ghts. ISO and IEC shall not be held responsible for identifying any oriall such patent rights.

-

BO/IEC 19770-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information teq
ubcommittee SC 7, Software and systems engineering.

=

dsset management:
—+ Part 1: Processes

— Part 2: Software identification tag

- Part 3: Software entitlement tag

© ISO/IEC 2009 — All rights reserved

Tlhe main task of the joint technical committee is to prepare International Standards. Draft Intdrnational
Standards adopted by the joint technical committee are circulated to national badies for voting. Publication as
E

ttention is drawn to the possibility that some of the elements of this document may be the subject of patent

hnology,

BO/IEC 19770 consists of the following parts, under.the general title Information technology — [Software

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Introduction

This part of ISO/IEC 19770 provides an International Standard for software identification tags. The software
identification tag is an XML file containing authoritative identification and management information about a
software product. The software identification tag is installed and managed on a computing device together
with the [software product. The tag may be created as part of the Installafion process, or added later_fgr
software|already installed without tags. However, it is expected more commonly that the tag will be creat
when the software product is originally developed, and then be distributed and installed together Awith™ th

software|product. Having the tag available from the beginning allows for the more effective management
distributipn and repackaging external to the software consumer, and then of release management ‘Within th
software[consumers organization.

This parfof ISO/IEC 19770 supports software asset management processes as defined in ISO/IEC 19770-1. |
is also désigned to work together with the future ISO/IEC 19770-3 which will provide an\International Standar
for software entitlement tags.

DO =

Q. ~

Softwarq identification tags will benefit all stakeholders involved in the creation, licensing, distribution,
releasing, installation, and on-going management of software. Key benefits associated with softwa
identificgtion tags include:

a)

b)

c)

d)

f)

g)

h)

vi

Thelability to consistently and authoritatively identify software products that need to be managed for a
purgose, such as for licensing, upgrading, packaging or for the specification of dependencies. Softwa
identification tags provide the meta-data necessary to_ support more accurate identification whi
diffefentiates this approach from traditional file-oriented identification techniques.

The|ability to identify groups or suites of softwarezproducts in the same way as for individual softwa
products, enabling entire groups or suites of software products to be managed with the same flexibility
for individual products.

Facijitation of de facto standardization-between different software creators, and within software creatqr
orgdnizations, of how different versions’ of software are identified, allowing for better identification an
manjagement by software consumers-of those different versions; for example, being able to distingui
between free-standing versionssand' versions which are components of suites, upgrade paths, etc.

Facilitation of automated @pproaches to license compliance, using information both from the softwa
identification tag and from-the software entitlement tag as will be specified in ISO/IEC 19770-3.

The|ability to provide comprehensive information about the structural footprint of packages, i.e. the list ¢f
components sueh'as files and system settings associated with that package, in order to link package-lev¢l
managementwith file-level management.

The|abijlity(to provide information about how to identify if a particular software package is being actively
used ornot.

The ability to deal with the complexities of software installed on removable or shared storage, or in virtual
environments (subject to the evolving ability of platforms and installers to identify devices and
environments).

The ability to reflect within the software identification tag the identities and requirements of different
entities, including software creators, software licensors, packagers, distributors external to the software
consumer, release managers within the software consumer, and those responsible for installing and
managing software on an on-going basis.

The ability to allow for the validation of any of this information through the optional use of digital
signatures by anyone creating or modifying information in the software identification tag.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

i) The ability for entities besides the software creators (e.g. independent providers, or in-house personnel)
to create software identification tags for legacy software, and also for software from software creators
who do not provide software identification tags themselves.

k) The ability of this International Standard to evolve in informal and formal ways, as common approaches
become accepted throughout industry for dealing with additional types of information not currently
covered by this part of ISO/IEC 19770, such as for product activation.

© ISO/IEC 2009 — All rights reserved Vil

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

INTERNATIONAL STANDARD ISO/IEC 19770-2:

2009(E)

Information technology — Software asset management —

Part 2:
Software identification tag

1.1

o0 -

—

g)

1.2 Field of application

his part of ISO/IEC 19770 applies to:

Scope

Purpose

his part of ISO/IEC 19770 establishes specifications for tagging software to”optimize its identification and
hanagement.

Platform providers: These are the entities which are_responsible for the computer or hardwalfe device

and/or associated operating system, or virtual enyironment, on which software may be installe
Platform providers which support this part of U\SO/IEC 19770 additionally provide tag man
capabilities at the level of the platform or operating system.

Software providers: These are the .entities that create (“software creators”), package (
packagers”) or license (“software licensors”) software for distribution or installation. Thesq
software manufacturers, independent software developers, consultants, and repackagers of p
manufactured software. They may-also be in-house software developers.

Tag providers: These are.the entities that create (“tag creators”) or modify (“tag modifiers”)
identification tags. A tag provider may be part of the software provider organization, or may be a
organization or the software consumer.

Tag tool providers/ These are the entities that may provide any number of tools that create, mod
software identification tags. These tools include development environments that provide auto
generated software identification tags, installation tools that may create and/or modify tags on
the installation process as well as desktop management tools that may create tags for software
not have a tag and/or modify tags with release details throughout the software lifecycle. See An
details on how tool providers are likely to use software identification tags.

d or run.
agement

software
include
reviously

software
3" party

fy or use
matically
behalf of
hat does
hex C for

Software consumers: These are the entities that purchase, install and/or otherwise consume

software,

and who are intended as one of the major beneficiaries of the improved information provide

d by the

software identification tag as specified in this part of ISO/IEC 19770. See Annex D for details on how

software consumers are likely to use software identification tags.

1.3 Limitations

This part of ISO/IEC 19770 does not detail SAM processes required for reconciliation of software entitlements
with software identification tags.

This part of ISO/IEC 19770 does not specify product activation or launch controls.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

This part of ISO/IEC 19770 is not intended to conflict either with any organization's policies, procedures or
standards or with any national laws and regulations. Any such conflict should be resolved before using this part
of ISO/IEC 19770.

2 Conformance

2.1 General

Nce can apply t0 a product or an organization. For organizational conformance,
shall cover both the organizational scope as well as the products that are included in the scope.

If a claim of conformance is made for a product or organization, the claim shall specify the scope for,which the
conformance was tested.

O
o
3
=h
o
=
3
=}
Q
0]
—
>
=
]
C
«Q
=
(o]
c
—
—
=
(2]
Q
Q
[
[72]
(¢}
&
3
o
(2]
—
o
=+
[©]
=}
Q.
0]
=h
=}
(0]
(o}
5
—
]
=
3
(7]
o
=
Q
o
3
A
=.
]
«Q
z
~
>0
—
>0
(O]
-
D
Qo
{
=
[©]
3
]
3
—
(2]
]
=
o

—

these ar¢ not included in the coverage of statements of conformance, except to the.extent that they are al
included|in 6.1, 7.2, 8.3, 8.4, or 8.5. Statements including the word ‘should’ afe fecommendations but n
mandatory.

requirements specified in other subclauses of Clauses 6 and 7, indicated by the use ef the word “shall”, b%
t

2.2 Prpduct conformance

2.21 Hxample reasons for product conformance

There afje a number of reasons for an organization to seek (hdividual product conformance to this part (
ISO/IEC|19770. This may be sought when a specific product is being provided for a market that requirg
conformance (for example, if government organizations require products to conform to this part ¢
ISO/IEC|19770 in order to be included on a project). lt\might also be desired by platform providers who wamst
to provide a more secure and auditable tag storage,that can be used to identify definitively which end-use

installed jwhich software packages.

- 0 =

222 roduct scope

There sHhall be a clear statement for product scope describing, in unambiguous terms, the software products to
which it [applies and, where appropriate, clarifying the products to which it does not apply. The produgt
conformance scope may be defined in any way considered appropriate, such as for a specific softwane
product, [for all software products, for all software products on specific platforms, for the software products ¢f
specified manufacturers and/or for all software products created after a specified date, as long as it is
unambiglious. In the case)of a product which creates or modifies software identification tags, the scope shdll
be the product itself and-all software produced or modified by the product when tag-conformity functionality is
enabled.

2.2.3 Software product conformance

Full conformance Tor a software product Is achieved In one Of two ways:

a) For a product which is installable, full conformance is achieved by demonstrating that all software
identification tags installed by it at installation shall comply with all mandatory requirements of this part of
ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these shall also
comply with requirements as specified in 8.4 and 8.5.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that

all tests pass and 100 % equivalence partition coverage of the tag creation/installation is achieved.
Equivalence partitions shall be derived from the statement of product scope.

2 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

If the software product consists of a package of other software products, then the software product shall
retain all component tags and reference all child tag elements, which, under any circumstances, still need
to be identified separately (for the purpose of licensing, security or other).

b) For a product that is distributable but not yet installed, full conformance is achieved by demonstrating that
distributable builds are issued with a unique tag that shall comply with all mandatory requirements of this
part of ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these
shall also comply with requirements as specified in 8.4 and 8.5. The exception to this is that any
mandatory elements which are installation-specific are not included.

This conformance shall be demonstrated by performing equivalence partitioning with the exit eriteria that
all tests pass and 100 % equivalence partition coverage is achieved. Equivalence partitions|shall be
derived from the statement of product scope.

If the software product consists of a package of other software products, then the software proquct shall
retain all component tags and reference all child tag elements which under any.circumstances ptill need
to be identified separately (for the purpose of licensing, security or other).

.2.4 Third party software identification tag conformance

hird party tag provider organizations may undertake the process of creating software identificatior| tags for
gqny software packages that do not include such tags. This may. be done for older software products,
shareware/freeware type products, or for companies that decide fot to follow this part of ISO/IE[C 19770.
hese tags may be provided to organizations to assist in-their software discovery and ideftification
procedures.

ull conformance for third party created software identification tags is achieved by demonstrating that all
software identification tags produced by the organization comply with all mandatory requirements off this part
gf ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these ghall also
comply with requirements as specified in 8.4 and8.5. Any new data that is added shall conform to the same
standards as those required for installable software conformance.

Gonformance for third party created software identification tags requires that the tag providers demonstrate
that the software_ids they create areCunique, and use consistent values for the identification of [software
groviders. The expectation is that the,tag providers will maintain a list of unique software providers fqr all tags
greated, and that the list includes-a consistent software provider regid (that references the provider'sf domain)
and a unique ID (which may be.aGUID) for each reference and that these details are used consistently in the
greated tags.

his conformance shall. be demonstrated by performing equivalence partitioning with the exit criterip that all
tests pass and 100-%-equivalence partition coverage of the tag production is achieved. Equivalence partitions
shall be derived~both from the range of software that the tag tool shall work on and the corregponding
statements of product scope.

.2.5 Software installer product conformance

ult conformance for a software installer product is achieved by demonstratlng that all software ide

specmed in 61 and 8.3.If optlonal or extended tag elements are used these shaII also comply with
requirements as specified in 8.4 and 8.5.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that all
tests pass and 100 % equivalence partition coverage of the tag creation/installation is achieved. Equivalence
partitions shall be derived both from the range of software that is installed and the corresponding statements
of product scope.

If the software being installed consists of a package of other software products, then the software product

shall retain all component tags and reference all child tag elements which under any circumstances still need
to be identified separately (for the purpose of licensing, security or other).

© ISO/IEC 2009 — All rights reserved 3

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Existing tag values that are provided with distributable software shall not be modified in any way, with some
specific exceptions. If a distributed software identification tag is found to be corrupted and that software
identification tag does not provide a "validation" routine to fix the tag, a software product may provide options
for handling this type of exception that a SAM practitioner can authorize. Based on actions specified by the
SAM practitioner, the handling of such exceptions may include actions such as fixing the software
identification tag if it is corrupt, deleting the software identification tag if it no longer belongs on the device, or
modifying the software identification tag to specify that the software is no longer installed on the device.
Should any modifications of the tag be specified by the user, these actions shall be logged and retained by the
software product.

It is expected that such products will have the capability to turn this functionality on or off. A statement, ¢f
product ¢gonformance shall apply only to the product with this functionality turned on.

2.2.6 Tjag tool conformance

Full confprmance for a tag tool is achieved in one of two ways:

a)

b)

—

Full |conformance for a tag tool that installs or modifies installed software identification tags independe
of spftware installation is achieved by demonstrating that all software identification tags installed qr
modified by the product comply with all mandatory requirements of this part of ISO/IEC 19770,

spegified in 6.1 and 8.3. If optional or extended tag elements are usedcthese shall also comply wi
reqyirements as specified in 8.4 and 8.5. Any new data that is added shall econform to the same standards
as those required for installable software conformance.

This| conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that
all tg¢sts pass and 100 % equivalence partition coverage of the tag production is achieved. Equivalence
partitions shall be derived both from the range of softwarerthat the tag tool shall work on and the
corrgsponding statements of product scope.

—_

If th¢ software being installed consists of a package of\other software products, then the software produg¢
shall| retain all component tags and reference all:child tag elements which under any circumstances stfl
need to be identified separately (for the purpose of licensing, security or other).

Existing tag values that are provided with-distributable software shall not be modified in any way, wi
some specific exceptions. If a distributed software identification tag is found to be corrupted and that
softyvare identification tag does not provide a "validation" routine to fix the tag, a software product mgy
provide options for handling this type of exception that a SAM practitioner can authorize. Based
actigns specified by the SAM practitioner, the handling of such exceptions may include actions such ds
fixing the software identification tag if it is corrupt, deleting the software identification tag if it no longgr
gs on the device, or madifying the software identification tag to specify that the software is no longer
instglled on the device. Should any modifications of the tag be specified by the user, these actions shdll
be Iggged and retained-by the software product.

It is expected thatuch products will have the capability to turn this functionality on or off. A statement ¢f
product conformance shall apply only to the product with this functionality turned on.

For |a tagstool that discovers, collects, reports on and uses tags (such as discovery tools, deskt
management tools or SAM reconciliation tools), full conformance is achieved by demonstrating th
following-

1) That all tags available on a computing device are collected. This includes tags that are stored in the
common system location as well as tags that are located in the top level directories of software
installations.

2) That all tags collected from computing devices and stored in the tool's repository can be shown to
include exactly the same information as the contents of the tag located on the computing device from
which it was originally collected.

3) If a tag is digitally signed and the corresponding public key is available, that the tool validates the
signature and the information that has been signed.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

This conformance shall be demonstrated by performing equivalence partitioning with the exit cri

2009(E)

teria that

all tests pass and 100 % equivalence partition coverage of the tag collection/validation is achieved.
Equivalence partitions shall be derived both from the range of software that the tool shall analyze and the

corresponding statements of product scope.

If the software being installed consists of a package of other software products, then the software product
shall retain all component tags and reference all child tag elements which under any circumstances still

need to be identified separately (for the purpose of licensing, security or other).

Existing tag values that are provided with distributable software shall not be modified in any way, with

some specific exceptions. If a distributed software identification tag is found to be corrupted
software identification tag does not provide a "validation" routine to fix the tag, a software(pro
provide options for handling this type of exception that a SAM practitioner can authorize. Based o
specified by the SAM practitioner, the handling of such exceptions may include actions such as
software identification tag if it is corrupt, deleting the software identification tag if it fe’longer be
the device, or modifying the software identification tag to specify that the software/is\no longer ins
the device. Should any modifications of the tag be specified by the end-usér) these actions
logged and retained by the software product.

product conformance shall apply only to the product with this functionality turned on.

2.2.7 Platform conformance

Hull conformance for a platform's tag functionality is achievedvby demonstrating that it can store
identification tag data centrally and provide the following setvices with integrity, as specified in 7.2.

g) Basic functionality: add, modify, read, and delete tag data.
H) Security: determine which end-user can read,‘create, delete and modify software identification ta

d) Audit functionality: identify which end-user installed, modified or removed a given software con
item and when the modification occurred.

Tlhis conformance shall be demonstrated by performing equivalence partitioning with the exit criteri
sts pass and 100 % equivalence partition coverage of the tag storage is achieved. Equivalence
all be derived both from thewange of software that the platform shall host and the corresponding st
product scope.

—

.3 Organizational,conformance

.3.1 Example\reasons for organizational conformance

rganizations could want to conform to this part of ISO/IEC 19770 for a number of reasons. For
ftwaré-providers could want to promote their software products as being easier to manage. Also,
nsumers could want to show that they are actively managing their software assets and that they ca

and that
juct may
n actions
fixing the
longs on
talled on
shall be

It is expected that such products will have the capability to turn this functiohality on or off. A statement of

software

S.

iguration

A that all
bartitions
htements

bxample,
software
N provide

ceurate information to any reconciliation or audit request.

2.3.2 Organizational scope

There shall be a clear statement for the organizational scope describing, in unambiguous te
organizational structure to which it applies and, where appropriate, clarifying the areas to which it

rms, the
does not

apply. A statement of organizational scope shall be accompanied by a statement of software product scope.

2.3.3 Software provider conformance

Full conformance for a software provider is achieved by the organization demonstrating that all software within

the scope meets the relevant product conformance requirements, as specified in 2.2.3.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC

19770-2:2009(E)

2.3.4 Tag tool provider conformance

Full conformance for a tag tool provider is achieved by an organization demonstrating that all software within
the scope meets the relevant tool conformance requirements, as specified in 2.2.6.

Furthermore, in order to claim tag tool provider conformance, all tag tools produced by the organization shall
be included in the product scope.

2.3.5 Software consumer conformance

Full conformance for an organization that installs software is achieved by demonstrating that there(a

software

identification tags in place for all software in the software consumer organization's product scope-an

that the $oftware identification tags comply with all mandatory requirements of this part of ISO/IEC 19770,

specified

in 6.1 and 8.3. If optional or extended tag elements are used, these shall also_comply wi

requirements in 8.4 and 8.5.

2.4 Ad

This par
software
the agre
their agr

NOTE
However,
3 Noi

The follg

referencgs, only the edition cited applies. For undated references, the latest edition of the reference

documer

IETF RFL 3986, Uniform Resource Identifier (URI): Generic Syntax, 2005
IETF RFC 4646, Tags for Identifying Languages, 2006

W3C Regommendation, XML Signature Syntax and Processing (Second Edition), 2008

reement compliance

of ISO/IEC 19770 may be used to help develop an agreement between a.software provider and
consumer, in which case clauses of this part of ISO/IEC 19770 can be selected for incorporation in
ment, with or without modification. In such an instance, it is necessaryfor both parties to comply wi
ement rather than conform to this part of ISO/IEC 19770.

ISO/IEC's copyright and patent policy extends to all of this part of ISO/IEC 19770 and contents theredf.
for the specific use of agreement compliance, there is no need to obtain copyright permission.

mative references

wing referenced documents are indispensable for the application of this document. For date

[eNNoN

t (including any amendments) applies.

W3C Repommendation, XML-Schema Part 2: Datatypes (Second Edition), 2004

UNSPS(

, The United Nations Standard Products and Services Code

4 Termms, definitions and abbreviated terms

41 Te
For the p

411

. mgn
mSs alld deIIIIIlIUIIO

urposes of this document, the following terms and definitions apply.

application
system for collecting, saving, processing, and presenting data by means of a computer

NOTE

The term application is generally used when referring to a component of software that can be executed.

© ISO/IEC 2009 — All rights reserved

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4646.txt
http://www.w3.org/TR/xmlschema-2/
http://www.unspsc.org/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

41.2

bundle

grouping of products which is the result of a marketing/licensing strategy to sell entitlements to multiple
products as one purchased item

NOTE 1 A bundle can be referred to as a “suite”, if the products are closely related and typically integrated (such as an
office suite containing a spreadsheet, word processor, presentation and other related items).

NOTE 2 Bundles can also refer to software titles that are less closely related such as a game, a virus scanner and a
utility “bundled” together with a new computer, or to groups of entitlements, such as multiple entitlements for a backup
Spltwdlre pPproauct.

ntity with discrete structure, such as an assembly or software module, within a system~considgred at a
articular level of analysis

OTE Component refers to a part of a whole, such as a component of a software product;’a component of & software
entification tag, etc.

1.4

omputing device
functional unit that can perform substantial computations, including numerous arithmetic operations gnd logic
perations without human intervention

OTE A computing device can consist of a stand-alone unit, af several interconnected units. It can also b¢ a device
that provides a specific set of functions, such as a phone or a personal organizer, or more general functions puch as a
Igptop or desktop computer.

1.5

onfiguration item
|
m or aggregation of hardware or software.orboth that is designed to be managed as a single entity

OTE Configuration items may vary, widély in complexity, size and type, ranging from an entire system ingluding all
rdware, software and documentationsto.a single module, a minor hardware component or a single software pgckage.

.1.6

onfiguration management database
MDB

atabase containing all) the relevant details of each configuration item and details of the important
relationships betweenthem

nd-users{ or organizations for which a software publisher designs and develops software gnd sells
ntitlements to use that software

.18
element
component of a software identification tag that provides information related to the software represented by the
tag

NOTE The different types of elements are defined in 8.3, 8.4 and 8.5.

41.9

end-user

person (or persons) who operate or interact directly with a computing device to manage or use software
packages

© ISO/IEC 2009 — All rights reserved 7

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

41.10

equivalence partitioning

software
manner
resulting

41.1

testing process that identifies representative groups of input values that are processed in the same
by software products allowing for a sampling of each representative group to validate the outcome
in a reduced number of test cases while ensuring full coverage of all test cases

extensible markup language

XML

license-free and platform-independent markup language that carries rules for generating text formats that

contain dtructured data

4.1.12
globally
GUID

16-byte $tring of characters that is generated in a manner that gives a high probability that the string is uniqu
in any cgntext

NOTE 1

use Uniform Resource Identifier (URI) based structures, so the id owner's registration identifier’(regid) is included in the

identifier.

NOTE 2

refers to 4 general algorithm that can use either a URI, or a 16-byte-based identifier.

41.13

legacy software

software

4.1.14
line of b
person

businesg operation

41.15
MD5

Messagé-Digest algorithm 5
algorithm that is a widely-used cryptegraphic hash function with a 128 bit hash value often used to identify |i

unique identifier

D

Other globally unique identifier algorithms can be used in some situations. In geperal; alternative algorithr

[

GUID as an all capitalized term refers specifically to the 16 byte version:lf the term is in lowercase (guid), it

originally created without software identification tags

usiness application developer
br company specializing in developing applications providing specific functions for a particulg

=1

=

two files pontain the same data

4.1.16

package

set of relpted components\that are combined into a single distributable item

NOTE For example, a software package would be a set of files that can be used to install software on a computing
device and can be distributed via CD or electronic means.

4.1.17

platfor

computer or hardware device and/or associated operating system, or a virtual environment, on which software

can be installed or run

NOTE

41.18

Examples of platforms include Linux™, Microsoft Vista®, and Java™.

platform provider

organiza

NOTE

tion responsible for the platform

The platform provider is typically the vendor of the relevant operating system or virtual environment.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)
4119
product
complete set of computer programs, procedures and associated documentation and data designed for
delivery to a software consumer
NOTE The terms "product" and "software package" are used interchangeably depending on the context of the item
described.
4.1.20
registration identifier
regid
identifier created from a domain name and the date when the domain was owned by a specificifid{vidual or
gompany, allowing an individual or company to have their own unique namespace and\be their own

registration authority for all software configuration items they publish without requiring a-~separate
hased registration authority

4.1.21

release

gollection of new and/or changed configuration items which are tested and\introduced into a p
gnvironment together

.11.22
release manager
imdividual responsible for the collection of new and/or changed,configuration items which are te
imtroduced into an organization’s live production environment

4.1.23
SAM owner
imdividual at a senior organization-wide level who is identified as being responsible for SAM

4.1.24
SAM practitioner
imdividual involved in the practice or role of:fnanaging software assets

industry

oduction

sted and

software

ocessing

4.1.28
software creator
person or organization that creates a software product or package

NOTE This entity might or might not own the rights to sell or distribute the software.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

4.1.29
software developer
person who creates software that can perform a specified set of actions

NOTE Often a software developer works with other developers for a software manufacturer to create commercial
applications. A software developer can also often work as an in-house developer of software for use by the software
developer’s own organization.

4.1.30

software entitlement
legal owfiership of software liCENSE USE rignis as defined throughn agreements between a software purchase
and the goftware copyright holder

=

NOTE Effective use rights take into account any contracts and all applicable licenses, including full licenses, dpgrad
licenses gnd maintenance agreements.

[©]

4.1.31

software identification tag

file comirised of mandatory elements, optional elements and extended information,ontaining authoritativie
identification information about a software configuration item

NOTE For mandatory elements see 8.3, for optional elements see 8.4, for extended-information see 8.5.

4.1.32

software license
legal rights to use software in accordance with terms and conditions specified by the software copyright ownelr

NOTE "Using a software product” can include: accessing, copyingidistributing, installing and executing the software
product, depending on that product’s terms and conditions.

4.1.33
softwar¢ licensor
person of organization who owns the rights to issue-a software license for a specific software package

4.1.34
software manufacturer

group of|people or organization that develops software, typically for distribution and use by other people ¢
organizafions

=

4.1.35
software package
completg and documented-set-of programs supplied for a specific application or function

—

NOTE In this part of ISO/IEC 19770, the term software package refers to the set of files associated with a specific s¢
of business functionality~that can be installed on a computing device and has a set of specific licensing requirements.
this part df ISO/IEC 9770, the terms "product” and "software package" are used synonymously depending on the conte
of the item described.

-~ D

4.1.36
software packager
entity that re-packages or bundles software created by others

NOTE This can be done by a value added reseller who bundles a software package to work with an embedded
system, or by a software reseller who is licensed to combine a number of different software products into a single bundle.

10 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

4.1.37
software provider

2009(E)

entity that creates (software creator), modifies (software modifier) or licenses (software licensor) software for

distribution or installation

NOTE This includes software manufacturers, independent software developers, consultants and repackagers of

previously manufactured software. IT can also represent in-house software developers.

4.1.38
software publisher

erson, group or company that packages and distributes software and might or might not be the
anufacturer

.1.39
tag creator
ntity that initially creates the software identification tag

D

NOTE This entity can be part of the organization that created the software, in which case the tag cn
pftware creator will be the same. The tag creator can also be a third party organization.uhrelated to the softwg
such as in the case where tags are created for legacy software).

)

.1.40
tag modifier
ftware packager or software consumer that modifies a tag after,it has been created

OTE Modification of any tag is limited to the elements that the’software licensor has authorized and is dd
license or contractual agreements with the tag creator and/or software creator. The tag modifier can be allow
lues to a software identification tag (such as the case of<a’reseller adding details about where the prq
rchased), or can be allowed to modify existing portions of the tag (such as the case of a VAR making a set o
Igok like it comes from a single entity).

.1.41
tag provider
gntity that creates (tag creator) or modifies‘(tag modifier) software identification tags for software pack

NOTE A tag provider can be partrofithe software provider organization, or can be a third party organizat
spftware consumer.

41.42

Uniform Resource Identifier

URI

gompact sequence of-Characters that identifies an abstract or physical resource available on the Inter

NOTE The,syntax used for URIs is defined in IETF RFC 3986.

software

pator and
re creator

ne based
ed to add
duct was
f software

ages

on or the

het

Fiid

tfg file is valid from an XML perspective

IXML file> software identification tag data follows the specified XSD definition and the software iderrtification

NOTE See also 4.1.44.

4.1.44
valid

<software identification tag> process used to ensure the data included in an installed software identification

tag is correct

NOTE See also 4.1.43.

© ISO/IEC 2009 — All rights reserved

11

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

4.1.45
value-added reseller
company licensed to repackage and support existing products as combined software packages

4.1.46
version
unique string of number and letter values indicating a unique revision of an item

NOTE Versions are often referred to in software to identify revisions of software that provide unique functionality or
fixes. A version typically has multiple parts with at least a major version indicating large changes in functionality or user
interface §hanges and a minor version indicafing smaller changes in funclionality or user inferface changes.

4.1.47
XML Schema Definition
XML based language that specifies a set of rules and structure for the creation of XML documents

NOTE XML documents follow all rules defined in an XSD definition in order to be considered a "valid" document.

4.2 Abbreviated terms

Cl configuration item

CMDB configuration management database
GUID globally unique identifier

IETF Internet Engineering Task Force
MD5 message digest 5

regexp regular expression

regid registration identifier

SAM software asset management
URI uniform resource identifier

URL uniform resource locator

VAR value added reseller

W3C World Wide Web Consortium
XML Extensible Markup Language
XSD XML Schema Definition

5 Alignment and rationaljization with prior standards

5.1 Sthtement of alignment for this part of ISO/IEC 19770

The contents of this part.of ISO/IEC 19770 are intended to complement and align with prior ISO/IEC standard
publicatipns.

5.2 Aljgnment with ISO/IEC 19770-1:2006 Information technology — Software asset
manangent — Part 1: Processes

The following areas of ISO/IEC 19770-1:2006 are supported by this part of ISO/IEC 19770.
a) ISO/IEC 19770-1:2006, clause 3 stipulates terms and definitions relevant to that document.

This part of ISO/IEC 19770 aligns with ISO/IEC 19770-1:2006, terms and definitions in clause 3 relevant
to both parts have been reproduced here.

b) ISO/IEC 19770-1:2006, clause 4.4.2.2 stipulates: "Implementation of the software asset identification

process will enable the organization to demonstrate that a) types of assets to be controlled and the
information associated with them are formally defined. b) a register of stores and inventories exists,

12 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

clarifying which stores and types of information are held, with duplication allowed only if duplicate
information can be traced back to the definitive source record."

This part of ISO/IEC 19770 affirms the necessity of formal definitions, stores and inventories for software
configuration items. According to ISO/IEC 19770-1:2006, clause 4.4.2.2.a.2.i, software configuration items
include "all platforms on which software can be installed or run." There is no explicit requirement for a
"platform" element in 19770-2 because this part of ISO/IEC 19770 is focused on the identification of
software found on computing devices and not on the requirements of a general software repository. It is
expected that discovery tools collect platform information during their inventory process.

g)

ISO/IEC 19770-1:2006, clause 4.4.2.2 stipulates: "Basic information required for all assets js,{) Unique
identifier ii) Name/description iii) Location iv) Custodianship (owner) v) Status (e.g., test/production
status; development or build status) vi) Type (e.g., software, hardware, facility), vii)cVersion (where
applicable)."

This part of ISO/IEC 19770 affirms these requirements for basic information. The location and custgdianship
of a software configuration item, however, are not included as values specified in this part of| ISO/IEC
19770 as these are associated with the asset on which the software configuration item is discovered and
not with the item itself.

The status of a software configuration item is defined by the Release values in the software identification tag.
These values are optional and it is recommended that they are fugnished alongside information pertaining to
the sign off date and the operator who performed the process (8.4);

8.3 Alignment with ISO/IEC 20000-1:2005 Information-technology — Service management —
Rart 1: Specification

ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Changes to configuration items shall be tracegpble and
auditable where appropriate, e.g. for changes“and movements of software and hardware." THis part of
ISO/IEC 19770 affirms the usage of software_identification tags for disclosure and definition of tracgable and
auditable information for software configuration items.

ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Configuration control procedures shall ensure| that the
integrity of systems, services and.service components are maintained."

This part of ISO/IEC 19770 .upholds the necessity of configuration control procedures for| integrity
assurance purposes andttherefore provides creators with the option to include a digital gignature
(6.1.11). The digital signature can be used to validate that specified mandatory element valgies have
not been modified,. this validation in turn allowing software providers or tag providers to authpritatively
identify software identification tag tampering, or lack thereof.

ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Master copies of digital configuration items [shall be
controlled.in"secure physical or electronic libraries and referenced to the configuration recqrds, e.g.
softwarey’testing products, support documents."

This-part of ISO/IEC 19770 that recommends software identification tags be included with rgspective
software configuration items in the definitive software library.

d)

ISO/IEC 20000-1:2005, clause 9.1 stipulates: "All configuration items shall be uniquely identifiable and
recorded in a CMDB to which update access shall be strictly controlled."

This part of ISO/IEC 19770 aligns with the specification that all software configuration items be uniquely
identifiable. A software configuration item is uniquely identifiable by product identifier, serial number,
stock keeping unit, either of which can be related back to proof of license, purchase order and software
configuration items stored in the CMDB (8.4.14, 8.4.20, 8.4.21).

The method by which a software identification tag is stored in the CMDB and referenced uniquely therein is
not within the scope of this part of ISO/IEC 19770 (1.2).

© ISO/IEC 2009 — All rights reserved 13

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

e) ISO/IEC 20000-1:2005, clause 10.1 stipulates: "Release and distribution shall be designed and
implemented so that the integrity of hardware and software is maintained during installation, handling,
packaging and delivery."

This part of ISO/IEC 19770 affirms the necessity of integrity within the release process and
therefore specifies that software identification tags fully conform to release processes detailed in ISO/IEC
20000-1:2005. This part of ISO/IEC 19770 recommends that optional elements pertaining to release
details be included with software identification tags (8.4).

5.4 .lll‘l nvith ()
Part 2: Code of practice

a) ISOJIEC 20000-2:2005, clause 10.1.5 stipulates: "Release and distribution should be designed and
implemented to: a) conform with the service provider's systems architecture, service management angd
infrgstructure standards; b) ensure the integrity is maintained during build, installation, handling
packaging and delivery..."

Thig part of ISO/IEC 19770 affirms the importance of release and distribution conformance through the
credtion of the optional element "Release package" (8.4.17).

b) ISOJIEC 20000-2:2005, clause 10.1.6 stipulates: "The verification and acceptance processes should: &
verifly that the controlled acceptance test environment matches the requirements of the target productio
environment; b) ensure that the release is created from versions under configuration management and
installed in the acceptance test environment using the planned produgtion process..."

Thig part of ISO/IEC 19770 affirms the importance of matching the controlled acceptance test
environment to the requirements of the target production environment through the creation of the optiona
element "Release verification" (8.4.19).

c) ISOJIEC 20000-2:2005, clause 10.1.8 stipulates: "ltsis important that the release is delivered safely to ifs
destjnation in its expected state."

Thig part of ISO/IEC 19770 upholds the need*for efficient and secure release delivery by proposing th
credtion of the optional element "Release.follout" that allows an organization to validate who signed off o
a software package as ready for production use and when the sign off occurred (8.4.18).

- O

6 Implementation of software identification tagging processes

6.1 General requirements and guidance

6.1.1 oftware identification tag overview

Annex provides” an overview of software identification tagging principles from a more conceptual
perspect|ve, to assist in understanding.

6.1.2 Eand-XSD

The software identification tag shall be defined as an XML data structure. The XML Schema Definition (XSD)
to be used shall be that defined in Annex G, or any (updated) version which may be downloaded from:

http://standards.iso.org/iso/19770/-2/2009/schema.xsd

Additional versions of the schema may be available with the version identifier of the schema included in the
path to the schema. All prior versions of the schema shall be retained.

14 © ISO/IEC 2009 — All rights reserved

http://standards.iso.org/iso/19770/-2/2009/schema.xsd
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

6.1.3 Unique registration ID (regid)

2009(E)

Software identification tags may be created by multiple different organizations and do not strictly require a

centralized registration authority. Additionally, this part of ISO/IEC 19770 allows entities to create
identification tags for software configuration items they did not create (such as an organization
software identification tags for their internal software discovery processes). To accommoda

software
creating
te these

requirements, this part of ISO/IEC 19770 will use a regid. The regid is based off of the iISCSI Qualified Name
as defined in the IETF RFC 3720 — section 3.2.6.3.1 and the IETF RFC 3721 section 1.1 and provides a

unique naming authority reference.

regid can be created by any individual or organization that owns or has owned the registration for,
ame (as specified in IETF RFC 1034, section 3.5 and IETF RFC 1123, section 2.1). The domain'\na
ot need to be active, nor does it need to resolve to an address. Domain names by themselve
onstitute a unique identifier since domains because they can expire and/or be acquired by)other en
heans a regid must also include a date that the domain registration was owned by, the” entity. F
ntities that wish to further sub-divide unique naming sub-entities, an optional suffix.is ‘provided for
nat may be used, for example, to provide large software publishers means to allow ‘each of their
nits to manage their own software identification tags independently.

cC o0 30 3 30 >

—

he regid name shall consist of the following:

e The string "regid" — this qualifies the element as a registration id.for software identification tag

e Adot"

e A date code in YYYY-MM format. This date shall be a*date during which the naming entity o
domain. This date should be the first month in‘which the domain name was owned by thi
entity at 00:01 GMT of the first day of the maenth. This date code uses the Gregorian cale
must include all four digits of the year and"both digits of the month (where January 3
December = 12). The dash must be included.

e Adot"

e The reversed domain name (of the naming entity (person or organization) creating a
identification tag

¢ An optional string thatispecifies sub-entities that may be their own unique naming authoritie
specified by:

o Acomma')

o Mith the exception of the comma prefix, the owner of the domain name can ag
following the reversed domain name as desired as long as all characters are valid f

entity to ensure that each sub-entity reference is unique within their organization.

An-example of regids created by entities owning example.com or example.net looks as follows:

h domain
me does
s do not
tities this
hally, for
the regid
business

w

vned the
5 naming
hdar and
01 and

software

5. This is

sign text
or use in

filenames on any platforms the tag will be installed on. It is the responsibility of th¢ naming

Table 1 — Examples of regid values

Naming Additional
Type Date Auth "example.com" naming authority

regid.1995-09.com.example, AccountingSystems
regid.1995-09.com.example
regid.1995-09.net.example, WordProcessing

© ISO/IEC 2009 — All rights reserved

15

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.1.4 Software identification tag extension and location for installation

Software identification tag files shall include the ".swidtag" file extension in their names for the recognition

purposes of platforms (4.1.7) and discovery tools.

Each platform provider (4.1.18), e.g. vendor of an operating system, should specify where software
identification tags are to be located. Windows® installations, for instance, may have a Windows Management
Instrumentation™ value specifying location; Linux™ distributions may use a Red Hat Package Manager value.
If the platform provider does specify a location, then the software identification tag shall be installed in this

location.

In the al
common
following
platforms

sence of specifications from the platform provider, software identification tags should be installed)i
y known shared locations that are used for collecting commonly used system information:~Th
examples provide information on which shared locations are expected to be used for (variou
, in the absence of an alternative specification from the platform provider.

Table 2 — Examples of tag locations on different platforms

n O S

Leopar

Apple r¥acintosh ™ QOS:X™

<root>/Library/Application Support/<software creator regid>

pre-Leg

NOTE
should 4
directory
systems|
systems]
the defa

Apple NMacintosh™ OS X™

pard

software identification tags
e included in the application

by default for all operating

(see below). Pre-Leopard OS X
should also use this location as
Lilt location.

Application Directory/<program.app package>/contents

UNIX®

and Linux™

usr/share/<software creator regid>

Window

s® NT

C:\Winnt\All Users\Application Data\<software creator regid>

Window
Window
Window
Window

s® 2000 Professional
s Server® 2000

s® XP

s Server® 2003

%AllUsersProfile%\Application Data\<software creator regid>

Microsd
Microsd

ft Vista®
ft Server® 2008

%Program Data%\<software creator regid>

The plafform providér=may provide access to the software identification tag using methods that ar
ent from file access. For example, Microsoft Vista® includes 4 APIs that may be used to manage
identification tag repository. These API's are:

indepeng
software

Table 3 — Microsoft Vista® APIs for software identification tag management

O O

SLGetInstalledSAMLicenseApplications

Retrieves a list of applications that have a software
identification tag installed by using SLInstallSAMLicense

SLGetSAMLicense Gets information about a specific software identification tag
installed by using SLInstallSAMLicense
SLUninstallSAMLicense Removes a software identification tag for a specified

SLinstallSAMLicense

Adds a software identification tag to the Microsoft Vista®

16

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

In addition a copy of the software identification tag shall also be installed in the top level directo

2009(E)

ry of the

application itself. This allows the software identification tag to be discovered even if a removable storage
device (such as a USB hard disk) is moved from one system to another (7.5). Should the same software be

installed in two different locations for the same set of end-users, the expectation is that there would st

ill be two

(or more) instances of the software identification tag in the common system location specified above as well
as two (or more) other tags that are located in the root directories of the installation directories. In this case, a

software uninstaller needs to be aware of the multiple installations at uninstall time in order to ensu
software identification tag is not removed from the common system location until all installat
uninstalled.

re that a
ions are

OTE SAM tool providers should be aware that there will be cases where a software identification tag car
the common system location as well as in one or more top level directories of a software package installat
information in the installation_details element, SAM tools can associate tags located in the common system lo
installation root directories with their corresponding installations. Rules need to be included in the SAM tdols tg
rious permutations of tags which are found. In cases where the tag is found in the software, package i
rectory, and not in the common system location, additional rules are required to identify .if ‘software is |

well as multiple tags found in installation directories, rules may need to be applied as appropriate for the orga
licies. Appropriate reporting and action can then be taken by the SAM practitioner.

he goal of a SAM tool should be to make it as easy as possible for a SAM ‘practitioner to manage e
tp organizational policy, so recognizing some of these issues and reporting on them based on thg
ecified by the practitioner make overall SAM implementations significantly easier to manage.

.1.5 Unique identifiers

or the purpose of uniqueness, there are two elements that, cémbined, shall create a globally unique
the software_id. These elements are

) tag_creator_regid

) unique_id that may be either a GUID, or any‘reference unique for the tag_creator _regid. The U
shall follow the restrictions for URI character use as specified in IETF RFC 3986, section 2, Char

he benefits of implementing a unique identifier during software identification tag creation include, by
ited to, facilitation of the following:

Identification of parent-child relationships.

)
)

Explicit definition of dependencies and recognition of dependent software.
Identification of upgrade software and allowed upgrade packages.

Reference to_identifying software identification tags from within software configuration items.

)

.1.6 Unique'software identification tag file name — distribution

hen assoftware identification tag is created for distribution on installation media, it is not possible t
dditional installation-specific unique ids as described in section 6.1.7 since the tag has not been ins

be found
on. Using
ation and
deal with
hstallation
bcated on

removable storage media that may have been moved to another system. If a tag is found in the common systen location

nizational

ceptions
policies

ID called

nique_id
hcters.

t are not

b provide
talled on

ny-computing device as yet. In this case, the tag file is part of the master image for the installation

process

<tag_creator_regid>_<software_id.unique_id>.swidtag
Following this structure provides a unique filename that can ship with the software.
A software identification tag on the installation media would thus typically have a filename such as:

regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537¢40.swidtag

The installation routine shall then follow the process identified in section 6.1.7 when the tag is installed.

© ISO/IEC 2009 — All rights reserved

17

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.1.7 Unique software identification tag file name - installed

When software is installed on a computing device, the name of a software identification tag shall be unique at
least to the specific code to be installed, and align with the following structure:

<tag_creator_regid>_<software_id.unique_id>_<unique_sequence_id>.swidtag

The unique_sequence_id is optional and shall be used to ensure that every software identification tag installed
on a computing device has a unique filename. This unique_sequence_id may be a simple numerical
sequence, or it may be created using an algorithm chosen by the organization that installs the software
identification tag. The choice of how to create the unique_sequence_id is up to the organization installing-thie
software|identification tag, but the methodology used shall ensure that the filename is unique for a specific
machine|and/or virtual environment. The initial portion of a software identification tag filename would)look gs
follows:

regi¢l. 1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537¢40

This woyld be followed by the unique_sequence_id. The algorithm to specify the unigue ‘'sequence_id may
include some of the following considerations:

1. Kor basic tag filenames, the unique_sequence_id may simply be a sequential value that, if during
installation of a software identification tag, a tag with the same name already exists, the sequential
umber is incremented. In this instance, the numerical sequence wauld start at a specified reference
umber and increment as other software identification tags for the same software ID are installed (thi
ould happen if and only if the software allows multiple installations on a particular computing device).
ote that the installation_instance within the optional installation_details element could be used as
art of the filename in this way.

o

An example of this software identification tag file name(for the first installation) is:

regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537c40_1.swidtag

\ \

unique_id numerical
sequence #

tag_creator_regid

2. The preferred algorithm for the unique_sequence_id should include details specific to the computing
device and/or media on which'the software is installed (this may include device serial number, NIC
MAC addresses, hard disk-serial number, or other unique reference items) and/or details about the
irtual environment where'the software has been installed. Note that the installation_target_id within
the optional installation.details element may be used as part of the filename in this way. Having
device -specific details’facilitates the tracking of software identification tags that may be installed on
movable or shared media. Note that this algorithm may also require an additional unique sequence
umber to engure‘that multiple installations on the same machine do not create the same filename.
he installation:_instance within the optional installation_details element could be used as part of the
lename.in this way. An example of this software identification tag file name is:

regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537¢c40_001c26f781fb_1.swidtag

taa creator reaid uniaue—id installation numeric:
9 1

- _ target_id sequence #

Regardless of the algorithm chosen, the software identification tag filename shall be created by the
installation routine that installs the tag and the name must not conflict with any existing filename.
Additionally, the characters used in the filename shall not exceed 254 characters (or less if the
targeted platform for the software requires shorter file names). Finally, the characters used in the
filename shall meet all specific criteria required for the file systems that the tag is targeted for.

The .swidtag file extension shall be used for all software identification tags. This naming scheme allows for
multiple software identification tags to be applied to the same product title, thereby providing support for

18 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

upgrades. It also allows for unique software identification tags to be created by organizations other than the
original software creator, such as for legacy software.

6.1.8 Consistency among data values

One challenge for software asset management is the fact that marketing names used by software providers
change frequently. Since the software identification tag will not typically be seen by the end-user, this tag can
provide a consistent and reliable source of information to enable effective inventory and software entitlement
reconciliation. Keeping values consistent from one version to another or across product lines is a large part of
the_value software identification fagc prn\/idp the SAM Inmr‘titinnnr

Numerous elements in the software identification tag should remain consistent from tag to tag teropt|mize the
gverall software asset management process. It is recommended, for example, that tag providers [maintain
gonsistency in the following elements:

q) Software creator identity (8.3.4) — this element should remain consistent across, all software packages
created by a specific company.

b) Software licensor identity (8.3.5) — this element should remain consistent across all software packages
licensed by a specific company.

d) Tag creator identity (8.3.7) — this element should remain consistentacross all software identificdtion tags
created by a specific company.

d) License and channel information (8.4.8) - this optional element structure should remain consistept across
product lines and it is recommended that the values:are consistent across all software created by a
specific company. Note that data in the ‘licenseand channel information’ elements of a [software
identification tag do not specify software license @r software entitlement information — instead, data in
these elements provides guidance to a SAM*practitioner that will help them determine and|perhaps
automate software license reconciliation procédures.

€) Product category (8.4.12) — this optional,. element should remain consistent for a particular produft unless
the product adds or removes functionality to make it obvious that it belongs in a different category.

f] Product identifier (8.4.14) — this,optional element should remain consistent especially for products that
have maintenance agreements that provide for upgrade rights over a period of time. his elemert is used
to identify a specific produet from release to release — this element is not a product name, it is §imply an
identifier so the relationship for upgrade purposes can be done automatically.

o))

.1.9 Software identification tag discovery

oftware is generally created as a gold master copy by software providers, then copied and djstributed
prough different channels. Depending on the software provider's requirements, the software identifigation tag
nay be.incerporated directly into the gold master, or it may be created by the installer, or even the|software
ackage-itself. The primary requirement is that the software identification tag for the package [shall be
iscoverable on the machine, media and/or virtual environment on which the package is installed. For more

f:aile, refer to the annex Hofniling gnidann for software prn\/idorc (Annnv R)

O T I == (D

6.1.10 Languages

Acknowledging that many software creators produce software with specific builds that are dependent on
language while many others produce software with one build that implements add-on "language packs," this
part of ISO/IEC 19770 does not require software identification tags to recognize different language versions of
the same product. Consistent categorization through the use of the supported languages element, is however,
strongly encouraged (8.4.24).

For encoding purposes, the use of utf-8 is the suggested methodology for software identification tags created
based on this part of ISO/IEC 19770 (see http://www.w3.org/International/O-charset).

© ISO/IEC 2009 — All rights reserved 19

http://www.w3.org/International/O-charset
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.1.11 Ownership of elements within software identification tags

Because

of the way that different entities may add or modify elements within the software identification tag, it

may be necessary for any one of these entities to identify which elements it has created and/or modified. This
capability is provided primarily via the elements_owner element, making use of the internal element ID as
described in 6.1.12.

Alternatively, ownership of individual elements may be identified through the use of digital signatures as
described in 6.1.13. However, the use of digital signatures does not directly identify an owner in the same way
as the elements owner does, so the use of the elements owner element is still recommended even when

digital sig

6.1.12 Internal element ID

There is
individua
ability to
as listed
element

elementsy.

Internal
element
in a secq
unique |
ownersh
attributes
conventi

a) Ever

natures are used.

a requirement to be able to cross-refer internally within the software identification\fag to othgr
| elements within the software identification tag. One obvious situation where this is‘required is in the
identify the elements which have been created and/or modified by a specified tag-creator or modifief,

in the elements_owner element. This cross-reference capability is provided~hy assigning internal
IDs to the individual elements which may then be used to cross-refer to thosg elements from other

blement IDs are used for intra-tag reference as well as for inter<4ag references where a specifi
from another tag must be identified (this may happen in the case,wheére a digital signature is provide
ndary file). These elements IDs must be unique within a software identification tag, but need not bj
etween tags. For software identification tags, ID attributes) ‘are typically used to identify specif
p of elements. The tag creator and modifier may use any-defined methodology to specify and use |
. However, it is useful if a default convention is prévided and used when possible. he defau|
bn suggested for this part of ISO/IEC 19770 is:

~JO 0 Qo

=

y XML ID must start with an alphabetic characteriThe convention for this part of ISO/IEC 19770 is fq

the ID to start with the letter 'e' standing for element

b) Each top level element should utilize the samé value as the paragraph defining that element with eac
component of the paragraph denoted with,an underscore. This results in the following attribute for the
elenpent product_version:

=

<swid:product_version ID="e8_3-3">

c) Eve
top
the f

D

y element may have-sub-elements. In these cases, for each sub element, the ID should start with th
evel paragraph identifier (as noted above), followed by "sub[number of sub element]". This results i
ollowing IDs specified for the structure under product_version:

=

<swid:nameg(ID="e8_3_3sub1”>10.2</swid:name>
<swid:numeric ID="e8_3 3sub2”>
<swid:major ID="e8_3_3sub2sub1”>10</swid:major>
<swid:minor ID="e8_3_3sub2sub2”>2</swid:minor>

<swid:build ID="€8_3 3sub2sub3”>0</swid:build>

<swid:review ID="e8_3_3sub2sub4™>0</swid:review>
</swid:numeric>

d) For values that may have multiple entries specified, such as abstract, the ID should start with the top level
paragraph identifier (as noted above), followed by a sequence number as specified by "seq[number of
instance]". This results in the following IDs specified for the structure under abstract:

<swid:abstract lang="en" ID="e8_4_1_seq1">This is the abstract written in English</swid:abstract>
<swid:abstract lang="fr" ID="e8_4_1_seq2">This is the abstract written in French</swid:abstract>

20

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

2009(E)

Following these recommendations for the ID references used by elements_owner provides a consistent

approach to specifying IDs that may readily be understood by an engineer who may be reading the ta
as being managed effectively through automated approaches.

6.1.13 Authenticity of software identification tags

g as well

Often, there will be a desire, or need to prove the authenticity of a software identification tag. For example,

during an audit, a software vendor may want to validate that the software identification tag collected

during a

discovery process has not had key elements of the tag altered. Authentication is supported by allowing digital

'gnm‘nrnc within the software identification f:ug

—

here is an existing recommendation published by the W3C that addresses the need to (provic
gnatures in an XML document. The recommendation is "XML-Signature Syntax and Processing
dition) — 10 June, 2008" found at the following location:

w2

http://www.w3.org/TR/xmldsig-core/

bl

OTE W3C does not reference official documents as "standards". Instead, the officially supported docu
ferred to as "recommendations". The reader should be aware that W3C follows-a~well defined process
cument to a recommendation level and that W3C recommendations should be considered as authoritative doc

-

he W3C recommendation provides integrity message authentication.as.well as signer authentication
for data of any type.

his part of ISO/IEC 19770 does not define the process~for applying digital signatures to a
entification tag since the W3C recommendation already dees that.

ignatures are not a mandatory part of the software identification tag, and can be used as required b
reator or modifier to ensure that sections of a tag.are not modified and/or to provide authenticati
gner. If signatures are required for the software_identification tag, they shall follow the W3C recomm
efining the XML Signature Syntax (http://www.W3.org/TR/xmldsig-core/).

Q. 0 O (N

OTE Software identification tags will genherally not require XML Advanced Electronic Signatures (XAde
3C recommendation is not referenced in this-part of ISO/IEC 19770.

==z

6.1.14 Standardization of XSD definition

—

here are a number of standardized types used in the software identification tag including specific
ntries that shall follow_a‘specified formats as specified in the W3C recommendation titled, "XML
art 2: Datatypes Second Edition". Details for these data types can be found at the following location:

D

http://www.w3.6rg/TR/xmlschema-2/

By using specific types as specified by the above W3C recommendation, software identification tag

—

NOTE\. * A few elements defined in this part of ISO/IEC 19770 provide for the use of regular expressions. The §

e digital
(Second

ments are
to get a
uments.

services

software

y any tag
bn of the
endation

5), so this

Hate/time
Schema

S can go

pnrough ansautomated validation step that allows a much more consistent structure to the data providgd.

yntax that

ig supported for these reqular expressions is also defined in the W3C recommendation listed above.

© ISO/IEC 2009 — All rights reserved

21

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlschema-2/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.2 Software identification tagging life cycle: operational breakdown

6.2.1 Introduction

The following diagram shows the software identification tag lifecycle as it progresses from a software creator
(or tag creator) to a software consumer organization.

=] Software Identification Tag Creation

» Create software identification tag with mandatory identity elements (7.3).
* Provide optional identity elements to facilitate identification and SAM (7.4).
» Create tags for software that is not shipped with tags

Software Identification Tag Modification

* Provide additional software identification tag data, such asthose |der(¢)fy
elements pertaining to release management (7.4.12-7.4.16).

* Provide extended information (7.5)
@g data.

» BEnsure consistent and uniform values in software identificati

Software Identification Tag Use

ﬂlﬁ»n

+ Discover and report on software identification tags@ d installed on the
organization’s systems

* Use software identification tags to match enti s}‘nents
* Implement SAM procedures that use softw% identification tag information

w

= Software Identification Tag Correction

O
@\)n tags
ification tags

pted software identification tags made by

* (reate missing software identifi
* Correct corrupted software i

* Auto-correct missing and co
executable software

o

22 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.2.2 Software identification tag creation

The software identification tag creator will often be the same as the software creator. As software is built, the

software creator develops a corresponding software identification tag to identify the software package.

Example software identification tag creators include:

a) Software manufacturers. A software identification tag may be created when a software manufacturer

develops a particular software configuration item. Subsequently, the software identification

software installation routine are thplr_\nrl fngnfhnr Software may be diepnfrhnd Hirnr\ﬂ\]/ to

defines the software configuration item's origins may be agreed to between the various.par
possible that this process may have mixed ownership as it depends on the channel used for
distribution. Software manufacturers will likely use digital signatures regularly within software.

b) Software publishers. When software is developed by one organization and then published by
during the packaging process the software publisher will create a software identification tag to ir
part of the product installation process.

d) Line of business application developers. Line-of-business application developers will also create
identification tags to include as part of the product installation process,

own software identification tag to optimize SAM processes.

br software that is developed by an organizatief’ that chooses not to include software identification
neir products. In these cases, the tag creator shall define element values in the software identificatio
dicate that they are not the creator_of\the software (such as the tag creator regid in the so

& =~ O (D

tag and
software

consumers, publishers or both. Arrangements as to who creates the software identification tag [and who

ies. It is
software

another,
clude as

software

d) Distributors, repackagers, value-added resellers and other tag)modifying organizations. Organizations
that distribute software that does not include standardized-software identification tags may wapt to add
them in order to accommodate the needs of their software-consumers. When a software package does
not include a software identification tag, SAM practitioners are encouraged to create and inclpde their

oftware identification tag creators may also be third party organizations that are not directly relatéd to the
oftware creator. This may be the case for legacy:isoftware that does not have software identificati01 tags, or

ags with
tag that
tware_id

lement). These cases will be evident because the tag creator regid will be different from the

ftware_creator_regid.

.2.3 Software identification:tag modification

Individuals or companies.that alter software identification tags and/or add supplemental information to

ftware identification tags are considered tag modifiers. This group may include software aggregato
nd may also include\groups within an organization that manage software release processes.

xample software identification tag modifiers may include:
Distriblrtors

Resellers

¢) Value-added resellers

d) Republishers

e) Packagers

f) Discovery tool providers
g) Deployment tool providers

h) Release managers

© ISO/IEC 2009 — All rights reserved

s, VAR's

23

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6.2.4 Software identification tag use

Although software consumers are the ultimate beneficiaries of standardized software identification tag content,
discovery tools and operating systems are the primary systems that use the data. They read software
identification tag data to gather information about a given set of software configuration items. When a software
configuration item is deposited onto a particular computing device, a well-formed software identification tag
provides authoritative identification of the specific software installed, the tag creator and all third-party
providers who may have modified the software. This information is invaluable to the SAM practitioner.

Example software identification tag end-users include:

a) SAM owners
b) IT sltpport professionals

¢) Owners of the software configuration item

6.2.5 Software identification tag correction

o)

Although software identification tags should be managed along with all other components associated with
specific $oftware installation, there will be times when a tag may be removed, déleted or corrupted — either o
purpose por accidentally.

=)

In the cgse where a software identification tag becomes corrupt, there~are optional methods available for
software|application to validate that the software identification tag is(up<to-date and correct and/or potential
to automatically self-heal the software identification tag. These methods help to ensure a higher level ¢
integrity pf the data collected by discovery tools.

< Q

In the calse where a product installation does not include a’software identification tag, release managers ma
choose fo create a software identification tag to provide with the software to ease the SAM reconciliatio
process.

o<

In all cases, there should be methods available for'a discovery agent or service to cross check information in
manner {hat provides assurance about the accuracy of the data. For example, a discovery agent may colle¢t
software|identification tags and all executable*flenames from a system. Software identification tags have thie
ability to| specify all the files that are associated with a particular piece of software. Using an appropria
algorithm, a SAM discovery tool can_quickly validate that a system with a specific software identification ta
also incllides the necessary files that.are associated with that title. The reconciliation engine can then filter odit
the known application filenames_frem the collected list of executable filenames. Any filenames that remain in
the list at the end of this proeess would be considered exceptions and may require that a SAM practitiongr
investigates these files further:

7 Platform requirements and guidance

7.1 Types. of platforms

For the purposes of this part of ISO/IEC 19770, the term platform refers to a computer or hardware device and/or
associated operating system, or virtual environment, on which software can be installed or run (4.1.17). The
Linux™ operating system, for example, is used on a wide variety of hardware, from cell phone devices to
mainframe computers, and each variation can be considered a separate platform for the purposes of this
part of ISO/IEC 19770. Additional example platforms include, but are not limited to:

a) Redhat™ Linux™ Enterprise 4.0 Intel x86

b) Novell SUSE™ Linux™ 10.2 Intel x64

c) Macintosh™ OS 10.4 Intel x64

24 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

d) Microsoft Vista® x64

e) HP-UX 11i ltanium™

A platform can also be exemplified by a virtual environment (i.e., such as Java™ or .NET™) and
cases, hardware support is generally unimportant. Versioning, however, is of great consequence

2009(E)

, in such

in virtual

environments. Software written and compiled for one version of Java™ or NET™, for example, may not run in
a prior version's environment. It is expected that virtual environments will also provide a software identification

tag to identify specific details about the version of the environment installed.

OTE Do not confuse the terms virtual environment and virtual machine. The latter may run within a thgst|operating
siystem platform but still represents a complete operating system environment by itself. The virtual machine] supplied
ith virtual hardware, should therefore be treated as a separate hardware instance comparable {o-that of g separate
ysical machine.
.2 Basic platform services
latforms exist independently of the software identification tag details of software configuration it¢ms they
ntain and should be indifferent to them. A platform, however, should define processes to store andl retrieve
these software identification tags efficiently.
I{ is recommended that platforms store and retrieve software identification tags in a process similgr to how
perating systems manipulate files, the exception being that software identification tags should be stpred in a
ntral location for ease of discovery. If a centralized repository,_ is'unavailable for software identificafion tags,
they should then be stored in a common location related to the software configuration items they define (as
efined in section 6.1.4) as well as in each software package installation’s top level directory. This means that
iscovery tools need to collect software identification tags-that may be located in multiple directories|(such as
im the top level directory of a software package's installed files) in order to provide a complete inventory of
tags.
A platform meeting the requirements of this pariof ISO/IEC 19770 shall provide the following services:
q) Basic add, modify, read and deleteoperations.
B) Audit capabilities
1) Identify who installed. a-given software configuration item and when installation occurred.
2) Identify who maodified a given software configuration item and when modification occurred.
3) Identify who uninstalled a given software configuration item and when uninstallation occurred.
NOTE There is no requirement to retain software identification tags when software is uninstalled. For consistency,
it is recommended that they be removed. Audit trails should be used instead to identify previous installations, where
this information is desired.
q) Security
1\ Datoarmina ha-can-craata and mmadifv cofhiara idantifiaatinn oo
I} =AY IAIRRRMIBAERAARAVAAVIC IR IRV i@ iavane | AV | III\J\.‘IIy AYARYVAAZIAYIRAC A R RAV e\)y | LUHO.
2) Determine who can read software identification tags.
7.3 Virtual environments
Virtual environments are typically installed on a computing device and should provide their own software
identification tags to identify themselves to discovery tools.
EXAMPLE When a Java™ Virtual Machine (JVM) is installed on a computing device, it should be installed with a
software identification tag just as any other software package should.
© ISO/IEC 2009 — All rights reserved 25

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

The globally unique identifier and other identifier information for a virtual environment's software identification
tag can then be utilized by other packages to identify a software configuration item's compatibility with the
virtual environment.

EXAMPLE Once the JVM is installed, the identifier information from that package can be referenced by Java™-
based applications that utilize the JVM. This should be done by the Java™-based application specifying that the JVM is a
dependency.

7.4 Virtual machines

Virtual machines provide a guest operating environment that is independent of the host operatin
environment. As far as software is concerned, the installation and discovery process will generally be exact
the same, with the exception that the discovery process will occur completely within the virtual machine
within the virtual machines disk (which is often just a file on the host operating system).) In the
environments, the software identification tag should be provided just as it would be for any other, Computer.

It is expégcted that discovery tools will collect information about the system on which the tag’is discovered ds
part of tHe discovery process. If the system is a virtual machine, the details about the virtual machine, its host
environment, etc should be collected as well. The SAM reconciliation process then will-use the details of th
software|identification tags that are collected, in addition to details about the environment the tag is install
on (virtugl machine type, host for the virtual machines, etc.) and use these pieces of information to aid
reconciliation.

There ane numerous virtualization technologies in use today and this part of ISO/IEC 19770 cannot provid
definitior]s for how software identification tags should be used on all existing, or future technologie$.
Virtualizgtion vendors, however, should be aware that application.installation and use should be tracked an
monitored in order to comply with software entitlements. As such; these virtualization technologies shoul
provide & means of discovering software packages or applications that are available for use and/or are bein
used on|a particular computing device. This may be done by providing software identification tags that a
discoverable along with a virtualized environment, or may be provided through a discovery process on
virtualized disk.

7.5 Support for software installed on removable media

Softwarg can often be installed on removable' media. In these cases, the software identification tag needs
identify that the software was installed on a specific computing device as well as provide tag information that
follows the removable media. This shall be done by providing a software identification tag in the comm
system Ipcation (either the OS defined tag store, or tags located in common directories) for the computin
device. A second copy of the software identification tag shall be included in the top level directory used
install th¢ software package.

Tool prdviders should 4ecognize that two or more identification tags may be discovered on the sam
computirjg device and be”able to recognize that the computing device only has one installation of a softwa
package| In the instance where the removable media is discovered on another computing device, the softwa
entitlemgnt rules*for that particular package shall specify if the package should be considered a single entify
(the installationon the removable media), or two entities (the system the software was installed on as well
the actugl software on the removable media).

7.6 Hardware and platform identification

This part of ISO/IEC 19770 is focused on software identification tags. In most use cases, these software
identification tags will be collected as part of a standard SAM or software discovery/inventory process. The
tool used to handle the discovery is expected to collect and return hardware and other platform information
(such as operating system details) that will be associated with any software identification tags collected. This
provides an automated association of software with the hardware and platform on which it is installed.

As portable devices become more and more capable, virtual environments and virtual machines become more

diverse and automated data collection is improved, it is expected that additional hardware and platform
identification information may be required to assist with IT asset management processes. Should an official, or

26 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

de-facto standard be defined that provides additional unique hardware and platform asset identification
information; details specified in that standard should be utilized to develop a consistent installation_target_id
that may be used on any platform. Should some type of hardware identification become an official standard, it
is expected that information from that standard will be included in the conformance section of a future version
of this part of ISO/IEC 19770.

8 Elements

Hlements describe common attributes of all or most software configuration items. Operating._systems and
iscovery tools can use these attributes to identify software configuration items.

Hlements may be altered by an assortment of tag modifiers (6.2.3, 6.2.4).

his part of ISO/IEC 19770 enumerates 37 distinct elements, and this list is mot exhaustive. They are
predefined to ensure consistency between software identification tags (8.2).

Hlements are described with examples in clauses 8.3 and 8.4, respectively. The examples are spgcified in
{ML syntax, the format which shall be used for software identification_tag creation. The example$ provide
imsight as to what information is to be included within data elements. For extended examples of|software
identification tags, please refer to Annex H.

his part of ISO/IEC 19770 does not require a specific process for generating content for elements.

andatory elements (8.3) are required for a software_identification tag to be considered valid or qgomplete.
Incomplete software identification tags should be flagged by discovery tools as invalid, notifying the|software
identification tag data SAM practitioner that these“are not valid or complete. There are five mandatory
dlements.

I{ is recommended that tag providers maintain a central repository of all software identification tags created for
qll product releases containing at least the mandatory elements. This repository can then be used tq validate
the uniqueness of GUIDs as well as ensuring that the software creator name and GUID remain cpnsistent
throughout the product line. This part of ISO/IEC 19770 does not require an external registration agency for
software identification tags, so itis up to each tag creator to ensure each of their tags is unique.

Qptional elements (8.4) may or may not be provided in a software identification tag. The data elements that
gorrespond to optional glements permit software identification tag creators additional opportunities td improve
reliability of information for SAM practitioners and tool providers. If these optional elements are uged, then
they shall be useddnyaccordance with the requirements in this section.

Hxtended elements (8.5) are provided in the software identification tag to allow the inclusion of additional
plues that have not been predefined. Extended elements shall be in an XML format and should irclude an
{SD reference that can be used to validate the information in this section.

nllke the mandatory and optional sectlons there may be muIt|pIe extended sect|ons in a tag. Each extended
example, a
tag creator may include extended elements that it wants mcluded for its own d|scovery tool A software
consumer organization may want to include extended elements related to their overall software lifecycle
policies and procedures.

8.2 Element names
Software identification tag content shall be identified in accordance with the element names specified in

clauses 8.3 and 8.4 below. This naming requirement ensures consistent interpretation of software
identification tag content, regardless of mandatory or optional nature.

© ISO/IEC 2009 — All rights reserved 27

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

If an element is optional, its description still shall adhere to this naming requirement and to limitations
specified in the definitions of clause 8.4.

8.3 Mandatory elements

8.3.1 Entitlement required indicator (‘entitlement_required_indicator’)

(SN entitlement_required_indicator

Type Boolean

e B This element is a Boolean tag that indicates if a software entitlement must match up @against
this item in order for a software reconciliation to be considered successful. Open’ Source]
software, for example, may not “require” a software entitlement in the reconciliation”processg
to be legally installed and used. This does not mean that the software does, not have a
software entitlement; rather that it does not need a software entitlement spécified in a SAM
system for the reconciliation to be complete. This provides the ability_forva practitioner tg
manage by exception and focus only on those items that are legally’ required to be in
compliance. This does not mean that an organization will not manage”compliance of itemg
such as open source, or freeware products, simply that they can make that choice.

This element shall occur exactly once in the software identification tag.

Example <entitlement_required_indicator>true</entitlement_required ﬁgtow
AN

roduct title (‘product_title’)

XML Tag product_title

Type XML character string

i Name of product, as assignéd by the software creator. This value is primarily used in end-user
or computing device focused reports and is not typically going to be used as part of the
process of reconciliatiofn:

This element shall occur exactly once in the software identification tag.

| <pr0duct_tit@\,\(‘|€wmaster Standard</product_title>

28 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.3.3 Product version (‘product_version’)

XML Tag product_version

Type Complex type

Definition Version of the product defined as two elements — numeric version and version name.

This element allows software creators to provide purely numeric version information which is
used for comparison purposes against software entittement information and for grouping
al ee_:_“- ona he-S Ng ersion-is-provided-so-software creators-have qutyto
specify any textual representatlon they want an end-user to see in a report. q

A good example of this is Microsoft Vista®. Most SAM practitioners wgg mediately
recognize a text version for this OS if it is listed as Microsoft Vista®, Versmx/ 1. However,
many SAM practitioners will not recognize the numeric version of 6001

Each element is independent, but they should be related and consis, with each other.

The numeric-based version number consists of four levels: maj minor version rjumbers
plus build and maintenance numbers. If a vendor does not crggé to use all availabl¢ levels,
the non-used levels should be set to 0. The numeric v ?\rs is expected to be ysed for
comparison purposes against software entitlement i@uation during the recorciliation

phase of the software asset management process. s\\

The string version of the product version may cc@éa numeric and/or alphabetic chgracters.
It is a more user friendly name of the product ion than numeric-based version pumber.
This value will typically be used in end-user Qc mputing device oriented reports.

N

This element shall occur exactly once in@software identification tag.

Data XML tag Type
Structure

Definition

name XML character strir@ Textual name of the version
3
One entry \O
N ad
numeric Produc@)%’fonComplexType - | Numeric version identifier
Complex” type consisting of four

?ents with numeric values: “major”,
(_. ”, “build”, “review”
(;\O ' One entry

Example <pr _version>
me>10.2 Fix Pack 1</name>
{ /~<numeric>

I~ <major>10</major>
<minor>2</minor>
<build>0</build>
<review>0</review>

</numeric>

L =l 4 +
Tproauct—verston

OR

<product_version>
<name>6.2.1279.00</name>
<numeric>
<major>6</major>
<minor>2</minor>
<build>1279</build>
<review>0</review>
</numeric>
</product_version>

© ISO/IEC 2009 — Al rights reserved 29

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.3.4 Software creator identity (‘software_creator’)

XML Tag

Type

Definition

Data
Structure

8.3.5

XML Tag
Type

Definition

Data
Structure

Example

30

software_creator

Complex type — EntityComplexType

This element allows a discovery process to identify the specific software creator that produced
the software package.

Software creator names in different countries may be exactly the same, but refer to separate
egal entitie 0 _ensure uniguene his element shall contain the regid of the software

creator as well as the name. O,)
QQ

This element shall occur exactly once in the software identification tag. (1/

XML tag Type Definition

name XML character This element provides the name of the e defined in the
string tag. This name should be consistent jbetween software
products and software releases. C)
One entry
AN
regid regid type Regid of the software cfeator (as specified i
section 6.1.3.) If the entity i known, or is no longer in
One entry business, this value may %s t to "unknown".
Z.
<software_creator> Q‘(
<name>Example Corp</name> Q
<regid>regid.1995-09.com.example</regid> \\
</software_creator> k\>
o
)
Software licensor identity (‘software_licensp@s
K\
software_licensor \0

a
Complex type — EntityCompIe&[ﬁTe
r 3

This element allows a discovery process to identify the specific software licensor that owns the
copyright for the softwa@péckage.

Software licensor es in different countries may be exactly the same, but can refer tg
different legal ities. To ensure uniqueness, this element shall contain the regid of the
software lice s well as the name.

This eler@shall occur exactly once in the software identification tag.
()
XML iag Type Definition

me XML character This element provides the name of the entity defined in thq
string tag. This name should be consistent between softwarg
products and software releases.

One nnfry

regid XML character Regid of the software licensor (as specified in section
string 6.1.3.) If the entity is unknown, or is no longer in business,

this value may be set to "unknown".
One entry

<software_licensor>
<name>Example Corp</name>
<regid>regid.1995-09.com.example</regid>
</software_licensor>

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.3.6 Software unique identifier (‘software_id’)

XML Tag software_id

Type Complex type

LGB The software_id provides information that can be used to reference a specific version of a
specific product. This element requires the tag creator to ensure that the unique_id is unique
for each software title and version. Different upgrade levels of a software package shall be
distinguished by unique software identifiers. To avoid the need for an external registration

The regid is provided along with a unique ID (unique_id) within that regid. Diffe platforms
and/or development environments may have different methods of creating unique IDs. The
unique_id could be a GUID, or it may be simply a unique reference withi e development
environment. For example, an organization could decide their unique_igj\Q\;fuld be something
like <productname>_<version>_<releaselD>. Q/\

It will be possible for multiple tag creators to create their own
same software product. This is likely to be the case where the G;\Nare creator did nqt create
a software identification tag (such as for legacy software), multiple competitive| service
organizations then create their own tags for use with suc @t are.

ue software_idg for the

This element shall occur exactly once in the software i(e\tification tag.
O

Data XMLtag Type Definition
Structure

tag_creat | XML character string This element specifies the idenfification

or_regid \\ of the organization that created the tag.
e One entry \0 9 9

\QQ Regid of the tag creator as spedified
S section 6.1.3. Note that the
®$ tag_creator_regid and the
\) software_creator_regid may be [the

xO same values — this will be the case
N~ where the software creator is crgating
\\0 the tags. Including the

C) tag_creator_regid helps ensure
. uniqueness of the software_id gnd also

@ allows SAM practitioners and SAM
<~O tools to identify the provenance [of any
O ~ discovered software identificatign tag.

\(O This element shall not |contain
% characters that are inconsistg¢nt with
Q filename use such as '/, '\, ', efc.

unique_id XML character string Unique ID that identifies the |specific

version of a specific product.
One entry

The unique_id shall follow the
restrictionsfor UR| character usle as
specified in IETF RFC 3986, section 2,
Characters.

Additionally, this element shall not
contain characters that are inconsistent
with filename use such as '/, '\', [, etc.

Example <software_id>
<unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>

</software_id>

© ISO/IEC 2009 — Al rights reserved 31

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

OR

<software_id>
<unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>

8.3.7 Tag creator identity (‘tag_creator’)

XML Tag tag_creator O_)
~Q
Type Complex type — EntityComplexType (1>)
a,.:
LB This element allows a discovery process to identify the specific tag creator fO}\@é softwarg

package. /\
N

Tag creator names in different countries may be exactly the same, but refer'to separate legal
entities. To ensure uniqueness, this element shall contain the regid @ tag creator as wel

as the name. b%'?o
ion-tag.

This element shall occur exactly once in the software identific

DEF:] Definition
Structure

XML character This element pr the name of the entity defined in the

string tag. This na hould be consistent between software
products and’software releases.
One entry $\,
regid XML character Re%s[zbf the software licensor (as specified in section
string 6@ .) If the entity is unknown, or is no longer in business
N this value may be set to "unknown".
One entry - OF
N
O

Example <tag_creator> Yo

<name>Example Cor, @me>
<regid>regid.1995@m.example</regid>

</tag_creator>

32 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4 Optional elements

8.4.1 Abstract (‘abstract’)

XML Tag abstract

Type Complex type

L] B Summary that provides information for the software package that this tag applies to, including

d Id Jyuayc U PDUIICT U dAdllUOW TU U =la UJuayc UPPU N

The abstract element may occur more than once in a software identification tagl/@ shall only
occur once for each language specified. .

fl/.

If language is not specified, it is assumed to be English ("en"). /\/\Q

This element may occur zero to unlimited times in the software idenmocgation tag.

Data XMLtag Type
Structure

Definition

lang XML character string. This is an =1'= nguage the abstract is written in.
optional tag attribute nguages shall be specified asgl defined

QQ IETF RFC 4646 (see http://wwWw.rfc-
L

editor.org/rfc/rfc4646.txt).
IExample <abstract lang="en">The View Master soﬁwarg\@a\nles viewing of all kinds of document
formats.</abstract>

o2

s\\'ov

§.4.2 Component association (‘componeg\@f’)

o\
XML Tag component_of h
\’\&
Type Complex type Q\‘
L N : .
IDefinition Component an element that is used to show a child to parent relationship between

when nal components are installed, but are related to an existing package on a
com%ﬁg device. This element is not used as part of a suite definition, rather it|is used
w% package is installed that adds functionality to an existing package on the cdmputing
@ ice.

)

packageséi.b which parent does this package belong to). Typically, this element will be used

Typically either component_of or complex_of will be used to specify a product grouping, not
both at the same time.

This element may occur zero to one time in the software identification tag.

Data XML tag Type Definition
Structure

software_id | Software List of unique software identifiers that define an
identification type | association between this package and a parent package.

described in 8.3.5

One to unlimited
entries

© ISO/IEC 2009 — Al rights reserved 33

http://www.rfc-editor.org/rfc/rfc4646.txt
http://www.rfc-editor.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Example <component_of>
<software_id>
<unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>
</component_of>

Or

<component_of>
<software_id>

<unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid> Qq
</software_id> Q
</component_of> n‘(]’

Jomponents list (‘complex_of’) ,\Q

~
XML Tag complex_of NS
%

Type Complex type
0

Definition Complex_of is an element that specifies child relationships for this package (i.e. which
packages belong to this one). This element is typicall;&ed to provide a list of products tha
are a part of a “suite”. This element is made up on of unique identifiers that represen

the products that make up the suite. Typically&

er complex_of or component_of will bg
used to specify a product grouping, not both at ame time.
. RV o
This element may occur zero to one time m@ software identification tag.

Data XML tag Type Definition
Structure

identification between this package and its child packages. This item
described ir@) .5 | is generally used when defining the packages that makg

N up a suite.
One imited
entri

N

software_id | Software g! MUnique Software identifier that defines an association

<complex_of: \J

<software\i¢
ique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
are_id>
ftware_id>
\A <unique_id>a584c19-b5a1-9f16-ed203e5ab45fc</unique_id>
i <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>

L </complex of>
Or

<complex_of>
<software_id>
<unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>
</complex_of>

34 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.4 Data source (‘data_source’)

XML Tag data_source

Type XML character string

Definition Basis for the data source of the final installation.

Values include, but are not limited to, strings such as the following: CD, MSDN CD,
Electronic distribution and Definitive software library — Released for distribution. By providing
such values in the software identification tagging process, SAM practitioners c@s rapidly
assess what software configuration items are installed on which platforms and% bch was

installed. This element does not require normalization between different tag cr rs because
many organizations have their own definitions for the type of data source ard(t’/ is infgrmation
is informational to the SAM practitioner, and is not typically required. Q’

Values used in this element should be consistent within an organiz@j}sn and across|product
lines. N

This element may occur zero to one time in the software iden\f@g{on tag.
O

Example | <data_source>DVD</data_source> \%v
s\\
<< O
8.4.5 Dependency (‘dependency’) Q
N\
QD
LTS ER P dependency Q\
SN
Type Complex type $
I\‘Q
Definition This element is provided in order to allow software to specify that it requires a fifferent
product in order to run. ‘K@s is not necessarily related to software licensing or $oftware
entitlements, but sim to requirements. For example, a Java™ application may be
dependent on a s ic version of Java™ to run properly. An Excel® template fequires
Excel®. These dependencies are not necessarily strict dependencies that will be used by the
software to ate that a specific software identification tag is available before the

application , but rather guidance that is provided to the SAM database to assist with
software rQanonships and/or potentially to provide information to a help desk environment.

This\Q?ment may occur zero to one time in the software identification tag.

Data XML tag Type Definition

Structure

software_id Software Unique Software identifier that defines the dep¢ndency
identification | tag.
type
described in
8.3.5

One to
unlimited
entries

Example <dependency>
<software_id>
<unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
<tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>
</dependency>

© ISO/IEC 2009 — All rights reserved 35

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.6 Element owner list (‘elements_owner’)

XML Tag

Type

Definition

Data
Structure

36

elements_owner

Complex type

This element provides the ability to specify who claims ownership over elements in the tag.
This ownership claim is not as authoritative as using a digital signature, however, it does
provide guidance to tag modifiers. By listing an element as being "owned", it indicates that the

d - DE <10 1 e eljlemen ale. d No e NANQEAQ nie XD AJreca Q D 1
existing owner of the element. Qq

The tag creator should specify the elements that may not be modified by any tag modiﬁ}?

The element utilizes element IDs which the XSD supports. These element IDs ,ag%created by
the tag creator and need only be uniquely specified and referenced fo ch softwarg
identification tag. IDs are utilized to reference specific other tag elements W|th|n the tad
itself. See the examples below as well as in section 6.1.12 to see how I%jre used.

This element may occur zero to unlimited times in the software ide@\'}etion tag.

XML tag Type Definition

\(,

owner_regid XML If the elements ow specified, this item specifies the

character company that ow e values. In general, commercial
string off-the-shelf (CCQR? software will use the regid as the ful
definition of 11\ owner. Internally built applications may

one entry also spec%®e owner_name.

O

owner_name XML This ent provides more detail on who owns the values
character specified in the software identification tag. In general, the
string Qwner_name will only be used for internally buil

’%-ppllcanons where an individual or group also needs to be
Zero or on.%o speC|f|ed to know who should be contacted. If desired
entry C) commercial applications may also use the owner_namsg

. element to specify additional contact details related to the
O® owned elements.
element_id XML Element_id provides a list of IDs that are owned by the
%C) character specified owner. IDs are specified by the element creatof
%\ string and must be unique for a specific tag, but there is nd
Q requirement that they be unique between different tagg
Q~ Zero to since they are only used to show relationship links within
?‘ unlimited the tag, or to reference specific elements within a specifid
%Q entries tag. See the example for how IDs may be specified and

used by the elements_owner structure.

mvid:entitlemen Qui indi D="g mid:entitlemen auired indicato
<SWId product | t|tIe ID ”e8 3. 2”>Adobe Photoshop CS3</SWId product_ t|tIe>
<swid:product_version ID="e8_3_3">
<swid:name ID="e8_3_3sub1”>10.2</swid:name>
<swid:numeric ID="87_3 3sub2”>
<swid:major ID="e8_3_3sub2sub1”>10</swid:major>
<swid:minor ID="e8_3 3sub2sub2”’>2</swid:minor>
<swid:build ID="e8_3_3sub2sub3”>0</swid:build>
<swid:review |ID="€8_3_3sub2sub4’>0</swid:review>
</swid:numeric>
</swid:product_version>
<swid:software_creator ID="¢8 3 4">
<swid:name>Adobe Systems Incorporated</swid:name>

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

8.4.7 Installation details (‘installation_details’)

XML Tag

Type

Definition

ISO/IEC 19770-2:2009(E)

<swid:regid>regid.1986-12.com.adobe</swid:regid>
</swid:software_creator>
<swid:software_licensor ID="e8_3 5">
<swid:name>Adobe Systems Incorporated</swid:name>
<swid:regid>regid.1986-12.com.adobe</swid:regid>
</swid:software_licensor>
<swid:software_id ID="e8_3_6">
<swid:unique_id>Photoshop-CS3-Win-GM-en_US</swid:unique_id>
<swid:tag_creator_regid>regid.1986-12.com.adobe</swid:tag_creator_regid>
</swid:software_id>
<swid:tag_creator ID="e8_3 7">

<swid:name>Adobe Systems Incorporated</swid:name>

<swid:regid>regid.1986-12.com.adobe</swid:regid> Qq
</swid:tag_creator> (.19
<l-- Optional elements --> fl/

Q

<swid:elements_owner> /\/\
<swid:owner_name>Adobe Systems Inc. </swid:owner_name> ,\Q)
<swid:owner_regid>regid.1986-12.com.adobe</swid:owner_regid>
<swid:elements_ID>e8_3_1</swid:elements_ID> C)
<swid:elements_|ID>e8 3 2</swid:elements_ID> \\Q/
<swid:elements_|ID>e8 3 3</swid:elements_ID> O
<swid:elements_|ID>e8 3 4</swid:elements_ID> @
<swid:elements_ID>e8 3 5</swid:elements_ID> S\\
<swid:elements_ID>e8_3_6</swid:elements_|D> @)
<swid:elements_ID>e8_3_7</swid:elements_ID> Q

</swid:elements_owner> AQ

installation_details

Complex type

This element provides:specific details for the full path information on the location$ of the
software identification_tags for a particular software package installation as well as ingtallation
instance details. €ach software installation will have two software identification tags gdded to
the system —one'in the common platform directory (as specified in section 6.1.4) angl one in
the root directory of the installed software package.

It is stfongly recommended that the tag locations be included whenever possible sipce this
allows SAM tool providers to link two software identification tags together as a related fag.

On platforms where software products are allowed to be moved easily (such as the Apple
Macintosh™ platform), it is highly recommended that the software application regularly
validate that the installation_details element is defined properly and that SAM tool pfroviders
validate the location where the tags are discovered and compare that |to the
installation_details.

Installation instances are provided for software that may be installed multiple times on a single
platform. This may be done in the case of installations for specific end-users, or it may be
done to provide multiple copies of a particular software package for an end-user, or on the
system in general.

This element may occur zero to one time in the software identification tag.

© ISO/IEC 2009 — All rights reserved 37

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Definition

location_platform XML This is the full path to the directory where the common
character software identification tag is located. If the common path is
string in a system specified location (such as in the case of
Microsoft Vista®), then "system" may be specified.
Zero or one
entry
(©.)
location_installation | XML This is the full path to the software identification tag @]’s
character installed in the root directory of the software packag’qy
string (1,
Q/
Zero or one /\/\
entry \Q
r|
installation_instance | XML If a software title allows m installations, the
character installation_instance allows o izations to provide 3
string unique identifier for each inst\ n
Zero or one For example, if multi IeO%\stances can be created fo
entry individual end-users ch installation might be identifieg
by the end-user id e software may be installed multiple
times for the same end-user or the system, this identifie
may simply number that is incremented as othe
software _identification tags are discovered during
installation’.™

Thi \%Iement shall not contain characters that are
si&@o sistent with filename specifications such as '/, '\', T

-

RX Q)
installation_locale XML | This element specifies the locale or locales supported by
character the installed software. Locales shall be specified ag
strh& defined in IETF RFC 4646 (see http://www.rfc{
O editor.org/rfc/rfc4646.txt). If the installed version o
géro to software supports multiple locales, this can be identified by
C)ﬁnlimited the software identification tag containing multiplg

\% times installation_locale elements.
~

installatio et id | XML A value which will allow the identification of the machine

character storage device, and/or virtual environment on which

é@v string software has been installed.
R

This element shall not contain characters that are

Zetro Or one | inconsistent with filename specifications such as ', "\', T
entry ate

TTCT

The software installer (or self-installing programs) should
provide for installation-specific parameters which
determine the value to be put into this element. A specific
value may be given in a parameter, or there may be a
specification of the operating system call to use to obtain
the required information. In the absence of any other
specification by the software publisher, a default value
shall be used, with the media serial number (of the media
onto which the software has been installed) being the
recommended default value.

38 © ISO/IEC 2009 — Al rights reserved

http://www.rfc-editor.org/rfc/rfc4646.txt
http://www.rfc-editor.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

The installation_target_id may include asset number,
media serial number for the media on which the software
is installed, a NIC MAC address, or other unique reference
items.

It is recognized that some of these values can change
without the underlying identity truly changing, e.g. a
network interface card may need to be changed which will
change the NIC MAC address. Software asset

management procedures will need to deal a)h such

issues.
‘.1/

This value is a recommended compo of the [nstalled
version of the filename for a sof% identificafion tag.
(See 6.1.7)

It is anticipated that co \%&ions will evolve as [to what
types of values will ty@l be placed into this ¢lement,
and that these conv@ ns will be supported by platform
providers. $\

<installation_details>

<installation_locale>en- US</|nstaIIat|o

<installation_locale>en-GB</installa

<installation_locale>en-AU</install
</installation_details> xO

<location_platform>C:\Documents and Settings\All U
photoshop8.0pro.swidtag</location_platform>
<location_installation>C:\Program Files\Adobe\Ph
photoshop8.0pro.swidtag</location_installation>
<installation_instance>1<\installation_insta
<installation_target id>0018F8096CE1</i
n*&cale>
ocale>

n_locale>

pplication Data \adobe\adobe.com-

hop CS\adobe.com-
€>

lation_target_id>

-
C)\\C)

8.4.8 Keywords (keywords&

TR ZT Keywords C)O‘
Type Com p&%ﬁoype
A\

Definition

owner.

Ind|V|duaI keywords may be added by tag modlflers

s-élement provides the ability for a tag creator or modifier to add specific keywords to the
software identification tag. The keyword values are not specified in this part of ISO/IEC
“but are instead provided as a way for the tag creator or modifier to help search engipes find
software identification tags that relate to a particular subject.

19770,

in the
t allows

they may be specified

multlple keyword sub-elements, each sub-element may be owned or signed by its individual

© ISO/IEC 2009 — All rights reserved

39

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Data XML tag Type Definition
Structure

Keyword XML This is the element used to specify keywords that are
character applicable to a specific software identification tag.
string Keywords are entered one at a time, and may be identified

as being owned (by elements_owner - 8.4.6) and may be
Zero to included in a digital signature as well (see Authenticity of
unlimited software identification tags 6.1.13).
entries
Multiple tag modifiers may add their own keywords to the
list as well. O_)
O
S E R | <keywords> ('D)
<keyword>Acme</keyword> (1/
<keyword>Painter</keyword> Q’
</keywords> ,\/\
N
icense and channel information (‘license_linkage’) \\Q/
VISR license_linkage \@v
AN
Type Complex type Q ~
o
Definit- This element provides information that can be usa§'ﬁo help determine the proper softwarg
ion entitlement structure for the product installation tb\&b s related to this tag. The elements tha

are part of the license_linkage element provide igformation on how the product may have beer
installed and its current license state on the psﬁ}cular system the tag is discovered on.

NOTE License state is not directly relatec&fé software entitlement. License state is for an installation
of a specific software package on a specific machine. Entitlements, on the other hand, specify the legal
ownership of license use rights. Entitle details are specified in part 3 of ISO/IEC 19770.

Elements provided as part og}kolicense_linkage element can help SAM practitioners quickly
identify when un-authorized software is installed in their environment. These tags are optional
but they will help the practitioner by providing more information about where software
may have come fro y providing these tags, SAM practitioners can build rules that helg
them manage by exception rather than having to monitor each and every change that may
occur in the en(wio@n’went they work in.

This elem&ay occur zero to one time in the software identification tag.

Data XML tag Type Definition
Structure
activation_stat | XML character The values in this element are related to the various
string licensing levels that a specific software licensor ma
track for an individual machine. Every software licenso
Zero to unlimited may have a different set of status values, but as much
entries as possible, the values should be consistent for one
software licensor. A representation of these values may
include:

a) Trial — this indicates that the software is in a trial
mode and this value may include the number of
days the trial mode is valid, or that the trial has
expired.

b) Serialized — this indicates that the end-user or

40 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

software consumer has entered a valid serial
number during the installation process, but that the
product has not yet been activated.

c) Fully Licensed — this indicates that the product has
been activated and as far as the software licensor is
concerned, this is a fully capable installation for a
specific system.

d) Unlicensed — this indicates that the software should

no longer be able to be run on a device, onif is
running in a limited mode. Software 036 nto this

state by the following: (1/
ﬂ/

1) A trial period has expired /\Q

2) Atime-based license Xpired
3) Package was s ized, but never activated in
the given tim e.

Values used in this element should be consistent within
an organizatior@ d across product lines.

channel_type

XML character
string

Zero to unlimited
entries

N

Provides~information on which channel this particular
software“was targeted for. The values used| in this
eler@ may be unique to the software vengdor, but
sI@u be consistent between products published by a
“particular vendor. A representation of these valfies may
include:

string

Zero or one entry

)
J a) Volume
xO
) a& b) Retail
S
. c) OEM
()® d) Academic
O~ If used by a software licensor, it allows [a SAM
practitioner to identify software that may be installed in
N\
% an organizations environment but that doesn|t follow
Q organizational policy. For example, software that was
Q‘ destined for an academic channel is not denerally
considered appropriate for installation in a cprporate
setting.
Values used in this element should be consistept within
amorganizatiomandacross product Hres:
channel_name | XML character This element provides a location for the name of the

channel. This allows reseller organizations to create
software identification tags that include the name of a
distribution or channel partner.

customer_type

XML character
string

Zero to unlimited

Customer type identifies the target customer, not the
channel. The values used in this element may be
unique to the software vendor, but should be consistent
between products published by a particular vendor. A
representation of these values may include:

© ISO/IEC 2009 — All rights reserved

41

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

entries
a) Government
b) Corporate
c¢) Educational
d) Retail
With current software entitlements, there is often a
different cost associated with products that are targeteg
at different customers. However, there are
limitations placed on the installation of these %cts
For example, a copy of software that is created‘for an
educational customer is typically sold at Qf'o er cos
and often not licensed for use in a corpo,re setting.
Values used in this element shoul b'éconsistent within
an organization and across pro nes.
-\
S €l J=8 | <license_linkage>
<activation_status>Fully Licensed</activation_status> \%
<channel_type>Volume</channel_type> 6\
<channel_name>Reseller name</channel_name> Q
<customer_type>Corporate</customer_type> Q
</license_linkage> Q
N\
Or K&
. : <
<license_linkage> QO
<activation_status>Trial</activation_status> $
<channel_type>Retail</channel_type> . 2]
<customer_type>RetaiI</customer_type>A\
</license_linkage> «O

8.4.10 Plackage footprint (‘package_footprint’)

~

N~
.\0

XML Taj

“‘
package_footprintc) O

Type

Complex type. ()
)

Definition

Specifie&ét of files and other entries that indicate a product is installed. Also provides for

link t ackage_footprint from an external URI. On the Windows® platform, other entrie

may\iAclude registry entries, WMI entries, and MSI data. Other platforms may includs
ional platform specific information that may be desirable to include.

o=

Package_footprint information will be used by SAM tools and SAM practitioners to providg
confidence levels on software identification tag information and cross reference details that &

software creator indicates should be present against what is actually discovered during an
inventory process. Note that the package_footprint is not intended to validate that a software
installation is complete, nor that the software will actually run.

The items listed in the primary section can be used to validate that a software identification
tag is installed on a device that does, in fact, have the software installed. Secondary and
other items are provided by tag creator to ease the burden of SAM tools and SAM
practitioners. By providing footprint information for an application, SAM tools and SAM
practitioners can use this information to filter out the extensive list of discovered data they
receive from all devices and can move towards an exception based SAM management
practice as they have a more accurate list of what is authorized to be installed as opposed to

42

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Data XML tag
Structure

what is discovered.

NOTE Examples of the various elements can be found in section 8.6.6 FootprintModuleComplexType
which provides details on how the various types and structure of the type used in the package_footprint
element work together.

This element may occur zero to one time in the software identification tag.

Type Definition
external_de | URI string This element allows a tag creator to keep the Iis@ entities
scription associated with a particular system availa rough an
Zero or one indirect reference to their site. By doing this tag creator
entry owns the list and can update the list as essar; without
having to distribute a patch, or a ne ,@smn of thd product
with a new set of files listed.
primary FootprintModule | Defines files and other items t are considered 'primary"
Complex type to a software package. If i in the primary element are
found on a device, the are is considered tq have a
Zero to one high probability of being-installed and the tag should be
entry considered to be valid.in that the software to which the tag

refers has a hlg likelihood of being installed on the|device.

NOTE 1 ? filename by itself is not unique. Tp ensure

uniquene is element provides multiple characteristic$ that can

be defi ncluding: name, size, md5, version and "other" types

that can be tag creator defined.
\

~N\OTE 2 There may be multiple entries for a particular ffile in the
Jprlmary element. This allows a single footprint to be|used for
multiple patch releases where files may change size, \ersion or
MD5 sums. In these cases, the discovery tool only jheeds to
discover a single unique file definition for each unique] filename
presented (i.e. if file "abc.com" has 3 different sizes gnd MD5
entries, and the SAM tool matches one discovered file against one
of those 3 entries, than file "abc.com" is defined as existing on the
device).

NOTE 3 If one version of each primary item (file, as well as
os_configuration_record or other element n the
FootPrintModuleComplex type) defined in the primary element is
present, then SAM tools and SAM practitioners should hgve a high
confidence that the software identification tag is| properly
identifying installed software. If some primary items| are not
discovered on a device, this would indicate that an exception has
occurred and the SAM practitioner or release managér should
investigate why the device does not have all primary itemfs.

secondary

FootprintModule
Complex type

Zero to one
entry

Defines files and other items that are considered
"secondary" to a software package. These items are not
used to validate that the tag refers to software that is, in fact
installed, but are instead provided so they can be used as a
filter by software recognition algorithms that determine if a
software package is installed based on files found. By
providing a list of files that can be safely "filtered out", the
software recognition engine will end up with many fewer
unmatched files requiring research.

© ISO/IEC 2009 — All rights reserved

43

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

44

Similar to the primary element above, files may include
other specific characteristics to ensure uniqueness to the
tag creator.

related FootprintModule | Defines files and other items that are "loosely coupled" to a
Complex type software package, but that may also be installed with a

particular software package. These file entries are also

Zero to one used to filter a complete list of files that a discovery agent

entry may collect in order to remove files that are associated with

"known" software.

An example of this is an installer that installs an ql
Equipment Manufacturer (OEM) version of a : are
package. The files in the OEM installation shoul able tp

be loosely associated with the primary package (so the
can be appropriately filtered by a sc%;s recognitio

process), but if another software packag ims ownershi
to those files, then the software claiming ownership get
precedence over any software tha@a loose association.
Other loose couplings would in components that ar
shared between software pac and/or components th
may be installed as opti add-ons to a softwar
package.

o
R

<package_footprint> \)

<externa|_description>http://www.adobe.com/acrobs\ngfware_id)/ﬂIelist.xmI</externa|_descriptio
n>)
</package_footprint> @(\

)
Or $
: ’\Q)

<package_footprint> A\

<primary> (@)

<file> x

<name>acrobat. name>
<size>349808<s}e>
<version>8.1:0.137</version>
<md5>9h@\180f752d93ba168f779535ffa7f6</md5>
<[file>
<os_conf@ation_record>
ord_type>WMI</record_type>
@h>Root\ClMV2</path>
% name>Win32_Product</name>
Q9 <internal_path>Name= ‘Adobe Acrobat 8 Professional’</internal_path>

<entry>
v <name>Version</name>
Q <value>8.1.2</value>
N <type></type>
</entry>
<entry>
artic ‘VIUI IdUI I’I arl’ic
<value>Adobe Systems</value>
<type></type>
</entry>
</os_configuration_record>
</primary>

</package_footprint>

NOTE The filelist.xml file would use the same structure as the software identification tag and the
"package_footprint" element would be used to provide the file definitions for a particular software_id

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.11 Packager (‘packager’)

XML Tag packager

Type Complex type

Definition Provides details of who modified a software package for a particular set of installation
procedures. This element will most often be specified by a release manager within an
organization as software is configured for installation within that company. In these cases,
he packager element will often be associated with detai h 3 elease id, and

release_package.
QQ)

The element may also be used by third-parties in cases where a product jS"OEM'd and
repackaged, or if the software package is configured to install with a spemf@;onflgunatlon

This element may occur zero to one time in the software identificatiorf\{a\g.

Data XML tag Type Definition
Structure
by XML Attribute which giv ormation about thirgd party
character packaging product é%pany. Examples of the {ypes of
string values that couldoQ eneficial here:

One entry a) Packa@company name

I?\ ging technology used
stPnternal group name of the packager
. Q\‘\d) Desktop management product used
N

N\ Additional information on this item may be available on
\O the web site: http://standards.iso.org/19770.

oF
part d?f Additional information about third party product rgference
.| ‘eharacter details such as part number.
@ * string
C) One entry
Example er>
(g\<by>ACME Widget Corp</by>
<part>Photoshop CS3 — OEM'd into widget designer — P#345ABD</part>
</packager>

%o

%

© ISO/IEC 2009 — All rights reserved 45

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.12 Product category (‘product_category’)

XML Tag

Type

Definition

Data
Structure

Example

46

product_category

Complex type

Means by which product titles are classified by high-level function. A standardized list of
categories/groups is provided by the United Nations Standard Products and Services Code:
UNSPSC (for more information see http://www.unspsc.org/), COMMODITY listing number

4 0000 NSP odes found in the section numbered 4 0000 of the specificatio
are where the bulk of commonly used software categories will be found. Prod@
categorization shall be done using the UNSPSC codes. Q
This element may occur zero to one time in the software identification tag. (1:1’
XML tag Type Definition X
UNSPSC_ver XML Version number of the UNSPSC code’set used. The
character version is not required to use the code, however, if a too
string uses the version to provide addi functionality (such
as providing various names i of 9 other languages)
One entry the version will be needed tool.
N o
An example of the forrét of the UNSPSC versions is
10.0501.
segment_title XML Name of the se{@h’f the product belongs to
character 0\
string b\
%
One entry \\,0
family_title XML Na@?‘enabling recognition of the family of the product
character)
string \{:9
One en ’\CJ
&
class_title XML -, Name of the class
ter
(>
()| One entry
commodi@"tl'e XML Name of the commodity
character
VQ‘ string
Q One entry
[code Numerical Codes shall be specified as defined in the UNSPSC code
value with 8 | list.
digits
One entry

<category>
<UNSPSC_ver>10.0501</UNSPSC_ver>
<segment_title>Information Technology Broadcasting and Telecommunications</segment_title>
<family_title>software</family_title>
<class_title>Finance accounting and enterprise resource planning ERP software</class _title>
<commodity_title>Enterprise resource planning ERP software</commodity_title>
<code>43231602</code>

</category>

© ISO/IEC 2009 — All rights reserved

http://www.unspsc.org/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.13 Product family (‘product_family’)

XML Tag product_family

Type XML character string

I Product family provides an element software publishers and software licensors can use to
group related software products together for SAM practitioner reports. An example of the type
of product that would use this element is a backup tool where the backup services, server
DACKUD and ent backup portions 1or fhe {00l are sold as indepenaent prod 0 1NIS case,
if all products have the same product_family defined, a SAM tool can automati@y group
discovered software identification tag data appropriately as shown below: Q
YV

Example Backup Utility Vv
Backup Server - 20 installations discovered QY
Server Backup Utility — 240 installations discovered /\/\
Client Backup Utility — 10,240 installations discovered ,\Q
(. Y
Example |<product_fami|y>ExampIe Backup Utility</product_family> o8 ,\/
S

8.4.14 Product identifier (‘product_id’) <<)
Q
IR E Y product_id <Y
D
Type XML character string Q)\V

N

PIlalie] 8 Identification of the product. It is in%r%‘ndent from its version.

Product_id should be a uniq-& reference, but this can be unique within the poftware
manufacture and does not n@d to be a globally unique ID.

It is recommended msﬂe Product ID not be the product name, or other marketing|term as
these often change release to release. Instead the product_id should be an idenfifier that
can follow prod@ through their lifecycle without requiring marketing changes.

Product_id is used to define a lineage between products for identification of allowed upgrades.
This valge, may or may not be used by a software entitlement. If a software enfitlement
speci |69 at a product may allow upgrades during a certain period of time, the poftware
enti ent document cannot know which future product names or product versiony can be
ied and will become available during that time. The product id allows a poftware
ntittlement document to specify that a specific version of the product is entitled to be jnstalled
initially, and any updated products that have the same product_id are also entitlgd to be
installed as long as the release_date falls within the range provided in the software ent|tlement.

NOTE There may be more than one entry for product_id. This may happen in the case where|a creator
i A sumers-using-different-oclded products

to upgrade to the new one. For example:

Product A
product_id = 1234XYZ

Product B
product_id = ABCDPDQ

Product C (this product allows maintenance upgrades from Product A or Product B)
product_id = 9876HJK <- this is the new product ID for Product C...
product id = 1234XYZ

© ISO/IEC 2009 — All rights reserved 47

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

product_id = ABCDPDQ

If later releases of Product C only wanted to allow maintenance upgrades from earlier versions
of Product C, the product_id would only include the new ID for that product — 9876HJK.

This element may occur zero to unlimited times in the software identification tag

| <product_id>fc3cc419-b5a1-9f16-ed203e537c40</product_id> |

©)
N
r\’(l/Q

XML Tag release_date Q’, v
A

8.4.15

lelease date (‘release_date’)

Type XML dateTime type \
N

i This tag will typically be used by a software consumer organization a%aﬁl of an ITIL release
process. O\\

Date software configuration item was released for installation. T@software configuration item
should use a single date of release in order to facilitate reconé&a ion.

This element may occur zero to one time in the softwasﬁ%ntification tag.
AN

= LUl | <release_date>2008-01-21T12:00:00</release_date> .\
N
Q

S@J
lelease identifier (‘release_id’) A‘\Q)
O
) (IS ELR release_id \{:\V
RXe
Type XML character string C)\

[N .
Il This tag will typicallyb&\u\sed by a software consumer organization as part of an ITIL releasq
process. C)

Data used ir&c’)nciliation to identify release package attributes upon installation ang
associated are entitlements. Entries for this element shall be kept consistent across al
software j ification tags for any given software configuration item.

This ngent may occur zero to one time in the software identification tag.
O

Example <release_id>COE-Base-Ver 8, 2008-01-21</release_id>
>

48 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.17 Release package (‘release_package’)

XML Tag release_package

Type Complex type

Definition This tag will typically be used by a software consumer organization as part of an ITIL release
process.

‘alidation—information—thata—releasepackagehas—beenrbuitto—coenferm—te—the service
provider's systems architecture, service management and infrastructure specifica@) .

NOTE End-use software packages will almost always be customized to the n e(&'of the service
provider, with specific installation options and/or combinations of software bundlind&péciﬁed. Release
software identification tags are completely independent of any external soj@e provider |software
identification tag). /\

O

This element may occur zero to one time in the software identif@t'i}n tag.

Data XML tag Type Definition
Structure

Sign_off XML character | This entry indica e person who authorized |that the
string software was packaged properly and is ready to go into a
testing pha
One entry Q%
N
Sign_off date | XML dateTime | This @ry indicates the date the software package was
type s\i&@d off.
b\
One entry \‘$
N
By XML character | This entry indicates the software developer who|created
string N~ the package. This information may be used if glestions
O come up during the testing phase.
(0] try
[N .
I=xample <release_package>
<sign_ ne Doe</sign_off>
<si date>2008-01-10T12:00:00</sign_off_date>
< hn Doe</by>
</rel _package>
Q°
3.4.18 Re rollout (‘release_rollout’)
XML Tay release_rollout
‘Turmn Compolextuna
L ,.I\' VUIIIPIUI\ LyPU
Definition Validation information relevant to who signed off a release package as ready for production

use and when the sign off occurred.

This element may occur zero to one time in the software identification tag.

© ISO/IEC 2009 — Al rights reserved 49

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Data XML Type Definition
Structure tag

Sign_off | XML character string | This entry indicates the person who authorized that the
software was properly tested in a production pilot and is
One entry ready to go into a production use.

Sign_off | XML dateTime type This entry indicates the date the software pilot was
_date signed off.

One entry
By XML character string | This entry indicates the SAM practitioner who m 2 eq
the pilot testing phase. This information may b ed if
One entry questions come up once the software is in prodgjbtton.
A
Example <release_rollout> "
<sign_off>Mary Jane</sign_off> '\0_)

<sign_off_date>2008-01-16T12:00:00</sign_off_date> C)
<by>John Smith</by> Q/
A

</release_rollout>

lelease verification (‘release_verification’) Q
Q)

XML Tag release_verification QV
AN

Type Complex type b\
s

i B Validation information that a release packa & has been verified against a testing environmen
that matches the requirements of the tar roduction environment.

This element may occur zero to one\qme in the software identification tag.

Data XML tag Type - Definition
Structure

Sign_off XML chg(acter string | This entry indicates the person who authorized tha
the software was properly tested in a controlled
O(e)gtry environment and is ready to go into a pilot testing.
n *

Sign_off_date\~)7(ML dateTime type | This entry indicates the date the software testing was

Q signed off.
One entry
N
B Q‘ XML character string | This entry indicates the SAM practitioner whd
é managed the controlled testing phase. This
?‘ One entry information may be used if questions come up once

the software is in the pilot testing phase.

Example <release_verification>
<sign_off>Jane Smith</sign_off>
<sign_off_date>2008-01-14T12:00:00</sign_off_date>
<by>Doug Johnson</by>

</release_verification>

50 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.20 Serial number (‘serial_number’)

XML Tag serial_number

Type XML character string

BB Unique identifying number; may be represented as a combination of numbers, letters or
symbols. Serial Number is a commonly used unique number assigned for identification of a
particular title and purchase In the case of software |dent|f|cat|on tags, the unique_id
pecome Ne ll- l. K D an OO-I d .l N d Nal Q ne Serlal
number where it is available. Qq

NOTE 1 The serial number may be put through a one way hash that obfuscates ‘the” actyal serial
number — this is still useful to the SAM practitioner — especially if the same referel@'serlal number is
included on the purchase order, invoice or other details provided by the dly\@tor to the |software
consumer. Q)

NOTE 2 If the tag creator chooses not to provide a serial number, they may choose to provide some
other referencable data value that may be used to associate inform purchase orders. This allows
a tag creator to assist SAM providers in finding entitlement inform

This element may occur zero to one time in the softwa;s\%entification tag.

. O

Example <serial_number>1088-9015-2034-4567</serial_numb
Or \\Q
<serial number>10PQR28FTQN2008</serlg§,}umber>

&

9.4.21 SKU (‘sku’) A\Q

XML Tag IS Nt

\\‘\{‘
Type XML character string_;"
“ *

L5l I A Stock Keepi nit (SKU) is a unique identifying number for a software provider. The SKU
may be re nted as a combination of numbers, letters or symbols. SKU is a commonly
used unj umber assigned for identification of a particular title and purchase. In the case
of sof identification tags, the unique_id becomes the primary unique key, byt many
organizations may still want to have direct access to the SKU value.

{NOTE If the tag creator chooses not to provide a SKU, they may choose to provide sofne other
| referencable data value that may be used to associate information in purchase orders. This allqws a tag
creator to assist SAM providers in finding entitlement information.

This element may occur zero to one time in the software identification tag.

= E 0T | <sku>065-04940</sku>

© ISO/IEC 2009 — All rights reserved 51

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.22 Software creator alias (‘software_creator_alias')

XML Tag software_creator_alias

Type Complex type — EntityDataComplexType

Definition Provides additional software creator information enabling SAM practitioners and SAM tool
providers to identify previous entities who were related to the creation of the software
identified in the tag. Though not strictly required for software discovery purposes, this entry

aaca-tha dan-of o AMNM _oreae ano dina-thanm h_nroviaonie aofhiaara arants

details which can be used to more easily find an older software entittement. Th
especially important in the case where an upgrade is allowed from a previous s re
provider's version of a product to the current provider's version. q/

N
A

This element may occur zero to one time in the software identification tag.

Data XML tag Type Definition
Struciure

alias Complextype | Details of previous creators who.may have a relationship
- to the software title ide@ ied by the software
AliasDetailsC | identification tag. N\
omplexType X

O

Zero to Q<<
unlimited \Q
entries s\0\

The following example is appropriate for a Macra{é@n product that was purchased by and is now
owned by Adobe® $’\.

<software_creator_alias> 4\6
<alias>
<alias_name>Macrovision</ali §_9ame>
<alias_regid>regid.1998-02. .macrovision</alias_regid>
</alias> N
</software_creator_alias> | C)
*

Or, if the regid of the @antity is unknown:

<software_crea6_gffas>
<alias>
<alias, e>Macrovision</alias_name>

<a§99id>unknown</a|ias_regid>
</ali
.

</s e_creator_alias>
Sl
e
)

52 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.23 Software licensor alias (‘software_licensor_alias’)

XML Tag software_licensor_alias

Type Complex type — EntityDataComplexType

Definition Provides additional software licensor information enabling SAM practitioners and SAM tool
providers to identify previous entities who were related to the licensing of the software
identified in the tag. Though not strictly required for software discovery purposes, this entry
wi-ease-the-burden-of-a-SAM-practiionerby-providing-themwith-previeus-seftwareqlicensor
details which can be used to more easily find an older software entitlemeft)|This is
especially important in the case where an upgrade is allowed from a previ goftware
provider's version of a product to the current provider's version. (l/
/

This element may occur zero to one time in the software identification t«

Data XML tag Type Definition
Structure
alias Complextype | Details of previous licensors who may have a
- relationship to the sof ¢ title identified by the goftware
AliasDetailsC | identification tag. \%
omplexType X
O
Zero to Q<<
unlimited \Q
entries
N
<software_licensor_alias> (4
<alias> ®
<alias_name>Adobe System as_name>
<alias_regid>regid.1986-12. .adobe</alias_regid>

</alias> O
</software_licensor_alias>, -

Or, if the regid of the@ég’entity is unknown:

*
<software_|ice®_alias>

<alias>
<a|ia§§|e>Adobe Systems</alias_name>
<ﬁ'_ gid>unknown</alias_regid>

</ali
</ re_licensor_alias>

© ISO/IEC 2009 — All rights reserved 53

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.24 Supported languages (‘supported_languages’)

XML Tag supported_languages

Type Languages as specified in IETF RFC 4646

Definition Languages that the program interface presents to the user. Languages shall be specified as
defined in IETF RFC 4646.

q

Data XML tag Type Definition
Structure

Language XML Languages supported by this softwarg: package
character Language may occur multiple times. Specification of the
string language shall be specified as defined bq} F RFC 4646
(see http://www.ietf.org/rfc/rfc4646.txt) "and the process
One to used for matching language tags is @cified in IETF RFG
unlimited 4647 (see http://www.ietf.org/rfc/ 4 7.txt).
entries O\
\\
Example <supported_languages> o)
<language>en</language> Q
<language>fr</language> O
</supported_languages>
\ -
N
8.4.25 Tjag creator alias (‘tag_creator_alias') \ss\g
N
T)
XML Teg tag_creator_alias A\Q
Type Complex type — EntityDataCompleXxType
ad)
Definition Provides additional tag or information enabling SAM practitioners and SAM too
providers to identify previous entities who were related to the creation of the softwarg
identification tag. Th not strictly required for software discovery purposes, this entry wil

ease the burden o@ AM practitioner by providing them with previous tag creator details
which can be us@o more easily find an older software entitlement.

.

This eleme@ay occur zero to one time in the software identification tag.

Data XML tag Type Definition
Struciure

(‘5 Complextype | Details of previous tag creators who may have 4§
- relationship to the software title identified by the softwarg
AliasDetailsC | identification tag.
omplexType
Zero to
unlimited
entries

Example The following example is appropriate for a Macrovision product that was purchased by and is now

owned by Adobe®

<tag_creator_alias>
<alias>
<alias_name>Macrovision</alias_name>
<alias_regid>regid.1998-02.com.macrovision</alias_regid>

54 © ISO/IEC 2009 — All rights reserved

http://www.ietf.org/rfc/rfc4646.txt
http://www.ietf.org/rfc/rfc4647.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

</alias>
</tag_creator_alias>

Or, if the regid of the alias entity is unknown:

<tag_creator_alias>
<alias>
<alias_name>Macrovision</alias_name>
<alias_regid>unknown</alias_regid>
</alias>
</tag_creator_alias>

.4.26 Tag creator copyright (‘tag_creator_copyright') (1,

ag tag_creator_copyright

pe XML character string NG
.G
De o This element is provided in order to enable the tag creator th%ﬁdaence to specify the cppyright
allow their tag to be dollected

for this particular tag. It is expected that software creatorﬂ
and distributed as long as creator-specified contents o%w ag are not modified. Thig allows
SAM tool providers and others to access and use sfo\ are identification tags easily within
their tools. <<

An independent 3™ party that creates tags@@y put more limitations on the usg and/or
redistribution of the software identification t@data.

See Annex F for more details on co yr&&' information.
p\

The abstract element may occur e than once in a software identification tag, but shall only
occur once for each Ianguage ified.

If language is not specmgg:\t is assumed to be English ("en").
This element may o@ zero to unlimited times in a software identification tag.

-

lang O ML character string. This is an | The language the abstract is wrltten in.
% optional tag attribute Languages shall be specified ag

2 defined in IETF RFC 4646 -
Q http://www.ietf.org/rfc/rfc4646.txt.
ple <tag_creator_copyright lang="en">This tag may be used by used, stored, referenced and distributed by
any software tool provider and or third party tag collection agency as long as the following elemgnts are
not modified:

- entitlement required indicator
- product | title

- product_version

- software_creator

- software_licensor

- software_id

- tag_creator

Extended information may also be added to the tag.
</tag_creator_copyright>

© ISO/IEC 2009 — All rights reserved 55

http://www.ietf.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.27 Tag version (‘tag_version’)

XML Tag

Type

Definition

Data
Structure

Examp e

56

tag_version

Complex Type

This element provides a data element for tag creators or tag modifiers to provide tag version
information. A properly defined software identification tag does not need to have a version
specified by the tag creator smce every software |dent|f|cat|on tag is unique. However as
dJ MOVEe INrougn (N QIIWAre C e, M iple d(IIOO - 1 d Nal Q MAKE NANQE
to elements they are allowed to modify and/or to add extended elements to a softwqyj
identification tag. In these cases, a version reference is required. There is a need t
multiple entities to provide their own version information, meaning this element | be
included multiple times within a single software identification tag. Each time ‘@ version
element is provided all elements within the version element are required ite ‘to ensurg]

uniqueness.
S

This element may occur zero to unlimited times in the software identificei)on tag.

=" <name>My Example Corp</name>

XML tag Type Definition
name XML character This element provides the s@ e of the entity defined in the
string tag. This name should Bé consistent between software
products and software-réleases.
One entry
X‘Q
regid regid type Regid of the ‘Qaftware creator (as specified in section
6.1.3.) If ntity is unknown, or is no longer in business
One entry this val§ y be set to "unknown".
R\
«Q
numeric_ve | ProductVersion \ENUmeric version identifier
rsion ComplexType’\\O
Complex type)
consisting of
four e ts
wit eric
d - “major”,
¢~mainor”, “build”,
%\?review”
Q~Q One entry
a
_version>

<regid>regid.1995-09.com.example</regid>
<numeric version>

<major>1</major>
<minor>0</minor>
<build>0</build>
<review>0</review>
</numeric_version>
</tag_version>

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.4.28 Upgrade for (‘upgrade_for’)

XML Tag upgrade_for

Type Complex type

Definition Product title that represents an upgrade for an earlier, down-level version, providing specific
details about what is upgraded.

Data XML tag Type Definition
Structure

upgrade_id | Software This refers to the software_ids that be upgraded to
identification the version indicated in this tag. /\ software |ids are
type described | provided, SAM managers can %‘en do a commpletely
in 8.3.5 automated reconciliation to ensure that all upgrafdes are

done appropriately. O
One to unlimited \Q/
entries O\
\
upgrade d | XML character | Optional descripti%g\oT upgrade
escription string

Zero or one

entry s\0\\
Example <upgrade_for>
<upgrade_id> ®
<unique_id>fc3cc419-b5a1-9 d203e537c40</unique_id>
<tag_creator_regid>regid. -12.com.adobe</tag_creator_regid>
</upgrade_id>
<upgrade_description>{g§8nal description of upgrade}</upgrade_description>
</upgrade_for> +.C)

oY
8.4.29 Usage identifier (‘u@_identifier’)
Cy
XML Tag usage ®e ntifier
N
Type COQ‘BN%X Type

Definition Provides information specifying which running process should be used to validate ysage of
the product. The usage element does not need to specify software components tha{ load at
startup, but can for example specify those components that indicate that an endtuser is
actually using the product.

CICITIE dy U U clO 10 U cU C c SOIWdIE [UE d O dy.

© ISO/IEC 2009 — All rights reserved 57

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Data XML tag Type Definition
Structure
filename XML character | This defines the filename that is executed to start an
string application.
Zero to This element may occur zero to unlimited times in the
unlimited entries | software identification tag.
processna | XML character | This defines the process name as it would be found in the
me string process table for the application
Zero to By default, this value will be interpreted as a a
unlimited entries | expression. Processname has an attribute callec pe'
that allows for the definition of a "literal" oﬂj'egexp'
(regular expression). If the type for pr sname is
"regexp", the value provided shall foll the regular
expression syntax as ined at
http://www.w3.org/TR/xmlschema-2/#regexs.
This element may occur zero to@%/ited times in the
software identification tag.
URI XML URI type This defines a web based\location that needs to be
accessed at runtime to, determine application usage. This
Zero to may be used in t ase of an on-line tool that an
unlimited entries | organization want@ack usage on, or it may be used in
a case where a%a plication requests information from a
URI during exe@ on.
‘3 . . .
By defau@tms value will be interpreted as a litera
expression. URI has an attribute called "type" that allows
for t@ definition of a 'literal" or "regexp" (regularn
e %ssion). If the type for URI is "regexp", the valug
bﬁvided shall follow the regular expression syntax as
.\\abdefined at http://www.w3.org/TR/xmlschema-2/#regexs.
C) This element may occur zero to unlimited times in the
@ software identification tag.
Examp e <usage> V)

<process
</usage> %

&
\9)
St

:/usage>

<fi|ename>é'@ﬁd.exe</fi|ename>

>windword.exe</processname>

URI type="regexp”>https?://[*/]*/MyWebApp/</URI>

58

© ISO/IEC 2009 — All rights reserved

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2/#regexs
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

8.4.30 Validation (‘validation’)

ISO/IEC 19770-2:2009(E)

XML Tag

validation

Type

Complex Type

Definition

Data
Structure

Provides a callout that a discovery agent can use to validate the software identification tag.
Due to system issues, installation and uninstallation defects or other issues, a software
identification tag may not be fully in sync with the software installation. This element allows a

validate that the software identification tag is correct.

jired, to

P

It is expected that software applications will regularly validate software i éﬂ%cation tags
Icilbe

with which they are associated at the time they are executed — this wo
self-healing process. During this self-healing, the tag sub-element
validation element, last_validated_by and last_validated_date woul

the tag has been compared and found to be accurate.

In those cases where a software package is not ru
last_validated_by and last_validated_date would not b
policy, may require that a software identification tag
(for example, if a software identification tag has not
considered suspect and possibly out of sync).
specified period, the discovery agent can call
the software identification tag is up-to-date. Q
N\

This element may occur zero to one timé&@the software identification tag.

XML tag Type
validation_c | XML character]
all string

xO
ne e \b
o C:;\tgo

> consiflered a
t are part of the
pdated to show that

N

an extended peripd, the
ated. A discovery agent, by
lidated within a specifieq period
n validated in 3 months, it |may be
the last_validated_date is older than the
outine defined in validation_call tq ensure

<

Definition

This is a call that a discovery agent can make to jalidate
that the software identification tag is valid. It is ekpected
that this call would be to one of the executable applications
in the software package with a command line parameter
that specifies that the tag should be validated.

O

@ The validation_call could also be specified as |[a URL
C)C) reference.
N .
XML character | This element identifies the process that was lised to

last idat
e string

Zero or one
entry

validate the software identification tag. It is expecfed that
the software creator will create an ID for any validation
routines and include that ID in this element.

Depending on the software creator, this reference [may be
the same for all software creator's titles (i.e. ACME's
validation routine), or it may be unique per packagqg. It may
even be possible that an installation routine may e used

to do a tag validation.

last_validat | XML dateTime | The last date and time that this tag was validated.
ed_date type
Zero or one
entry
last_validat | XML character | This element will be "True", "False" or "Unknown" (case of
ed_result string the string value does not matter). The purpose of this

element is to provide a method that can identify if the

© ISO/IEC 2009 — All rights reserved

59

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

<last_validated_result>true</last_validated_result> Q
</validation> RN\
\‘
O
8.5 ExXtended elements << 8)\
8.5.1 Hxtended information (‘extended_information’) QQ
XML Tzg extended_information QO
Type Sequence of elements of any type ’R\‘

Definition

Example

60

Zero or one Validation_call returns with a "True" — that the tag was
entry found to be valid, "False" - that the tag was not valid and
should be reviewed, or "Unknown" — that the validation call
could not be made, or failed to return a result, so it is
unknown if the tag is valid or not.

For the SAM practitioner, if they receive software
identification tag information that includes
"Validation_result=false", that will provide an exception that
needs to be investigated. It does not indicate that the tag is

validation process and lets the SAM practitioner b
aware of a problem. (1/

ﬂ’x

not valid, it simply indicates that there is an issue with %

<validation>
<validation_call>c:\program files\ACME\ACME _ validator.exe /tag- valldate</valldat|9Q all>
<Iast_va||dated_by>ACME_vaI|dator exe</last_valldated_by>
<last_validated_date>2008-03-31T12:00:00</last_validated_date>

xtended information element, a reseller may provide another extended_information

Supplemental information that ma;s\ provided by the software or tag creators, the
purchaser of the software, or @\é party (such as a distributor, SAM tool or desktop
management tool). \j\‘

Data shall be provided in @AL structure.

This element contai y extended information required. Data provided in this section shal
be provided in a -compliant structure. Additionally, an XSD should be provided so this
section can be-properly validated. The XSD file shall be referenced properly in the software
identlflcatlort§§XML file as per standard XML definitions.

Since l@ Iement is optional, it may not appear in the software identification tag. If thig
elem s in the software identification tag, it may appear multiple times. The expectation ig
ery extended_information section included in the software identification tag is owned
and managed by a single organization. Thus, a software creator may provide ong

element and a release manager may provide a 3 extended_information element Each of

extended_information section that they did not create or own.

This element may occur zero to unlimited times in the software identification tag.

<extended_information>
<software_creator_activation_ref>xyzzy</software_creator_activation_ref>
</extended_information>

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.6 Data type definitions

8.6.1 AliasDetailsComplexType

Data Type Complex Type

Definition This type is used to define aliases that may have previously been associated with
the software identified in the tag. Aliases are associated with
software_creator_alias, software_licensor_alias and tag_creator_alias.

In general, aliases would be used if an organization changed na
software product changed owners. Providing the alias detailE@

practitioners with information they may need in order to associ dispovered

software title with previously purchased versions of related so& 0.

Data Structure Definition

alias_name | XML character string This , element provides
defléiam of the names of previous
One entry s that may have been

Q:a;sociated with the software|defined
\\by a specific tag.

Ox

Ve
alias_regid XML character string)" This element provides for the
definition of a specified Regid of

One entry 0\\ previous entities (as spedified in
‘\ section 6.1.3.) If the eptity is
\QQ unknown, or is no lorjger in
business, this value may bg¢ set to
. ®$ "unknown".
Q\

<alias> \9
<a|ias_na€1e Macrovision</alias_name>
<alia ’@gld>regid.1998-02.com.macrovision</alias_regid>

</alias> ("

8.6.2 EntityCompIexTypeO®

Data Type ‘omplex Type

Definition This type is used to define the specific unique details for entities defined in
software_creator, software_licensor or tag_creator.

Data Stru:icture Definition

XML character string This element provides the nam
entity defined in the tag. This nameg should
One-entry be—consistent—between—software—products

and software releases.

regid XML character string Regid of the entity. If the entity is unknown,
or is no longer in business, this value may
One entry be set to "unknown".

<tag_creator>
<name>Adobe</name>
<regid>regid.1986-12.com.adobe</regid>
</tag_creator>

© ISO/IEC 2009 — Al rights reserved 61

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8.6.3 EntityDataComplexType

Data Type Complex Type

Definition This type is used to define the additional aliases for entities associated with the
software identified by a specific software identification tag. This includes any
aliases (other owners) that may have previously been associated with the
software identified in the tag as well as a regid to be specified for a specific entity.

Data Structure XML Taa Tvpbe Definition

alias Complex type This element provides foQ €
AliasDetailsComplexType | definition of previous entiti tha
may have been associateﬂ,wnh the
Zero to unlimited entries software defined by ab‘%ecific tag
In general, aliases Wk{ d be used i
an organization %ged names, O
if a software~ product changed
owners. P@yg the alias details
allows practitioners with
information’ they may need in order
to ae\s‘\% ate a discovered softwarg
titteO)*with previously purchased
rsions of related software.
a0

The following example is appropriate for a I\Qc vision product that was purchased by and
is now owned by Adobe®. s\\}
<tag_creator_alias> \‘S\Q)
<alias>
<alias_name>Macrovisjon</alias_name>
<alias_regid>regi 8-02.com.macrovision</alias_regid>
</alias>
</tag_creator_alias> \L\'
- O
o
GUIDType .
N
Data Type GUIDtype~
O *
Definition s data type specifies a GUID and validates that the data value matches g

GUID definition that should look something like the following:

00001101-0000-1000-8000-00805f9b34fb

Data Structure Type String

Restrictions pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a
fA-F]{4}-[0-9a-fA-F]{12}"

62 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

8.6.5 ProductVersionComplexType

ISO/IEC 19770-2:

2009(E)

Data Type ComplexType

Definition This data type is created to provide a standardized 4 digit numeric version. If the

be set to zero '0’

version number used for the product has less than 4 levels, lower levels should

Data Structure XML Tag Type Definition
major Integer Highest level of the versi umber
Typically, this is called the m%ii;Q ergdion.
One entry .,
oV
minor integer 2" level of the versjoh number. Thpically,
this is call the mino sion
One entry N
d e
build integer 3" level e version number| Many
organizat@ call this the build versign.
One entry N\
N
review integer level of the version number| Many
<Q anizations call this the patch ol review
One entry \Q evel.
L\§
o
&
8.6.6 FootprintModuleComplexType $
-
Data T
ata Type Complex Type\o
al
Definition This typ is}TJsed to define the files, registry entries and other datdq values
associa(e§~ ith a specific software package installation.
Data Structure XML Tag Type Definition
eferenced XML URI type This element is similar to
the external_descrigtion but
zero to one entries can be used for the|specific
footprint module only.
file File footprint complex type: This element repgresents
description of the filg with its
<file> attributes: size, MDS5,
< name> version, and any| other
(<size>)* needed
(<md5>)*
(<version>)*
(<other name>)*
<[file>
zero to unlimited entries
© ISO/IEC 2009 — Al rights reserved 63

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

os_configurati | OS configuration entry complex | This element provides other

on_record type (ONS) configuration
information that a software
<os_configuration_record> manufacture may want to
<record_type> provide to indicate that their
(<path>)? software is installed.
(<name>)? Expected values for the
(<internal_path>)? record_type element are:
(<entry>)+
(<name>)? a) Registry
{<value=)2 by —AHH
(<type>)? c) RPM @)
</entry> d) ODM N
</os_configuration_record> e) file-entry (1/

- . Examples shz\mg use of
zero to unlimited entries these ite are shown

below. N

OtI’R@@(/{)es may be defined
time see the ISO
70 web page foi

g\\\ pdates

O"| http://standards.iso. orqllso/1
& | ar701.
other Other footprint complerbd This element representg
<other type> N any footprint information
<param name> \\) that is required, but no
</other> listed above. It may contair
\}‘ any attributes.

zero to unlwﬁd entries

<os_configuratloner‘écord> details and examples

registry \l‘
o
An os_configurat record with record_type of registry uses the specified elements as a

regular request to capture registry values from Microsoft® Windows® computers.
Element sed as follows:

Q ord_type> registry

path> full path to the registry value. This includes the fully specified root
\OJ (i.e. HKEY_LOCAL_MACHINE)
) <name> NA
<internal_path> NA
<entry>

<name> registry value required for comparison
<value> comparison value
<type> type of registry value

</entry>

Example:

<os_configuration_record>
<record_type>registry</record_type>
<path> HKEY_LOCAL_MACHINE\SOFTWARE\Adobe\Acrobat
Reader\7.0\AdobeViewer</path>
<entry>
<name>EULA</name>
<value>1</value>
<type>REG_DWORD-</type>
</entry>
</os_configuration_record>

64 © ISO/IEC 2009 — Al rights reserved

http://standards.iso.org/iso/19770/
http://standards.iso.org/iso/19770/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

wwMi

An os_configuration_record with a record_type of WMI uses the specified elements as
part of a WBEM Query Language (WQL) request. Elements are used as follows:

<record_type> WMI

<path> namespace where the class is located
<name> class of the object
<internal_path> query statement used (i.e. where state='stopped'
<entry>
<name> attribute name
<value> comparison value Qq
<type> type of class attribute value (optional) Q
</entry> "1,

Example: /\,\Qﬂ/

<os_configuration_record> ,\Q)
<record_type>WMI</record_type>
<path>Root\CIMV2</path> C)
<name>Win32_Product</name> \Q/
<internal_path>Name= ‘Adobe Acrobat 8 Profi \m
<entry>

nal’</internal_path>

<value>8.1.2</value>

</entry> Q
<entry>

<name>Version</name> S\\
@)

<name>Vendor</n g
<value>Adobe S s</value>
<type>string</tg

</entry> s(\
</os_configuration_recog\

RPM A’\e

An os_configuréﬁg_record with a record type of RPM uses the specified elements to read
data from tht"*PM data store. Elements are used as follows:

N
<fe€;l'd_type> RPM

<path> NA
@nam» name of the RPM package
-O <internal_path> NA
<entry>

<name> attribute from the RPM package to use for comparison
<value> comparison value
<type> type of attribute value

</entry>

Example:

<os_configuration_record>
<name>lvm2-2.02.28-1.fc8</name>
<type>RPM</type>
<entry>
<name>Name</name>
<value>lvm2</value>
</entry>
<entry>
<name>Version</name>
<value>2.02.28</value>
</entry>
<entry>
<name>Signature</name>
<value>DSA/SHA1, Thu 25 Oct 2007 06:10:53 AM CEST, Key ID
b44269d04f2a6fd2</value>
<type>string</type>

© ISO/IEC 2009 — All rights reserved 65

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

</entry>
<entry>
<name>Packager</name>
<value>Fedora Project</value>
</entry>
</os_configuration_record>

ODM

An os confiquration record with a record type of ODM uses the specified elements
to read data from the AIX Object Data Manager. Elements are used as follows:

<record_type> ODM Qq
<path> NA Q
<name> type of ODM information to retrieve (1/
<internal_path> NA ,(1/
<entry> ,\
<name> attribute from the LPP package to use for compari&l{n
<value> comparison value N
<type> type of attribute value
</entry> Q/C)
" »
Example: O
<os_configuration_record> s\\%
<type>ODM</type> (@)

<name>Ipp</name>

N
<entry> QQ

<name>name</name>
<va|ue>bos.msg.en_US.docse@client.Dt</va|ue>
<type>string</type>

</entry> ‘(\6

<entry> \
<name>description</ e>
<value>Lite NetQuestion Local Web Server</value>
<type>string</type>

</entry> B\

<entry> . \J:
<name name>
<va|u.e /value>

<type>short</type>
</er§
</os_ctn) ration_record>

KSa

) <record_type> file_entry

<path> path to file
<name> NA
<internal_path> NA
<entry>

<name> NA

<value> comparison value to find in file

<type> type of attribute value
</entry>

Example:

<os_configuration_record>
<type>file-entry</type>
<path>/etc/inittab</path>
<entry>
<value>x:5:respawn:/etc/X11/prefdm -nodaemon</value>
</entry>
</os_configuration_record>

66 © ISO/IEC 2009 — Al rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

Annex A
(informative)

Software identification tagging principles

A.1 Introduction

Tlhe purpose of this Annex is to provide a conceptual overview of software identification tagging’ principles. It
restates many of the normative requirements specified in the body of this part of ISO/IEC)19770, hut is not
mtended to add to or modify those requirements.

Tlhe fundamental objective of the software identification tag is to facilitate the identification and marjagement
df installed software. This must take into account the ways software is created, distributed, licensed apd used.

A.2 Life cycle of a software identification tag

A.2.1 Overview

Data within the software identification tag will be created and/or modified at four major points thrpugh the
software identification tag life cycle as shown below:

Figure A.1 — Life cycle of a software identification tag

Creation Software Packaging Release Installation
Process Process Process Process
+[Master installation 3 party +Image customized sInstallation
image created integration with to business performed op
+Basic data defined other software +Release values system
for tag +Uniqueinstallation added to tag sInstallation dpecific
options provided elements adfled
sInstallation dpecific
filename crefted
N S N S N S N S

Hach phase’of this process may be specified by different entities. In general, the creation process is specified
by the'software creator, the release process is specified by the release manager and the installatior] process
-specific

A.2.2 Creation process

When software is created as a gold master, it will often include a software identification tag that has a number
of elements pre-defined. These elements are generally owned by the software creator or the software
licensor. These elements include (elements in bold are required elements):

1. abstract
2. component_of

3. complex_of

© ISO/IEC 2009 — All rights reserved 67

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

data_source

dependency

elements_owner
entitlement_required_indicator

license_linkage

© © N o 0o b~

package_footprint

10. pgroduct_category

11. groduct_identifier

12. product_title

13. product_version

14. release_date

15. gku

16. goftware_creator

17. doftware_creator_alias
18. doftware_licensor
19. doftware_licensor_alias
20. goftware_id

21. qupported_languages
22. tphg_creator

23. tpg_creator_alias

24. thg_creator_copyright
25. (pgrade_for

26. (sage_identifier

27. Validation

[oN

In general, these elements-sheuld be relatively static for a particular software product and should be provide
in the ingtallation mastercopy.

Softwarg creators may'choose to create tags only at installation time. This process is acceptable as long &
the datafin the tag.that is actually installed matches the same type of data that would be provided as part of
product that provides a pre-installation version of the tag. Procedures should be defined that allow th
software| cofisumer to provide their own values for release elements in the tag as well as the potential {
provide qoftware packagers with the ability to alter specified tag elements.

A.2.3 Software packaging process

Some software will go through a packaging process that may be done by a 3" party. This may be done in the
case of an OEM product that is integrated into a complete software solution, or by licensed bundlers who may
combine multiple products into a suite.

In these cases, the elements that may be updated will vary based on the agreed terms between the software
creator, software licensor and the software packager. It may entail the software packager creating their own
software identification tag to replace the existing tag, or alternatively to create a package tag which will refer to
the existing tag and software as a component. Another alternative is that it may entail the modification and/or

638 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

addition of software identification tag elements. If the tag is simply incorporating the existing product without
modifying the software_creator or software_licensor owned elements, the elements that may be expected to
be added or modified include (none of which are mandatory elements):

component_of
complex_of
data_source

dependency

elements_owner

o gk w0 N~

license_linkage
7. packager

y providing additional information in the software identification tag elements above,/software packggers can
ecify information that can assist a SAM practitioner with identifying software that.is linked to their|[package
rather than something that is a stand-alone package.

.2.4 Release process

nce a software master version is delivered to an organization, it is often provided with customized installation
etails and tested prior to the software being distributed and finally.installed. During this phase, th¢ release
anager is the owner of certain elements in the tag and will ,often modify specified elements in a|software
entification tag. The elements relevant to the release proces® include (none of which are required itgms)

1. elements_owner
2. packager

3. release _id

4. release_package
5. release_rollout

6. release_verification

Llarger software consumer-organizations may also choose to add extended information to the |software
entification tag that_provides additional data that can be used for support, SAM procedures, |[or other
rocesses.

.2.5 Installation process

his process is typically defined by the software creator or software licensor and may be mofified as
ppropriate by the release manager within an organization.

\When a soffware product Is installed on a computing device, the soitware identiiication tag will receive its final
filename. As mentioned in section 6.1.7, the use of a unique_sequence_id that includes machine identifying
information is highly preferred since it provides general uniqueness to the flename across the enterprise, but
more importantly, it provides the ability to identify which system was used to install a software package on a
removable device.

At the time of installation, a number of data values will also be updated. These values typically include (none
of which are required items):

1. installation_details

2. serial_number

© ISO/IEC 2009 — All rights reserved 69

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

3. validation

A.3 Unique definition of software_id

A unique software_id corresponds to a unique product at the binary level for distribution/update purposes.
Uniqueness is guaranteed by a combination of a unique tag_creator _regid name and a tag_creator
maintained unique_id.

The soft _
distributipn of that software package. Other details in the software identification tag may change to indica
differences in channel distribution, or even the fact that a software product is included in a bundled versioh ¢
a 3" parly’s software suite.

=

There may be instances where the actual software_id installed with a software bundle may notbe)known until
installation time. This would be the case in products where multiple configurations of the‘software are
availabld through a single installer and the installer is only made aware of which version of a software
package|will reside on a computing device at install time. In these cases, each configuration option that mgy
include different licensing entitlements should be provided with its own unique software’ id.

A.4 Filename specification

A.4.1 Qverview

Filenamgs will have two different forms — one when the filename.is*used prior to the software package bein
installed | (distribution filename), the other when the software,package is installed on a computing devic
(installation filename).

D Q

A.4.2 Distribution filename

D

The distiibution filename should follow the rules, specified in section 6.1.6. This filename includes the uniqu
software|identity and provides information abodt'the tag_creator. The distribution filename is specified by th
software| creator or the tag_creator, and is likely to be exactly the same for every distribution copy of th
software|created.

D D

A.4.3 Installation filename

When a [software identification tag is installed on a computing device, the flename must be unique for th
particulaf device. This is a-requirement because multiple software identification tags may be installed in th
same directory, and every)filename must be unique. This is accomplished using the filename specification
defined ih section 6.1.7.

Additionglly, it <iss*highly recommended that software identification tag installation routines follow th
recommendation in section 6.1.7 to include machine unique information in the installation filename. Doing th
provides|the, ability for SAM practitioners (and others) to identify which machine was used to install softwa
on remov i

The unique machine information may also include details specific to a particular virtual machine. Though not
specifically identified in section 6.1.7, the more unique information that can be provided in a machine ID, the
more likely it will be that software identification tags can be associated with the specific device that was used
to install the software.

70 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

A.5 Tag installation locations

There are two locations where a software identification tag will be installed on a computing device. One is a
common system location (see sections 6.1 and A.6.3); the other is the top level of the installation directory for
the software package.

A.6 Principles of operation without a registration authority

.0.1 General

—

his part of ISO/IEC 19770 has been written to avoid the necessity for a registration authority~A repistration
uthority could maintain central lists of many of the types of information covered)by this| part of
BO/IEC 19770, such as:

Q)

q) All platforms, their respective owners, and where software identification tags shéuld be stored on|each
H) Unique software creator names and identifiers

d Unique software identifiers

A.6.2 Unique references to identified creators and licensors

—

he following principles have been incorporated into this part ofMSO/IEC 19770 to facilitate operatioh without
registration authority:

Q

q) The elements tag_creator, software_creator and.software_licensor must all utilize a specific repistration
ID (regid) that is guaranteed to be unique to\the organization and that can be used to idgntify the
organization. This regid is created based on-the definition developed for the iSCSI standard as [specified
in the IETF RFC 3720.

H) The regid incorporates the creatoris ‘domain name (as specified in IETF RFC 1034, section| 3.5 and
IETF RFC 1123, section 2.1). Using the regid (and by extension components of the domain for the
organization) allows this part(of "ISO/IEC 19770 to provide for a unique ID that does not rgquire an
independent registration authority and provides additional information to track back to the original tag
creator.

d) The tag creator has.the’responsibility for ensuring a unique_id for everything created for the tag|creator’s
regid.

d) There are provisions for on-line reference information, such as for package footprint informatign. When
used as ah’on-line reference, these require a URI, which uniquely identifies the tag-creator.

Tihis approach allows tag creators to exist and operate independently of software creators, to IIIOW the
greation~of software identification tags for the software of software creators which may have gone out of
Husiness, or which are not creating tags for their software. It also allows the ready creation of [software

identification tags for software which was created befare this part of ISO/IEC 19770 was developed. |

A.6.3 Platform storage specifications

The only information which is not contained within the tag itself, or by an embedded reference, is the
specification of where a given platform (e.g. Windows®, UNIX®, and Linux™) will store its software
identification tags. There are a comparatively limited number of platforms, but the requirement for information
in this area is dealt with in the following ways:

a) Each platform provider has the right to specify where this information will be held on its platform. The
platform provider will be able to communicate this information in any way it chooses, e.g. via its website. It

© ISO/IEC 2009 — All rights reserved 71

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

is the recommendation of this part of ISO/IEC 19770 that platform providers publish this information, at
least, in a subdirectory named ‘19770’ under their main domain name address.

b) Common system directories that should be used for tag storage on various platforms have been specified
in section 6.1.

c) Technical Reports may be published on http:/standards.iso.org/iso/19770/-2/ with consolidated
information about known platforms and conventions for data values being used commonly by industry in
software identification tags.

will facilifate the consolidation of information by software creator even if produced by different tag creators.
However, the lack of such unique identifiers for specific software creators will not prevent the successfi
implemeptation of this part of ISO/IEC 19770.

Furthermore, each software creator should have a unique software creator identity (‘software_creator’), whiéf

72 © ISO/IEC 2009 — All rights reserved

http://standards.iso.org/iso/19770/-2/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

Annex B
(informative)

Software provider use cases and guidance

2009(E)

.1 Introduction
Tihe software provider will implement the ISO 19770-2 standard for several reasons:

q) Ease of identification — Software consumers will find it easier to identify software, @nd collect i
while allowing increased implementation of SAM practices. Software auditsqand software
(internal or otherwise), will have a better understanding of what is installed across)the organizatio

b) Accuracy of identification — Current methods of software identification’ typically rely on

often not at the same resolution level as software entitlements. Additionally, many product titles
obvious correlation to the application components that are actually installed. These issu
identification results hard to reconcile with software entitlements,

d) Control over software identification — To ensure consistency, software creators are able t
exactly what can and cannot be changed in the software identification tag (tag).

Vhen electronic software entitiements become standardized, the software creator and provider wh
se tags will be able to implement software entitlements that provide automated or nearly a
pconciliations to existing tags. As a software creator is implementing tags for their product lines,
eed to consider details of how software entitleients may influence how much information is provid

g.

o~ 0 0 C <

rom a software product definition and-development perspective, it is beneficial to define the tag as
the project as possible to ensure that'the software portion is focused on the right tools and technolog
the requirements specified for the.target languages and platforms.

he use of standardized tags benefits both software consumers and software creators alike.
nsumers gain increased_efficiencies through a simplified discovery process and a more effectiv
rocess. Software creators benefit from software consumers having sound asset management
nsuring software will-be installed and used in accordance with the software license agreements.

he following use’/cases provide different perspectives on how the tag is created and updated thr
lifecycle of atsoftware product.

.2 Roles involved in the software identification tag creation/management

hventory;
auditors
n.

software

recognition signatures based on application components discovered on‘machines. These signafures are

have no
ps make

b specify

already
tomated
they will
ed in the

5 early in
to meet

Software
e overall
practices

bugh the

Numerous individuals occupying different roles will be responsible for ensuring a software identification tag is

created and maintained properly, including (but not limited to):

a) Product manager — this person defines the product being developed/enhanced and specifies many
aspects of the product that are referenced in the tag. Referring to the tag as part of the product definition, a

more specific product document can be created.

b) Development manager — this person determines the technology used to develop and deliver software.

Having the tag specifications provided in advance allows them to have a clearer understanding of
user environment for the product.

© ISO/IEC 2009 — All rights reserved

the end-

73

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

c) Software licensing/product release specialist — this person ensures end-users, IT specialists and auditors

know

exactly which piece of software they are using. If a suite or bundle consists of multiple products, this

group needs to understand how that may impact licensing or product release activities (including catalog
updates). This person is responsible for making sure that a software item, its license and any associated
catalog information is correct and properly cross-referenced.

B.3 Product manager role

The progd

requirements will be to speC|fy the elements a software |dent|f|cat|on tag (tag) needs to |nclude and often th
values thHat must be specified for certain tag elements. The more details a product manager can specify~about

the varigus tags that may be associated with a product, the more details product development and.'software
release gpecialists will have available to understand product requirements.

The follo
a) Man

As the p

wing elements will often be important to the product manager and should be well understood.

jatory elements

—

oduct manager generates the product definition, the definition template should include a section th

specifies| required portions of the tag. Initially the product manager will work through the mandatory elemen

in the tag:

1)

Entitlement required — this tag determines whether or not\the discovered software should
accounted for during the reconciliation process. The proddctvmanager can clearly state when 3
entitlement is needed (when a software license sold to software consumers), or not (when software Is
installed in trial mode, or is provided for free).

Product title — this element corresponds to the official marketing name of the product as defined by
the software creator. Typically this is the name which the SAM practitioner and IT specialists will cdll
the product. The title itself may not have a direct'impact in the reconciliation process.

Product version — this important element allows the definition of both a text-based marketing versi
(commonly used by software creators_to simplify the naming of a particular version for promotional
purposes), and the formal numeriC version for the software. The numeric version may include up

four elements which provide the’ complete version information: major version number, minor versi

number, build, and review. Atsoftware vendor may license a software product by its major or mingr
version only. In such cases,/the product manager should make sure that the software entitlement
information (purchase order, invoice, software license certificate or equivalent) can be clearly linked
to the specified version.number to ensure there is no confusion during the reconciliation process.

Software creator,<identity — the purpose of this element is to provide a unique and consistent
identification{af-the vendor producing the software. While some software companies may have
slightly different regional names, it is important to augment the name with an identifier that will remain
constant.across all countries, regions and languages — this is specified in the regid element. This
valuershould be the same for all products and releases from the software creator.

organization WI|| define a unique |dent|f|er for each product version. The unique identifier will enable
proper comparison at reconciliation time.

b) Optional elements

The product manager will define other elements that need to be specified. A best practices approach to the
definition of a software identification tag should include allowing the software creator to know which optional
elements are best specified as the software is shipped as well as understand which software elements are
likely to be modified as the software progresses through the sales channel and eventual installation.

74

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

The 1ISO 19770-2 standard includes a rich set of optional elements that augments the content of the tag itself
and increases efficiencies in the identification and reconciliation processes. This section highlights the use of
a few key optional tags defined in the standard.

1)

Component association and components list — these two optional elements enable product
managers to tag a software program as a component of a licensing product entity such as suite or
bundle. Likewise, the components list element provides the ability to list the remaining components
associated with the same licensing entity (i.e., the suite). Inclusion of one or both optional elements
in the tag greatly improves the proper identification of seemingly independent software installations
and at the same time ensures the reconciliation process will account for the proper software license

of suite versus point products and vice-versa.

License and channel information — this additional element further refines the identification of the
software installed on a given machine, increasing the efficiency of the SAM praciitioner| and the
effectiveness of the overall license reconciliation process. For example, knowing the soufce of an
installation would make it easy for SAM practitioners to separate software purchased direct]y versus
titles included as OEM with the purchase of new personal computers (PCs).

Package footprint — this element allows the software creator to spegify-the files, registry enfries, and
other information that can be used to identify a software package. \The element provides for multiple
entries per file so that patches and minor releases can be handled efficiently with a single rgferenced
file. The goal is to provide information that a discovery agent can use to validate that|a tag is
correctly identifying installed software. An additional benefit allows a discovery tool to eliminate all
"known" files from the discovered list. Providing an authoritative list of files, registry entrles, WMI
entries, or other platform specific information for a paftticular product helps discovery tools and SAM
practitioners to filter information from the list of ‘all discovered items. By filtering out|"known"
information, practitioners will have a useful perspective of unknown or new software thal may be
installed in their environment.

Product identifier — this element is meant'to be an identifier that follows a specific proquct from
release to release. This should not be Gsed as a marketing term for the product (such as th¢ product
title), but should be an identifier that is consistent from release to release. For example, if an
organization may create and sella-product called "Acme Widgets 2007 Pro" and the next release of
that product came out with ‘the name "Acme Widgets 2008 Expert", using a produgt title, a
practitioner would not know>whether these two products were part of a specified maiptenance
agreement. However, jf*-both products had the Product Identifier of "fc3cc419-b%a1-9f16-
ed203e537¢c40", then ‘a practitioner could determine that both products were part of the same
maintenance agreement and then determine compliance. This element allows an organigation to
specify which upgrades are allowed through maintenance agreements without identifying a specific
title.

Serial number — including the serial number as part of the identification tag is directly propgrtional to
the importance of the serial number as a software entitlement element for the softwarg license
purehased by software consumers. Software publishers that require software consumegr and/or
parchase-specific serial numbers in order to install and use the software should strongly|consider
including the serial number element in the tag for direct correlation to the purchase order /|software
entitlement during the reconciliation process. Serial numbers are known at the time of ingtallation,
therefore making it possible to establish a direct link between the installation and the [licensing

softwareentitterment:

i) Special consideration regarding serial numbers in the tag: because serial numbers often
represent the enablement of specific software features, product managers must consider
whether to include the serial number in the clear as part of the identification tag, or otherwise
include a one-way hash form of the software consumer-specific serial number to minimize
exposure and possible leakage of valid serial numbers over the Internet. If a software vendor
chooses to include an obfuscated/hashed version of the serial number in the tag, the same
obfuscated/hashed version should be included in the purchase order, software entitlement or
software license certificate for use during the manual or automated reconciliation process.

© ISO/IEC 2009 — All rights reserved 75

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

The use|of digital signatures ensures the integrity of elements remains unchanged after the tag has bee
created. [Cost will need to be considered for the extra protection versus~the implementation and testin
requirements in order to make a decision whether or not to sign specific €lements within the tag.

B.4 Development manager

The deveglopment manager will work directly with the product manager to ensure the product specification
clear and complete. The development manager will need-the same level of detail as the product manager.

However, when it comes to design and implementation, the development manager will need more detail. Th
following] list summarizes some implementation.details that need to taken into consideration and decided upo
prior to proceeding with implementation:

a)

b)

76

6) SKU — The SKU may be an important element for those companies that do not utilize serial
numbers as part of the activation of software. with the SKU is typically needed to associate installed
software with a software entitlement.

7) Supported languages — The supported languages element allows software creators to specify the
specific language(s) installed on a machine. This information is important for software vendors who
sell language-specific software licenses as the software entitlement/purchase order would specify the
language-specific products sold to the software consumer.

8) Software creator alias — This optional element reflects the name of the creator prior to an
acquisition; this is particularly important in the case where a specific upgrade is allowed from
previous software creator's version to the current creator’'s version. This should be an include
element in the tag when releasing new versions of software products after an acquisition.

9) |Upgrade for — This element is designed to simplify automated reconciliations to “€nsure that
upgrades are reconciled properly. This allows a product to identify itself as an upgrade. for a specifi
product or products. With this information, SAM practitioners or auditors will be-able to reconcil
existing installations of the upgrade product with known entitlements of the older products. Softwa
creators expect to enforce upgrade licenses, and this element allows association of current titles wi
the original versions.

[(® R

[72]

> O

Software identification tag file creation: When and how will the software identification tag be created|?

Therg are multiple approaches“to consider. The specific circumstances of each software creatof,
devglopment cycles, operational and manufacturing process will determine the approach that will work
best] Possible options include:

1) |Pre-generated,tag file(s) — included with the installation disc, selected and copied to the target
machine atsinstallation time.

2) |Generated at installation time — software identification tag file is created as part of the installatio
pro€ess. This allows a tag to include specific installation options, such as which version was actually
installed.

-

3) Partially pre-generated and updated on the fly — this option allows the software identification tag to
be provided upon initial installation of the software and updated as necessary. Updates may include
changes to activation status or other elements as the product is run and/or registered.

Software identification tag file for multi-product licensing entities (e.g. suites) — How will the tag file be
created and maintained?

Development managers need to consider where and how the tag file(s) for the suite components will be

created and maintained. Options for the creation of software identification tags may include providing a
software identification tag for the suite and separate individual software identification tags for each

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:

2009(E)

individual product, or creating one software identification tag that details the entire suite. Additionally, if a
product is validating its tag, will it validate for an individual application and for the suite, or for all
applications that are part of the suite.

Lifecycle management of software identification tag files — How does the software identification tag file
evolve with changes to the installed software?

Development managers need to anticipate a number of lifecycle scenarios that will impact software
identification tags; scenarios may include:

1)

Additional implementation considerations

Patches and updates — if the patch or update changes the product version, the tag file wi:l need to

reflect the latest version. If the product version element was originally signed, then the(sig
well should be updated.

Missing software identification tag file — tag files may be accidentally deleted by end;
corrupted; in such cases, the software should implement self-healing mechanisms to regen
tag.

Trial-licenses — when trial-licenses expire, updates to the tag should reflect the trial has ex
update the activation status element).

Evidence of tampering — if the file includes signed tag elements, the software should
periodic signature checks to detect potential tampering. Iftag tampering is detected, the
should implement a self-healing mechanism to regenerate the tag. The development man
the product manager should determine business policies' concerning tampering.

How can the tag be validated for correctness during the QA cycle?

ature as

users or
erate the

ired (i.e.

perform
software
bger and

Centralized function versus product=specific implementation: mid to large software creatofs should

strongly consider isolating product’teams from the details and implementation overhead
developing and maintaining a centralized software identification tagging function.

Common commercial off the shelf (COTS) software will benefit from providing software
specified package fodtprint information (see package footprint element - 8.4.10). This
information can bechosted on the software creator's site to enable ease of management.
package footprint information will significantly aid SAM tools and SAM practitioners with &
filtering out of"known" files, registry and WMI entries and other items found during disco
allow development of an exception-based SAM management practice.

Package footprint, if used, will typically refer to a URI location — generally hosted on the
creator's domain. When providing footprint information, the development manager should i
policy that keeps all file information up-to-date as patches and minor releases are releas

through

provider
footprint
Providing
utomatic
ery, and

software
nstitute a
pd to the

market. The package footprint element allows more than one entry for each file, so refefring to a

specific URI location allows tags from multiple versions of a product to be included in

a single

package footprint.

The development team needs to ensure that the software identification tag is incorporated into the design and
lifecycle process for software development and maintenance.

© ISO/IEC 2009 — All rights reserved

7

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

C.1 Discovery tool providers

C.1.1 Introduction

Discover
software
reconcili
analyzin
Use cas|
scenario
C12P
Discover
a) Imp
NOT]
llpro
softy
8.4.1
EXA|
infor
a neg
prod
auto
b) Rec
NOT]
from
dete
EXA|
c)

Annex C
(informative)

Tool provider use cases and guidance

xg software entitlements to software identification tags or a SAM owner taskedrwith collecting an|

y tools should be able to read data from software identification tags when available.AThe roles in
consumer organization that would use a discovery tool might include an audit manager tasked wit

information.

es for tool vendor products and their consumption can be divided into, primary and secondar

S

pD.

rimary use cases
y tools should be able to do the following:
ement consistent and uniform values in software identification tag data.

E If the tag_creator that created the software identification tag employs multiple "software licensor identity
uct identifier”, “serial number” or “stock keeping unit’elements, the discovery tool should be able to refer to
are recognition table (provided by each tag_creator) to facilitate the reconciliation of different values (8.3.

4, 8.4.20, 8.4.21). This task could require extended elements to be furnished by the tag_creator.

MPLE If software company A wereacquired by software company B, then B should provide reconciliatig
mation for software formerly released and tagged by A. Or, if A released a software package only later to releag
wer version of the same with an\altered "software creator name," then A should provide information in th
Lict_id and software_creator @lias elements that allows the relationship between the two products to 4
matically identified.

bncile data from software identification tags with that from corresponding software entitlements.
E This reconciliation could be facilitated by an agent on the platform or an administrative console reconcilin

multiple agents. Reconciliation processes need both software identification tag and software entitlement data
mine software license compliance.

QS50

MPLE The tool should be able to identify differences between installs of different but related products (4

Office XP Professional.

Yy

Read all mandatory elements during a discovery including all optional elements, if available. Such
capability would utilize standardization in location and format of software identification tag data.

C.1.3 Secondary use cases

Discovery tools should be able to do the following:

78

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

	Scope
	Purpose
	Field of application
	Limitations

	Conformance
	General
	Product conformance
	Example reasons for product conformance
	Product scope
	Software product conformance
	Third party software identification tag conformance
	Software installer product conformance
	Tag tool conformance
	Platform conformance

	Organizational conformance
	Example reasons for organizational conformance
	Organizational scope
	Software provider conformance
	Tag tool provider conformance
	Software consumer conformance

	Agreement compliance

	Normative references
	Terms, definitions and abbreviated terms
	Terms and definitions
	Abbreviated terms

	Alignment and rationalization with prior standards
	Statement of alignment for this part of ISO/IEC 19770
	Alignment with ISO/IEC 19770-1:2006 Information technology —
	Alignment with ISO/IEC 20000-1:2005 Information technology –
	Alignment with ISO/IEC 20000-2:2005 Information technology —

	Implementation of software identification tagging processes
	General requirements and guidance
	Software identification tag overview
	XML and XSD
	Unique registration ID (regid)
	Software identification tag extension and location for insta
	Unique identifiers
	Unique software identification tag file name – distribution
	Unique software identification tag file name - installed
	Consistency among data values
	Software identification tag discovery
	Languages
	Ownership of elements within software identification tags
	Internal element ID
	Authenticity of software identification tags
	Standardization of XSD definition

	Software identification tagging life cycle: operational brea
	Introduction
	Software identification tag creation
	Software identification tag modification
	Software identification tag use
	Software identification tag correction

	Platform requirements and guidance
	Types of platforms
	Basic platform services
	Virtual environments
	Virtual machines
	Support for software installed on removable media
	Hardware and platform identification

	Elements
	General
	Element names
	Mandatory elements
	Entitlement required indicator (‘entitlement_required_indica
	Product title (‘product_title’)
	Product version (‘product_version’)
	Software creator identity (‘software_creator')
	Software licensor identity (‘software_licensor')
	Software unique identifier (‘software_id’)
	Tag creator identity (‘tag_creator')

	Optional elements
	Abstract (‘abstract’)
	Component association (‘component_of’)
	Components list (‘complex_of’)
	Data source (‘data_source’)
	Dependency (‘dependency’)
	Element owner list (‘elements_owner')
	Installation details (‘installation_details’)
	Keywords (‘keywords')
	License and channel information (‘license_linkage’)
	Package footprint (‘package_footprint’)
	Packager (‘packager’)
	Product category (‘product_category’)
	Product family (‘product_family’)
	Product identifier (‘product_id’)
	Release date (‘release_date’)
	Release identifier (‘release_id’)
	Release package (‘release_package’)
	Release rollout (‘release_rollout’)
	Release verification (‘release_verification’)
	Serial number (‘serial_number’)
	SKU (‘sku’)
	Software creator alias (‘software_creator_alias')
	Software licensor alias (‘software_licensor_alias')
	Supported languages (‘supported_languages’)
	Tag creator alias (‘tag_creator_alias')
	Tag creator copyright (‘tag_creator_copyright')
	Tag version (‘tag_version’)
	Upgrade for (‘upgrade_for’)
	Usage identifier (‘usage_identifier’)
	Validation (‘validation’)

	Extended elements
	Extended information (‘extended_information’)

	Data type definitions
	AliasDetailsComplexType
	EntityComplexType
	EntityDataComplexType
	GUIDType
	ProductVersionComplexType
	FootprintModuleComplexType

