

Reference number
ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009

INTERNATIONAL
STANDARD

ISO/IEC
19770-2

First edition
2009-11-15

Information technology — Software asset
management —
Part 2:
Software identification tag

Technologies de l'information — Gestion de biens de logiciel —

Partie 2: Étiquette d'identification du logiciel

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2009 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved iii

Table of Contents Page

Foreword ...v
Introduction..vi
1 Scope..1
1.1 Purpose ..1
1.2 Field of application..1
1.3 Limitations ...1
2 Conformance ...2
2.1 General ...2
2.2 Product conformance ...2
2.3 Organizational conformance..5
2.4 Agreement compliance...6
3 Normative references..6
4 Terms, definitions and abbreviated terms..6
4.1 Terms and definitions ...6
4.2 Abbreviated terms...12
5 Alignment and rationalization with prior standards ..12
5.1 Statement of alignment for this part of ISO/IEC 19770..12
5.2 Alignment with ISO/IEC 19770-1:2006 Information technology — Software asset

management — Part 1: Processes ..12
5.3 Alignment with ISO/IEC 20000-1:2005 Information technology – Service management –

Part 1: Specification ..13
5.4 Alignment with ISO/IEC 20000-2:2005 Information technology — Service management —

Part 2: Code of practice ..14
6 Implementation of software identification tagging processes ...14
6.1 General requirements and guidance ...14
6.2 Software identification tagging life cycle: operational breakdown..22
7 Platform requirements and guidance..24
7.1 Types of platforms ..24
7.2 Basic platform services ..25
7.3 Virtual environments...25
7.4 Virtual machines..26
7.5 Support for software installed on removable media ...26
7.6 Hardware and platform identification..26
8 Elements...27
8.1 General ...27
8.2 Element names ..27
8.3 Mandatory elements..28
8.4 Optional elements ...33
8.5 Extended elements..60
8.6 Data type definitions ...61
Annex A (informative) Software identification tagging principles...67
Annex B (informative) Software provider use cases and guidance ..73
Annex C (informative) Tool provider use cases and guidance ..78
Annex D (informative) Software consumer use cases and guidance..81
Annex E (informative) Software identification tags for items other than software....................................85
Annex F (informative) Copyright and software identification tags..86

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

iv © ISO/IEC 2009 – All rights reserved

Annex G (normative) XML schema definition (XSD)..87
Annex H (informative) Extended examples...95

Figures Page

Figure 1 — Software identification tag lifecycle... 22

Figure A.1 — Life cycle of a software identification tag .. 67

Tables Page

Table 1 - Examples of regid values ...15

Table 2 - Examples of tag locations on different platforms ...16

Table 3 - Microsoft Vista® APIs for software identification tag management..16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19770-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 7, Software and systems engineering.

ISO/IEC 19770 consists of the following parts, under the general title Information technology — Software
asset management:

⎯ Part 1: Processes

⎯ Part 2: Software identification tag

⎯ Part 3: Software entitlement tag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

vi © ISO/IEC 2009 – All rights reserved

Introduction

This part of ISO/IEC 19770 provides an International Standard for software identification tags. The software
identification tag is an XML file containing authoritative identification and management information about a
software product. The software identification tag is installed and managed on a computing device together
with the software product. The tag may be created as part of the installation process, or added later for
software already installed without tags. However, it is expected more commonly that the tag will be created
when the software product is originally developed, and then be distributed and installed together with the
software product. Having the tag available from the beginning allows for the more effective management of
distribution and repackaging external to the software consumer, and then of release management within the
software consumers organization.

This part of ISO/IEC 19770 supports software asset management processes as defined in ISO/IEC 19770-1. It
is also designed to work together with the future ISO/IEC 19770-3 which will provide an International Standard
for software entitlement tags.

Software identification tags will benefit all stakeholders involved in the creation, licensing, distribution,
releasing, installation, and on-going management of software. Key benefits associated with software
identification tags include:

a) The ability to consistently and authoritatively identify software products that need to be managed for any
purpose, such as for licensing, upgrading, packaging or for the specification of dependencies. Software
identification tags provide the meta-data necessary to support more accurate identification which
differentiates this approach from traditional file-oriented identification techniques.

b) The ability to identify groups or suites of software products in the same way as for individual software
products, enabling entire groups or suites of software products to be managed with the same flexibility as
for individual products.

c) Facilitation of de facto standardization between different software creators, and within software creator
organizations, of how different versions of software are identified, allowing for better identification and
management by software consumers of those different versions; for example, being able to distinguish
between free-standing versions and versions which are components of suites, upgrade paths, etc.

d) Facilitation of automated approaches to license compliance, using information both from the software
identification tag and from the software entitlement tag as will be specified in ISO/IEC 19770-3.

e) The ability to provide comprehensive information about the structural footprint of packages, i.e. the list of
components such as files and system settings associated with that package, in order to link package-level
management with file-level management.

f) The ability to provide information about how to identify if a particular software package is being actively
used or not.

g) The ability to deal with the complexities of software installed on removable or shared storage, or in virtual
environments (subject to the evolving ability of platforms and installers to identify devices and
environments).

h) The ability to reflect within the software identification tag the identities and requirements of different
entities, including software creators, software licensors, packagers, distributors external to the software
consumer, release managers within the software consumer, and those responsible for installing and
managing software on an on-going basis.

i) The ability to allow for the validation of any of this information through the optional use of digital
signatures by anyone creating or modifying information in the software identification tag.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved vii

j) The ability for entities besides the software creators (e.g. independent providers, or in-house personnel)
to create software identification tags for legacy software, and also for software from software creators
who do not provide software identification tags themselves.

k) The ability of this International Standard to evolve in informal and formal ways, as common approaches
become accepted throughout industry for dealing with additional types of information not currently
covered by this part of ISO/IEC 19770, such as for product activation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

INTERNATIONAL STANDARD ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 1

Information technology — Software asset management —

Part 2:
Software identification tag

1 Scope

1.1 Purpose

This part of ISO/IEC 19770 establishes specifications for tagging software to optimize its identification and
management.

1.2 Field of application

This part of ISO/IEC 19770 applies to:

a) Platform providers: These are the entities which are responsible for the computer or hardware device
and/or associated operating system, or virtual environment, on which software may be installed or run.
Platform providers which support this part of ISO/IEC 19770 additionally provide tag management
capabilities at the level of the platform or operating system.

b) Software providers: These are the entities that create (“software creators”), package (“software
packagers”) or license (“software licensors”) software for distribution or installation. These include
software manufacturers, independent software developers, consultants, and repackagers of previously
manufactured software. They may also be in-house software developers.

c) Tag providers: These are the entities that create (“tag creators”) or modify (“tag modifiers”) software
identification tags. A tag provider may be part of the software provider organization, or may be a 3rd party
organization or the software consumer.

d) Tag tool providers: These are the entities that may provide any number of tools that create, modify or use
software identification tags. These tools include development environments that provide automatically
generated software identification tags, installation tools that may create and/or modify tags on behalf of
the installation process as well as desktop management tools that may create tags for software that does
not have a tag and/or modify tags with release details throughout the software lifecycle. See Annex C for
details on how tool providers are likely to use software identification tags.

e) Software consumers: These are the entities that purchase, install and/or otherwise consume software,
and who are intended as one of the major beneficiaries of the improved information provided by the
software identification tag as specified in this part of ISO/IEC 19770. See Annex D for details on how
software consumers are likely to use software identification tags.

1.3 Limitations

This part of ISO/IEC 19770 does not detail SAM processes required for reconciliation of software entitlements
with software identification tags.

This part of ISO/IEC 19770 does not specify product activation or launch controls.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

2 © ISO/IEC 2009 – All rights reserved

This part of ISO/IEC 19770 is not intended to conflict either with any organization's policies, procedures or
standards or with any national laws and regulations. Any such conflict should be resolved before using this part
of ISO/IEC 19770.

2 Conformance

2.1 General

Conformance can apply to a product or an organization. For organizational conformance, the scope defined
shall cover both the organizational scope as well as the products that are included in the scope.

If a claim of conformance is made for a product or organization, the claim shall specify the scope for which the
conformance was tested.

Conformance throughout this clause is most often defined in terms of complying with the requirements of 6.1,
8.3, 8.4, and 8.5. Requirements for platform conformance are also specified in 7.2. There are also normative
requirements specified in other subclauses of Clauses 6 and 7, indicated by the use of the word “shall”, but
these are not included in the coverage of statements of conformance, except to the extent that they are also
included in 6.1, 7.2, 8.3, 8.4, or 8.5. Statements including the word ‘should’ are recommendations but not
mandatory.

2.2 Product conformance

2.2.1 Example reasons for product conformance

There are a number of reasons for an organization to seek individual product conformance to this part of
ISO/IEC 19770. This may be sought when a specific product is being provided for a market that requires
conformance (for example, if government organizations require products to conform to this part of
ISO/IEC 19770 in order to be included on a project). It might also be desired by platform providers who want
to provide a more secure and auditable tag storage that can be used to identify definitively which end-users
installed which software packages.

2.2.2 Product scope

There shall be a clear statement for product scope describing, in unambiguous terms, the software products to
which it applies and, where appropriate, clarifying the products to which it does not apply. The product
conformance scope may be defined in any way considered appropriate, such as for a specific software
product, for all software products, for all software products on specific platforms, for the software products of
specified manufacturers and/or for all software products created after a specified date, as long as it is
unambiguous. In the case of a product which creates or modifies software identification tags, the scope shall
be the product itself and all software produced or modified by the product when tag-conformity functionality is
enabled.

2.2.3 Software product conformance

Full conformance for a software product is achieved in one of two ways:

a) For a product which is installable, full conformance is achieved by demonstrating that all software
identification tags installed by it at installation shall comply with all mandatory requirements of this part of
ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these shall also
comply with requirements as specified in 8.4 and 8.5.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that
all tests pass and 100 % equivalence partition coverage of the tag creation/installation is achieved.
Equivalence partitions shall be derived from the statement of product scope.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 3

If the software product consists of a package of other software products, then the software product shall
retain all component tags and reference all child tag elements, which, under any circumstances, still need
to be identified separately (for the purpose of licensing, security or other).

b) For a product that is distributable but not yet installed, full conformance is achieved by demonstrating that
distributable builds are issued with a unique tag that shall comply with all mandatory requirements of this
part of ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these
shall also comply with requirements as specified in 8.4 and 8.5. The exception to this is that any
mandatory elements which are installation-specific are not included.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that
all tests pass and 100 % equivalence partition coverage is achieved. Equivalence partitions shall be
derived from the statement of product scope.

If the software product consists of a package of other software products, then the software product shall
retain all component tags and reference all child tag elements which under any circumstances still need
to be identified separately (for the purpose of licensing, security or other).

2.2.4 Third party software identification tag conformance

Third party tag provider organizations may undertake the process of creating software identification tags for
any software packages that do not include such tags. This may be done for older software products,
shareware/freeware type products, or for companies that decide not to follow this part of ISO/IEC 19770.
These tags may be provided to organizations to assist in their software discovery and identification
procedures.

Full conformance for third party created software identification tags is achieved by demonstrating that all
software identification tags produced by the organization comply with all mandatory requirements of this part
of ISO/IEC 19770, as specified in 6.1 and 8.3. If optional or extended tag elements are used these shall also
comply with requirements as specified in 8.4 and 8.5. Any new data that is added shall conform to the same
standards as those required for installable software conformance.

Conformance for third party created software identification tags requires that the tag providers demonstrate
that the software_ids they create are unique, and use consistent values for the identification of software
providers. The expectation is that the tag providers will maintain a list of unique software providers for all tags
created, and that the list includes a consistent software provider regid (that references the provider's domain)
and a unique ID (which may be a GUID) for each reference and that these details are used consistently in the
created tags.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that all
tests pass and 100 % equivalence partition coverage of the tag production is achieved. Equivalence partitions
shall be derived both from the range of software that the tag tool shall work on and the corresponding
statements of product scope.

2.2.5 Software installer product conformance

Full conformance for a software installer product is achieved by demonstrating that all software identification
tags installed by it at installation comply with all mandatory requirements of this part of ISO/IEC 19770, as
specified in 6.1 and 8.3. If optional or extended tag elements are used these shall also comply with
requirements as specified in 8.4 and 8.5.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that all
tests pass and 100 % equivalence partition coverage of the tag creation/installation is achieved. Equivalence
partitions shall be derived both from the range of software that is installed and the corresponding statements
of product scope.

If the software being installed consists of a package of other software products, then the software product
shall retain all component tags and reference all child tag elements which under any circumstances still need
to be identified separately (for the purpose of licensing, security or other).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

4 © ISO/IEC 2009 – All rights reserved

Existing tag values that are provided with distributable software shall not be modified in any way, with some
specific exceptions. If a distributed software identification tag is found to be corrupted and that software
identification tag does not provide a "validation" routine to fix the tag, a software product may provide options
for handling this type of exception that a SAM practitioner can authorize. Based on actions specified by the
SAM practitioner, the handling of such exceptions may include actions such as fixing the software
identification tag if it is corrupt, deleting the software identification tag if it no longer belongs on the device, or
modifying the software identification tag to specify that the software is no longer installed on the device.
Should any modifications of the tag be specified by the user, these actions shall be logged and retained by the
software product.

It is expected that such products will have the capability to turn this functionality on or off. A statement of
product conformance shall apply only to the product with this functionality turned on.

2.2.6 Tag tool conformance

Full conformance for a tag tool is achieved in one of two ways:

a) Full conformance for a tag tool that installs or modifies installed software identification tags independent
of software installation is achieved by demonstrating that all software identification tags installed or
modified by the product comply with all mandatory requirements of this part of ISO/IEC 19770, as
specified in 6.1 and 8.3. If optional or extended tag elements are used these shall also comply with
requirements as specified in 8.4 and 8.5. Any new data that is added shall conform to the same standards
as those required for installable software conformance.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that
all tests pass and 100 % equivalence partition coverage of the tag production is achieved. Equivalence
partitions shall be derived both from the range of software that the tag tool shall work on and the
corresponding statements of product scope.

If the software being installed consists of a package of other software products, then the software product
shall retain all component tags and reference all child tag elements which under any circumstances still
need to be identified separately (for the purpose of licensing, security or other).

Existing tag values that are provided with distributable software shall not be modified in any way, with
some specific exceptions. If a distributed software identification tag is found to be corrupted and that
software identification tag does not provide a "validation" routine to fix the tag, a software product may
provide options for handling this type of exception that a SAM practitioner can authorize. Based on
actions specified by the SAM practitioner, the handling of such exceptions may include actions such as
fixing the software identification tag if it is corrupt, deleting the software identification tag if it no longer
belongs on the device, or modifying the software identification tag to specify that the software is no longer
installed on the device. Should any modifications of the tag be specified by the user, these actions shall
be logged and retained by the software product.

It is expected that such products will have the capability to turn this functionality on or off. A statement of
product conformance shall apply only to the product with this functionality turned on.

b) For a tag tool that discovers, collects, reports on and uses tags (such as discovery tools, desktop
management tools or SAM reconciliation tools), full conformance is achieved by demonstrating the
following.

1) That all tags available on a computing device are collected. This includes tags that are stored in the
common system location as well as tags that are located in the top level directories of software
installations.

2) That all tags collected from computing devices and stored in the tool's repository can be shown to
include exactly the same information as the contents of the tag located on the computing device from
which it was originally collected.

3) If a tag is digitally signed and the corresponding public key is available, that the tool validates the
signature and the information that has been signed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 5

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that
all tests pass and 100 % equivalence partition coverage of the tag collection/validation is achieved.
Equivalence partitions shall be derived both from the range of software that the tool shall analyze and the
corresponding statements of product scope.

If the software being installed consists of a package of other software products, then the software product
shall retain all component tags and reference all child tag elements which under any circumstances still
need to be identified separately (for the purpose of licensing, security or other).

Existing tag values that are provided with distributable software shall not be modified in any way, with
some specific exceptions. If a distributed software identification tag is found to be corrupted and that
software identification tag does not provide a "validation" routine to fix the tag, a software product may
provide options for handling this type of exception that a SAM practitioner can authorize. Based on actions
specified by the SAM practitioner, the handling of such exceptions may include actions such as fixing the
software identification tag if it is corrupt, deleting the software identification tag if it no longer belongs on
the device, or modifying the software identification tag to specify that the software is no longer installed on
the device. Should any modifications of the tag be specified by the end-user, these actions shall be
logged and retained by the software product.

It is expected that such products will have the capability to turn this functionality on or off. A statement of
product conformance shall apply only to the product with this functionality turned on.

2.2.7 Platform conformance

Full conformance for a platform's tag functionality is achieved by demonstrating that it can store software
identification tag data centrally and provide the following services with integrity, as specified in 7.2.

a) Basic functionality: add, modify, read, and delete tag data.

b) Security: determine which end-user can read, create, delete and modify software identification tags.

c) Audit functionality: identify which end-user installed, modified or removed a given software configuration
item and when the modification occurred.

This conformance shall be demonstrated by performing equivalence partitioning with the exit criteria that all
tests pass and 100 % equivalence partition coverage of the tag storage is achieved. Equivalence partitions
shall be derived both from the range of software that the platform shall host and the corresponding statements
of product scope.

2.3 Organizational conformance

2.3.1 Example reasons for organizational conformance

Organizations could want to conform to this part of ISO/IEC 19770 for a number of reasons. For example,
software providers could want to promote their software products as being easier to manage. Also, software
consumers could want to show that they are actively managing their software assets and that they can provide
accurate information to any reconciliation or audit request.

2.3.2 Organizational scope

There shall be a clear statement for the organizational scope describing, in unambiguous terms, the
organizational structure to which it applies and, where appropriate, clarifying the areas to which it does not
apply. A statement of organizational scope shall be accompanied by a statement of software product scope.

2.3.3 Software provider conformance

Full conformance for a software provider is achieved by the organization demonstrating that all software within
the scope meets the relevant product conformance requirements, as specified in 2.2.3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

6 © ISO/IEC 2009 – All rights reserved

2.3.4 Tag tool provider conformance

Full conformance for a tag tool provider is achieved by an organization demonstrating that all software within
the scope meets the relevant tool conformance requirements, as specified in 2.2.6.

Furthermore, in order to claim tag tool provider conformance, all tag tools produced by the organization shall
be included in the product scope.

2.3.5 Software consumer conformance

Full conformance for an organization that installs software is achieved by demonstrating that there are
software identification tags in place for all software in the software consumer organization's product scope and
that the software identification tags comply with all mandatory requirements of this part of ISO/IEC 19770, as
specified in 6.1 and 8.3. If optional or extended tag elements are used, these shall also comply with
requirements in 8.4 and 8.5.

2.4 Agreement compliance

This part of ISO/IEC 19770 may be used to help develop an agreement between a software provider and a
software consumer, in which case clauses of this part of ISO/IEC 19770 can be selected for incorporation into
the agreement, with or without modification. In such an instance, it is necessary for both parties to comply with
their agreement rather than conform to this part of ISO/IEC 19770.

NOTE ISO/IEC's copyright and patent policy extends to all of this part of ISO/IEC 19770 and contents thereof.
However, for the specific use of agreement compliance, there is no need to obtain copyright permission.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, 2005

IETF RFC 4646, Tags for Identifying Languages, 2006

W3C Recommendation, XML Signature Syntax and Processing (Second Edition), 2008

W3C Recommendation, XML Schema Part 2: Datatypes (Second Edition), 2004

UNSPSC, The United Nations Standard Products and Services Code

4 Terms, definitions and abbreviated terms

4.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1.1
application
system for collecting, saving, processing, and presenting data by means of a computer

NOTE The term application is generally used when referring to a component of software that can be executed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4646.txt
http://www.w3.org/TR/xmlschema-2/
http://www.unspsc.org/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 7

4.1.2
bundle
grouping of products which is the result of a marketing/licensing strategy to sell entitlements to multiple
products as one purchased item

NOTE 1 A bundle can be referred to as a “suite”, if the products are closely related and typically integrated (such as an
office suite containing a spreadsheet, word processor, presentation and other related items).

NOTE 2 Bundles can also refer to software titles that are less closely related such as a game, a virus scanner and a
utility “bundled” together with a new computer, or to groups of entitlements, such as multiple entitlements for a backup
software product.

4.1.3
component
entity with discrete structure, such as an assembly or software module, within a system considered at a
particular level of analysis

NOTE Component refers to a part of a whole, such as a component of a software product, a component of a software
identification tag, etc.

4.1.4
computing device
functional unit that can perform substantial computations, including numerous arithmetic operations and logic
operations without human intervention

NOTE A computing device can consist of a stand-alone unit, or several interconnected units. It can also be a device
that provides a specific set of functions, such as a phone or a personal organizer, or more general functions such as a
laptop or desktop computer.

4.1.5
configuration item
CI
item or aggregation of hardware or software or both that is designed to be managed as a single entity

NOTE Configuration items may vary widely in complexity, size and type, ranging from an entire system including all
hardware, software and documentation, to a single module, a minor hardware component or a single software package.

4.1.6
configuration management database
CMDB
database containing all the relevant details of each configuration item and details of the important
relationships between them

4.1.7
customer
end-users or organizations for which a software publisher designs and develops software and sells
entitlements to use that software

4.1.8
element
component of a software identification tag that provides information related to the software represented by the
tag

NOTE The different types of elements are defined in 8.3, 8.4 and 8.5.

4.1.9
end-user
person (or persons) who operate or interact directly with a computing device to manage or use software
packages

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

8 © ISO/IEC 2009 – All rights reserved

4.1.10
equivalence partitioning
software testing process that identifies representative groups of input values that are processed in the same
manner by software products allowing for a sampling of each representative group to validate the outcome
resulting in a reduced number of test cases while ensuring full coverage of all test cases

4.1.11
extensible markup language
XML
license-free and platform-independent markup language that carries rules for generating text formats that
contain structured data

4.1.12
globally unique identifier
GUID
16-byte string of characters that is generated in a manner that gives a high probability that the string is unique
in any context

NOTE 1 Other globally unique identifier algorithms can be used in some situations. In general, alternative algorithms
use Uniform Resource Identifier (URI) based structures, so the id owner's registration identifier (regid) is included in the
identifier.

NOTE 2 GUID as an all capitalized term refers specifically to the 16 byte version. If the term is in lowercase (guid), it
refers to a general algorithm that can use either a URI, or a 16-byte-based identifier.

4.1.13
legacy software
software originally created without software identification tags

4.1.14
line of business application developer
person or company specializing in developing applications providing specific functions for a particular
business operation

4.1.15
MD5
Message-Digest algorithm 5
algorithm that is a widely-used cryptographic hash function with a 128 bit hash value often used to identify if
two files contain the same data

4.1.16
package
set of related components that are combined into a single distributable item

NOTE For example, a software package would be a set of files that can be used to install software on a computing
device and can be distributed via CD or electronic means.

4.1.17
platform
computer or hardware device and/or associated operating system, or a virtual environment, on which software
can be installed or run

NOTE Examples of platforms include Linux™, Microsoft Vista®, and Java™.

4.1.18
platform provider
organization responsible for the platform

NOTE The platform provider is typically the vendor of the relevant operating system or virtual environment.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 9

4.1.19
product
complete set of computer programs, procedures and associated documentation and data designed for
delivery to a software consumer

NOTE The terms "product" and "software package" are used interchangeably depending on the context of the item
described.

4.1.20
registration identifier
regid
identifier created from a domain name and the date when the domain was owned by a specific individual or
company, allowing an individual or company to have their own unique namespace and be their own
registration authority for all software configuration items they publish without requiring a separate industry
based registration authority

4.1.21
release
collection of new and/or changed configuration items which are tested and introduced into a production
environment together

4.1.22
release manager
individual responsible for the collection of new and/or changed configuration items which are tested and
introduced into an organization’s live production environment

4.1.23
SAM owner
individual at a senior organization-wide level who is identified as being responsible for SAM

4.1.24
SAM practitioner
individual involved in the practice or role of managing software assets

NOTE A SAM practitioner is often involved in the collection or reconciliation of software inventory and/or software
entitlements.

4.1.25
software
all or part of the programs, procedures, rules, and associated documentation of an information processing
system

4.1.26 Software Asset Management
SAM
effective use, control and protection of software assets within an organization

4.1.27
software consumer
organization or person who buys entitlements to use a software package

4.1.28
software creator
person or organization that creates a software product or package

NOTE This entity might or might not own the rights to sell or distribute the software.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

10 © ISO/IEC 2009 – All rights reserved

4.1.29
software developer
person who creates software that can perform a specified set of actions

NOTE Often a software developer works with other developers for a software manufacturer to create commercial
applications. A software developer can also often work as an in-house developer of software for use by the software
developer’s own organization.

4.1.30
software entitlement
legal ownership of software license use rights as defined through agreements between a software purchaser
and the software copyright holder

NOTE Effective use rights take into account any contracts and all applicable licenses, including full licenses, upgrade
licenses and maintenance agreements.

4.1.31
software identification tag
file comprised of mandatory elements, optional elements and extended information containing authoritative
identification information about a software configuration item

NOTE For mandatory elements see 8.3, for optional elements see 8.4, for extended information see 8.5.

4.1.32
software license
legal rights to use software in accordance with terms and conditions specified by the software copyright owner

NOTE "Using a software product" can include: accessing, copying, distributing, installing and executing the software
product, depending on that product’s terms and conditions.

4.1.33
software licensor
person or organization who owns the rights to issue a software license for a specific software package

4.1.34
software manufacturer
group of people or organization that develops software, typically for distribution and use by other people or
organizations

4.1.35
software package
complete and documented set of programs supplied for a specific application or function

NOTE In this part of ISO/IEC 19770, the term software package refers to the set of files associated with a specific set
of business functionality that can be installed on a computing device and has a set of specific licensing requirements. In
this part of ISO/IEC 19770, the terms "product" and "software package" are used synonymously depending on the context
of the item described.

4.1.36
software packager
entity that re-packages or bundles software created by others

NOTE This can be done by a value added reseller who bundles a software package to work with an embedded
system, or by a software reseller who is licensed to combine a number of different software products into a single bundle.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 11

4.1.37
software provider
entity that creates (software creator), modifies (software modifier) or licenses (software licensor) software for
distribution or installation

NOTE This includes software manufacturers, independent software developers, consultants and repackagers of
previously manufactured software. IT can also represent in-house software developers.

4.1.38
software publisher
person, group or company that packages and distributes software and might or might not be the software
manufacturer

4.1.39
tag creator
entity that initially creates the software identification tag

NOTE This entity can be part of the organization that created the software, in which case the tag creator and
software creator will be the same. The tag creator can also be a third party organization unrelated to the software creator
(such as in the case where tags are created for legacy software).

4.1.40
tag modifier
software packager or software consumer that modifies a tag after it has been created

NOTE Modification of any tag is limited to the elements that the software licensor has authorized and is done based
on license or contractual agreements with the tag creator and/or software creator. The tag modifier can be allowed to add
values to a software identification tag (such as the case of a reseller adding details about where the product was
purchased), or can be allowed to modify existing portions of the tag (such as the case of a VAR making a set of software
look like it comes from a single entity).

4.1.41
tag provider
entity that creates (tag creator) or modifies (tag modifier) software identification tags for software packages

NOTE A tag provider can be part of the software provider organization, or can be a third party organization or the
software consumer.

4.1.42
Uniform Resource Identifier
URI
compact sequence of characters that identifies an abstract or physical resource available on the Internet

NOTE The syntax used for URIs is defined in IETF RFC 3986.

4.1.43
valid
<XML file> software identification tag data follows the specified XSD definition and the software identification
tag file is valid from an XML perspective

NOTE See also 4.1.44.

4.1.44
valid
<software identification tag> process used to ensure the data included in an installed software identification
tag is correct

NOTE See also 4.1.43.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

12 © ISO/IEC 2009 – All rights reserved

4.1.45
value-added reseller
company licensed to repackage and support existing products as combined software packages

4.1.46
version
unique string of number and letter values indicating a unique revision of an item

NOTE Versions are often referred to in software to identify revisions of software that provide unique functionality or
fixes. A version typically has multiple parts with at least a major version indicating large changes in functionality or user
interface changes and a minor version indicating smaller changes in functionality or user interface changes.

4.1.47
XML Schema Definition
XML based language that specifies a set of rules and structure for the creation of XML documents

NOTE XML documents follow all rules defined in an XSD definition in order to be considered a "valid" document.

4.2 Abbreviated terms

CI configuration item
CMDB configuration management database
GUID globally unique identifier
IETF Internet Engineering Task Force
MD5 message digest 5
regexp regular expression
regid registration identifier
SAM software asset management
URI uniform resource identifier
URL uniform resource locator
VAR value added reseller
W3C World Wide Web Consortium
XML Extensible Markup Language
XSD XML Schema Definition

5 Alignment and rationalization with prior standards

5.1 Statement of alignment for this part of ISO/IEC 19770

The contents of this part of ISO/IEC 19770 are intended to complement and align with prior ISO/IEC standard
publications.

5.2 Alignment with ISO/IEC 19770-1:2006 Information technology — Software asset
management — Part 1: Processes

The following areas of ISO/IEC 19770-1:2006 are supported by this part of ISO/IEC 19770.

a) ISO/IEC 19770-1:2006, clause 3 stipulates terms and definitions relevant to that document.

This part of ISO/IEC 19770 aligns with ISO/IEC 19770-1:2006, terms and definitions in clause 3 relevant
to both parts have been reproduced here.

b) ISO/IEC 19770-1:2006, clause 4.4.2.2 stipulates: "Implementation of the software asset identification
process will enable the organization to demonstrate that a) types of assets to be controlled and the
information associated with them are formally defined. b) a register of stores and inventories exists,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 13

clarifying which stores and types of information are held, with duplication allowed only if duplicate
information can be traced back to the definitive source record."

This part of ISO/IEC 19770 affirms the necessity of formal definitions, stores and inventories for software
configuration items. According to ISO/IEC 19770-1:2006, clause 4.4.2.2.a.2.i, software configuration items
include "all platforms on which software can be installed or run." There is no explicit requirement for a
"platform" element in 19770-2 because this part of ISO/IEC 19770 is focused on the identification of
software found on computing devices and not on the requirements of a general software repository. It is
expected that discovery tools collect platform information during their inventory process.

c) ISO/IEC 19770-1:2006, clause 4.4.2.2 stipulates: "Basic information required for all assets is i) Unique
identifier ii) Name/description iii) Location iv) Custodianship (owner) v) Status (e.g., test/production
status; development or build status) vi) Type (e.g., software, hardware, facility), vii) Version (where
applicable)."

This part of ISO/IEC 19770 affirms these requirements for basic information. The location and custodianship
of a software configuration item, however, are not included as values specified in this part of ISO/IEC
19770 as these are associated with the asset on which the software configuration item is discovered and
not with the item itself.

The status of a software configuration item is defined by the Release values in the software identification tag.
These values are optional and it is recommended that they are furnished alongside information pertaining to
the sign off date and the operator who performed the process (8.4).

5.3 Alignment with ISO/IEC 20000-1:2005 Information technology – Service management –
Part 1: Specification

a) ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Changes to configuration items shall be traceable and
auditable where appropriate, e.g. for changes and movements of software and hardware." This part of
ISO/IEC 19770 affirms the usage of software identification tags for disclosure and definition of traceable and
auditable information for software configuration items.

b) ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Configuration control procedures shall ensure that the
integrity of systems, services and service components are maintained."

This part of ISO/IEC 19770 upholds the necessity of configuration control procedures for integrity
assurance purposes and therefore provides creators with the option to include a digital signature
(6.1.11). The digital signature can be used to validate that specified mandatory element values have
not been modified, this validation in turn allowing software providers or tag providers to authoritatively
identify software identification tag tampering, or lack thereof.

c) ISO/IEC 20000-1:2005, clause 9.1 stipulates: "Master copies of digital configuration items shall be
controlled in secure physical or electronic libraries and referenced to the configuration records, e.g.
software, testing products, support documents."

This part of ISO/IEC 19770 that recommends software identification tags be included with respective
software configuration items in the definitive software library.

d) ISO/IEC 20000-1:2005, clause 9.1 stipulates: "All configuration items shall be uniquely identifiable and
recorded in a CMDB to which update access shall be strictly controlled."

This part of ISO/IEC 19770 aligns with the specification that all software configuration items be uniquely
identifiable. A software configuration item is uniquely identifiable by product identifier, serial number,
stock keeping unit, either of which can be related back to proof of license, purchase order and software
configuration items stored in the CMDB (8.4.14, 8.4.20, 8.4.21).

The method by which a software identification tag is stored in the CMDB and referenced uniquely therein is
not within the scope of this part of ISO/IEC 19770 (1.2).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

14 © ISO/IEC 2009 – All rights reserved

e) ISO/IEC 20000-1:2005, clause 10.1 stipulates: "Release and distribution shall be designed and
implemented so that the integrity of hardware and software is maintained during installation, handling,
packaging and delivery."

This part of ISO/IEC 19770 affirms the necessity of integrity within the release process and
therefore specifies that software identification tags fully conform to release processes detailed in ISO/IEC
20000-1:2005. This part of ISO/IEC 19770 recommends that optional elements pertaining to release
details be included with software identification tags (8.4).

5.4 Alignment with ISO/IEC 20000-2:2005 Information technology — Service management —
Part 2: Code of practice

a) ISO/IEC 20000-2:2005, clause 10.1.5 stipulates: "Release and distribution should be designed and
implemented to: a) conform with the service provider's systems architecture, service management and
infrastructure standards; b) ensure the integrity is maintained during build, installation, handling,
packaging and delivery..."

This part of ISO/IEC 19770 affirms the importance of release and distribution conformance through the
creation of the optional element "Release package" (8.4.17).

b) ISO/IEC 20000-2:2005, clause 10.1.6 stipulates: "The verification and acceptance processes should: a)
verify that the controlled acceptance test environment matches the requirements of the target production
environment; b) ensure that the release is created from versions under configuration management and
installed in the acceptance test environment using the planned production process..."

This part of ISO/IEC 19770 affirms the importance of matching the controlled acceptance test
environment to the requirements of the target production environment through the creation of the optional
element "Release verification" (8.4.19).

c) ISO/IEC 20000-2:2005, clause 10.1.8 stipulates: "It is important that the release is delivered safely to its
destination in its expected state."

This part of ISO/IEC 19770 upholds the need for efficient and secure release delivery by proposing the
creation of the optional element "Release rollout" that allows an organization to validate who signed off on
a software package as ready for production use and when the sign off occurred (8.4.18).

6 Implementation of software identification tagging processes

6.1 General requirements and guidance

6.1.1 Software identification tag overview

Annex A provides an overview of software identification tagging principles from a more conceptual
perspective, to assist in understanding.

6.1.2 XML and XSD

The software identification tag shall be defined as an XML data structure. The XML Schema Definition (XSD)
to be used shall be that defined in Annex G, or any (updated) version which may be downloaded from:

http://standards.iso.org/iso/19770/-2/2009/schema.xsd

Additional versions of the schema may be available with the version identifier of the schema included in the
path to the schema. All prior versions of the schema shall be retained.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://standards.iso.org/iso/19770/-2/2009/schema.xsd
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 15

6.1.3 Unique registration ID (regid)

Software identification tags may be created by multiple different organizations and do not strictly require a
centralized registration authority. Additionally, this part of ISO/IEC 19770 allows entities to create software
identification tags for software configuration items they did not create (such as an organization creating
software identification tags for their internal software discovery processes). To accommodate these
requirements, this part of ISO/IEC 19770 will use a regid. The regid is based off of the iSCSI Qualified Name
as defined in the IETF RFC 3720 – section 3.2.6.3.1 and the IETF RFC 3721 section 1.1 and provides a
unique naming authority reference.

A regid can be created by any individual or organization that owns or has owned the registration for a domain
name (as specified in IETF RFC 1034, section 3.5 and IETF RFC 1123, section 2.1). The domain name does
not need to be active, nor does it need to resolve to an address. Domain names by themselves do not
constitute a unique identifier since domains because they can expire and/or be acquired by other entities this
means a regid must also include a date that the domain registration was owned by the entity. Finally, for
entities that wish to further sub-divide unique naming sub-entities, an optional suffix is provided for the regid
that may be used, for example, to provide large software publishers means to allow each of their business
units to manage their own software identification tags independently.

The regid name shall consist of the following:

• The string "regid" – this qualifies the element as a registration id for software identification tags.

• A dot '.'

• A date code in YYYY-MM format. This date shall be a date during which the naming entity owned the
domain. This date should be the first month in which the domain name was owned by this naming
entity at 00:01 GMT of the first day of the month. This date code uses the Gregorian calendar and
must include all four digits of the year and both digits of the month (where January = 01 and
December = 12). The dash must be included.

• A dot '.'

• The reversed domain name of the naming entity (person or organization) creating a software
identification tag

• An optional string that specifies sub-entities that may be their own unique naming authorities. This is
specified by:

o A comma ','

o With the exception of the comma prefix, the owner of the domain name can assign text
following the reversed domain name as desired as long as all characters are valid for use in
filenames on any platforms the tag will be installed on. It is the responsibility of the naming
entity to ensure that each sub-entity reference is unique within their organization.

An example of regids created by entities owning example.com or example.net looks as follows:

Table 1 — Examples of regid values

 Naming Additional
 Type Date Auth "example.com" naming authority
 +---+ +-----+ +---------+ +--------------------------------+
 | | | | | | | |

 regid.1995-09.com.example,AccountingSystems
 regid.1995-09.com.example
 regid.1995-09.net.example,WordProcessing

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

16 © ISO/IEC 2009 – All rights reserved

6.1.4 Software identification tag extension and location for installation

Software identification tag files shall include the ".swidtag" file extension in their names for the recognition
purposes of platforms (4.1.7) and discovery tools.

Each platform provider (4.1.18), e.g. vendor of an operating system, should specify where software
identification tags are to be located. Windows® installations, for instance, may have a Windows Management
Instrumentation™ value specifying location; Linux™ distributions may use a Red Hat Package Manager value.
If the platform provider does specify a location, then the software identification tag shall be installed in this
location.

In the absence of specifications from the platform provider, software identification tags should be installed in
commonly known shared locations that are used for collecting commonly used system information. The
following examples provide information on which shared locations are expected to be used for various
platforms, in the absence of an alternative specification from the platform provider.

Table 2 — Examples of tag locations on different platforms

Apple Macintosh™ OS:X™
Leopard

<root>/Library/Application Support/<software creator regid>

Apple Macintosh™ OS X™
pre-Leopard

NOTE software identification tags
should be included in the application
directory by default for all operating
systems (see below). Pre-Leopard OS X
systems should also use this location as
the default location.

Application Directory/<program.app package>/contents

UNIX® and Linux™ usr/share/<software creator regid>

Windows® NT C:\Winnt\All Users\Application Data\<software creator regid>

Windows® 2000 Professional
Windows Server® 2000
Windows® XP
Windows Server® 2003

%AllUsersProfile%\Application Data\<software creator regid>

Microsoft Vista®
Microsoft Server® 2008

%Program Data%\<software creator regid>

The platform provider may provide access to the software identification tag using methods that are
independent from file access. For example, Microsoft Vista® includes 4 APIs that may be used to manage a
software identification tag repository. These API's are:

Table 3 — Microsoft Vista® APIs for software identification tag management

SLGetInstalledSAMLicenseApplications Retrieves a list of applications that have a software
identification tag installed by using SLInstallSAMLicense

SLGetSAMLicense Gets information about a specific software identification tag
installed by using SLInstallSAMLicense

SLUninstallSAMLicense Removes a software identification tag for a specified
application

SLInstallSAMLicense Adds a software identification tag to the Microsoft Vista®
repository

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 17

In addition a copy of the software identification tag shall also be installed in the top level directory of the
application itself. This allows the software identification tag to be discovered even if a removable storage
device (such as a USB hard disk) is moved from one system to another (7.5). Should the same software be
installed in two different locations for the same set of end-users, the expectation is that there would still be two
(or more) instances of the software identification tag in the common system location specified above as well
as two (or more) other tags that are located in the root directories of the installation directories. In this case, a
software uninstaller needs to be aware of the multiple installations at uninstall time in order to ensure that a
software identification tag is not removed from the common system location until all installations are
uninstalled.

NOTE SAM tool providers should be aware that there will be cases where a software identification tag can be found
in the common system location as well as in one or more top level directories of a software package installation. Using
information in the installation_details element, SAM tools can associate tags located in the common system location and
installation root directories with their corresponding installations. Rules need to be included in the SAM tools to deal with
various permutations of tags which are found. In cases where the tag is found in the software package installation
directory, and not in the common system location, additional rules are required to identify if software is located on
removable storage media that may have been moved to another system. If a tag is found in the common system location
as well as multiple tags found in installation directories, rules may need to be applied as appropriate for the organizational
policies. Appropriate reporting and action can then be taken by the SAM practitioner.

The goal of a SAM tool should be to make it as easy as possible for a SAM practitioner to manage exceptions
to organizational policy, so recognizing some of these issues and reporting on them based on the policies
specified by the practitioner make overall SAM implementations significantly easier to manage.

6.1.5 Unique identifiers

For the purpose of uniqueness, there are two elements that, combined, shall create a globally unique ID called
the software_id. These elements are

a) tag_creator_regid

b) unique_id that may be either a GUID, or any reference unique for the tag_creator_regid. The unique_id
shall follow the restrictions for URI character use as specified in IETF RFC 3986, section 2, Characters.

The benefits of implementing a unique identifier during software identification tag creation include, but are not
limited to, facilitation of the following:

a) Identification of parent-child relationships.

b) Explicit definition of dependencies and recognition of dependent software.

c) Identification of upgrade software and allowed upgrade packages.

d) Reference to identifying software identification tags from within software configuration items.

6.1.6 Unique software identification tag file name – distribution

When a software identification tag is created for distribution on installation media, it is not possible to provide
additional installation-specific unique ids as described in section 6.1.7 since the tag has not been installed on
any computing device as yet. In this case, the tag file is part of the master image for the installation process
and shall align with the following structure:

<tag_creator_regid>_<software_id.unique_id>.swidtag

Following this structure provides a unique filename that can ship with the software.

A software identification tag on the installation media would thus typically have a filename such as:

 regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537c40.swidtag

The installation routine shall then follow the process identified in section 6.1.7 when the tag is installed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

18 © ISO/IEC 2009 – All rights reserved

6.1.7 Unique software identification tag file name - installed

When software is installed on a computing device, the name of a software identification tag shall be unique at
least to the specific code to be installed, and align with the following structure:

<tag_creator_regid>_<software_id.unique_id>_<unique_sequence_id>.swidtag

The unique_sequence_id is optional and shall be used to ensure that every software identification tag installed
on a computing device has a unique filename. This unique_sequence_id may be a simple numerical
sequence, or it may be created using an algorithm chosen by the organization that installs the software
identification tag. The choice of how to create the unique_sequence_id is up to the organization installing the
software identification tag, but the methodology used shall ensure that the filename is unique for a specific
machine and/or virtual environment. The initial portion of a software identification tag filename would look as
follows:

 regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537c40

This would be followed by the unique_sequence_id. The algorithm to specify the unique_sequence_id may
include some of the following considerations:

1. For basic tag filenames, the unique_sequence_id may simply be a sequential value that, if during
installation of a software identification tag, a tag with the same name already exists, the sequential
number is incremented. In this instance, the numerical sequence would start at a specified reference
number and increment as other software identification tags for the same software ID are installed (this
would happen if and only if the software allows multiple installations on a particular computing device).
Note that the installation_instance within the optional installation_details element could be used as
part of the filename in this way.

An example of this software identification tag file name (for the first installation) is:

regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537c40_1.swidtag

2. The preferred algorithm for the unique_sequence_id should include details specific to the computing
device and/or media on which the software is installed (this may include device serial number, NIC
MAC addresses, hard disk serial number, or other unique reference items) and/or details about the
virtual environment where the software has been installed. Note that the installation_target_id within
the optional installation_details element may be used as part of the filename in this way. Having
device -specific details facilitates the tracking of software identification tags that may be installed on
removable or shared media. Note that this algorithm may also require an additional unique sequence
number to ensure that multiple installations on the same machine do not create the same filename.
The installation_instance within the optional installation_details element could be used as part of the
filename in this way. An example of this software identification tag file name is:

regid.1986-12.com.adobe_fc3cc419-b5a1-9f16-ed203e537c40_001c26f781fb_1.swidtag

Regardless of the algorithm chosen, the software identification tag filename shall be created by the
installation routine that installs the tag and the name must not conflict with any existing filename.
Additionally, the characters used in the filename shall not exceed 254 characters (or less if the
targeted platform for the software requires shorter file names). Finally, the characters used in the
filename shall meet all specific criteria required for the file systems that the tag is targeted for.

The .swidtag file extension shall be used for all software identification tags. This naming scheme allows for
multiple software identification tags to be applied to the same product title, thereby providing support for

tag_creator_regid unique_id numerical
sequence #

tag_creator_regid unique_id installation
_ target_id

numerical
sequence #

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 19

upgrades. It also allows for unique software identification tags to be created by organizations other than the
original software creator, such as for legacy software.

6.1.8 Consistency among data values

One challenge for software asset management is the fact that marketing names used by software providers
change frequently. Since the software identification tag will not typically be seen by the end-user, this tag can
provide a consistent and reliable source of information to enable effective inventory and software entitlement
reconciliation. Keeping values consistent from one version to another or across product lines is a large part of
the value software identification tags provide the SAM practitioner.

Numerous elements in the software identification tag should remain consistent from tag to tag to optimize the
overall software asset management process. It is recommended, for example, that tag providers maintain
consistency in the following elements:

a) Software creator identity (8.3.4) – this element should remain consistent across all software packages
created by a specific company.

b) Software licensor identity (8.3.5) – this element should remain consistent across all software packages
licensed by a specific company.

c) Tag creator identity (8.3.7) – this element should remain consistent across all software identification tags
created by a specific company.

d) License and channel information (8.4.8) - this optional element structure should remain consistent across
product lines and it is recommended that the values are consistent across all software created by a
specific company. Note that data in the ‘license and channel information’ elements of a software
identification tag do not specify software license or software entitlement information – instead, data in
these elements provides guidance to a SAM practitioner that will help them determine and perhaps
automate software license reconciliation procedures.

e) Product category (8.4.12) – this optional element should remain consistent for a particular product unless
the product adds or removes functionality to make it obvious that it belongs in a different category.

f) Product identifier (8.4.14) – this optional element should remain consistent especially for products that
have maintenance agreements that provide for upgrade rights over a period of time. his element is used
to identify a specific product from release to release – this element is not a product name, it is simply an
identifier so the relationship for upgrade purposes can be done automatically.

6.1.9 Software identification tag discovery

Software is generally created as a gold master copy by software providers, then copied and distributed
through different channels. Depending on the software provider's requirements, the software identification tag
may be incorporated directly into the gold master, or it may be created by the installer, or even the software
package itself. The primary requirement is that the software identification tag for the package shall be
discoverable on the machine, media and/or virtual environment on which the package is installed. For more
details, refer to the annex detailing guidance for software providers (Annex B).

6.1.10 Languages

Acknowledging that many software creators produce software with specific builds that are dependent on
language while many others produce software with one build that implements add-on "language packs," this
part of ISO/IEC 19770 does not require software identification tags to recognize different language versions of
the same product. Consistent categorization through the use of the supported languages element, is however,
strongly encouraged (8.4.24).

For encoding purposes, the use of utf-8 is the suggested methodology for software identification tags created
based on this part of ISO/IEC 19770 (see http://www.w3.org/International/O-charset).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.w3.org/International/O-charset
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

20 © ISO/IEC 2009 – All rights reserved

6.1.11 Ownership of elements within software identification tags

Because of the way that different entities may add or modify elements within the software identification tag, it
may be necessary for any one of these entities to identify which elements it has created and/or modified. This
capability is provided primarily via the elements_owner element, making use of the internal element ID as
described in 6.1.12.

Alternatively, ownership of individual elements may be identified through the use of digital signatures as
described in 6.1.13. However, the use of digital signatures does not directly identify an owner in the same way
as the elements_owner does, so the use of the elements_owner element is still recommended even when
digital signatures are used.

6.1.12 Internal element ID

There is a requirement to be able to cross-refer internally within the software identification tag to other
individual elements within the software identification tag. One obvious situation where this is required is in the
ability to identify the elements which have been created and/or modified by a specified tag creator or modifier,
as listed in the elements_owner element. This cross-reference capability is provided by assigning internal
element IDs to the individual elements which may then be used to cross-refer to those elements from other
elements.

Internal element IDs are used for intra-tag reference as well as for inter-tag references where a specific
element from another tag must be identified (this may happen in the case where a digital signature is provided
in a secondary file). These elements IDs must be unique within a software identification tag, but need not be
unique between tags. For software identification tags, ID attributes are typically used to identify specific
ownership of elements. The tag creator and modifier may use any defined methodology to specify and use ID
attributes. However, it is useful if a default convention is provided and used when possible. he default
convention suggested for this part of ISO/IEC 19770 is:

a) Every XML ID must start with an alphabetic character. The convention for this part of ISO/IEC 19770 is for
the ID to start with the letter 'e' standing for element.

b) Each top level element should utilize the same value as the paragraph defining that element with each
component of the paragraph denoted with an underscore. This results in the following attribute for the
element product_version:

 <swid:product_version ID=”e8_3_3”>

c) Every element may have sub-elements. In these cases, for each sub element, the ID should start with the
top level paragraph identifier (as noted above), followed by "sub[number of sub element]". This results in
the following IDs specified for the structure under product_version:

 <swid:name ID=”e8_3_3sub1”>10.2</swid:name>
 <swid:numeric ID=”e8_3_3sub2”>
 <swid:major ID=”e8_3_3sub2sub1”>10</swid:major>
 <swid:minor ID=”e8_3_3sub2sub2”>2</swid:minor>
 <swid:build ID=”e8_3_3sub2sub3”>0</swid:build>
 <swid:review ID=”e8_3_3sub2sub4”>0</swid:review>
 </swid:numeric>

d) For values that may have multiple entries specified, such as abstract, the ID should start with the top level
paragraph identifier (as noted above), followed by a sequence number as specified by "seq[number of
instance]". This results in the following IDs specified for the structure under abstract:

 <swid:abstract lang="en" ID=”e8_4_1_seq1”>This is the abstract written in English</swid:abstract>
 <swid:abstract lang="fr" ID=”e8_4_1_seq2”>This is the abstract written in French</swid:abstract>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 21

Following these recommendations for the ID references used by elements_owner provides a consistent
approach to specifying IDs that may readily be understood by an engineer who may be reading the tag as well
as being managed effectively through automated approaches.

6.1.13 Authenticity of software identification tags

Often, there will be a desire, or need to prove the authenticity of a software identification tag. For example,
during an audit, a software vendor may want to validate that the software identification tag collected during a
discovery process has not had key elements of the tag altered. Authentication is supported by allowing digital
signatures within the software identification tag.

There is an existing recommendation published by the W3C that addresses the need to provide digital
signatures in an XML document. The recommendation is "XML-Signature Syntax and Processing (Second
Edition) – 10 June, 2008" found at the following location:

http://www.w3.org/TR/xmldsig-core/

NOTE W3C does not reference official documents as "standards". Instead, the officially supported documents are
referred to as "recommendations". The reader should be aware that W3C follows a well defined process to get a
document to a recommendation level and that W3C recommendations should be considered as authoritative documents.

The W3C recommendation provides integrity message authentication as well as signer authentication services
for data of any type.

This part of ISO/IEC 19770 does not define the process for applying digital signatures to a software
identification tag since the W3C recommendation already does that.

Signatures are not a mandatory part of the software identification tag, and can be used as required by any tag
creator or modifier to ensure that sections of a tag are not modified and/or to provide authentication of the
signer. If signatures are required for the software identification tag, they shall follow the W3C recommendation
defining the XML Signature Syntax (http://www.w3.org/TR/xmldsig-core/).

NOTE Software identification tags will generally not require XML Advanced Electronic Signatures (XAdes), so this
W3C recommendation is not referenced in this part of ISO/IEC 19770.

6.1.14 Standardization of XSD definition

There are a number of standardized types used in the software identification tag including specific date/time
entries that shall follow a specified formats as specified in the W3C recommendation titled, "XML Schema
Part 2: Datatypes Second Edition". Details for these data types can be found at the following location:

http://www.w3.org/TR/xmlschema-2/

By using specific types as specified by the above W3C recommendation, software identification tags can go
through an automated validation step that allows a much more consistent structure to the data provided.

NOTE A few elements defined in this part of ISO/IEC 19770 provide for the use of regular expressions. The syntax that
is supported for these regular expressions is also defined in the W3C recommendation listed above. STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 19

77
0-2

:20
09

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmlschema-2/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

22 © ISO/IEC 2009 – All rights reserved

6.2 Software identification tagging life cycle: operational breakdown

6.2.1 Introduction

The following diagram shows the software identification tag lifecycle as it progresses from a software creator
(or tag creator) to a software consumer organization.

• Create software identification tag with mandatory identity elements (7.3).
• Provide optional identity elements to facilitate identification and SAM (7.4).
• Create tags for software that is not shipped with tags

Software Identification Tag Creation

• Provide additional software identification tag data, such as those identity
elements pertaining to release management (7.4.12-7.4.16).

• Provide extended information (7.5)
• Ensure consistent and uniform values in software identification tag data.

Software Identification Tag Modification

• Discover and report on software identification tags found installed on the
organization’s systems

• Use software identification tags to match entitlements
• Implement SAM procedures that use software identification tag information

Software Identification Tag Use

• Create missing software identification tags
• Correct corrupted software identification tags
• Auto-correct missing and corrupted software identification tags made by

executable software

Software Identification Tag Correction

Figure 1 — Software identification tag lifecycle

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 23

6.2.2 Software identification tag creation

The software identification tag creator will often be the same as the software creator. As software is built, the
software creator develops a corresponding software identification tag to identify the software package.

Example software identification tag creators include:

a) Software manufacturers. A software identification tag may be created when a software manufacturer
develops a particular software configuration item. Subsequently, the software identification tag and
software installation routine are shipped together. Software may be dispatched directly to software
consumers, publishers or both. Arrangements as to who creates the software identification tag and who
defines the software configuration item's origins may be agreed to between the various parties. It is
possible that this process may have mixed ownership as it depends on the channel used for software
distribution. Software manufacturers will likely use digital signatures regularly within software.

b) Software publishers. When software is developed by one organization and then published by another,
during the packaging process the software publisher will create a software identification tag to include as
part of the product installation process.

c) Line of business application developers. Line-of-business application developers will also create software
identification tags to include as part of the product installation process.

d) Distributors, repackagers, value-added resellers and other tag modifying organizations. Organizations
that distribute software that does not include standardized software identification tags may want to add
them in order to accommodate the needs of their software consumers. When a software package does
not include a software identification tag, SAM practitioners are encouraged to create and include their
own software identification tag to optimize SAM processes.

Software identification tag creators may also be third party organizations that are not directly related to the
software creator. This may be the case for legacy software that does not have software identification tags, or
for software that is developed by an organization that chooses not to include software identification tags with
their products. In these cases, the tag creator shall define element values in the software identification tag that
indicate that they are not the creator of the software (such as the tag_creator_regid in the software_id
element). These cases will be evident because the tag_creator_regid will be different from the
software_creator_regid.

6.2.3 Software identification tag modification

Individuals or companies that alter software identification tags and/or add supplemental information to
software identification tags are considered tag modifiers. This group may include software aggregators, VAR's
and may also include groups within an organization that manage software release processes.

Example software identification tag modifiers may include:

a) Distributors

b) Resellers

c) Value-added resellers

d) Republishers

e) Packagers

f) Discovery tool providers

g) Deployment tool providers

h) Release managers

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

24 © ISO/IEC 2009 – All rights reserved

6.2.4 Software identification tag use

Although software consumers are the ultimate beneficiaries of standardized software identification tag content,
discovery tools and operating systems are the primary systems that use the data. They read software
identification tag data to gather information about a given set of software configuration items. When a software
configuration item is deposited onto a particular computing device, a well-formed software identification tag
provides authoritative identification of the specific software installed, the tag creator and all third-party
providers who may have modified the software. This information is invaluable to the SAM practitioner.

Example software identification tag end-users include:

a) SAM owners

b) IT support professionals

c) Owners of the software configuration item

6.2.5 Software identification tag correction

Although software identification tags should be managed along with all other components associated with a
specific software installation, there will be times when a tag may be removed, deleted or corrupted – either on
purpose or accidentally.

In the case where a software identification tag becomes corrupt, there are optional methods available for a
software application to validate that the software identification tag is up-to-date and correct and/or potentially
to automatically self-heal the software identification tag. These methods help to ensure a higher level of
integrity of the data collected by discovery tools.

In the case where a product installation does not include a software identification tag, release managers may
choose to create a software identification tag to provide with the software to ease the SAM reconciliation
process.

In all cases, there should be methods available for a discovery agent or service to cross check information in a
manner that provides assurance about the accuracy of the data. For example, a discovery agent may collect
software identification tags and all executable filenames from a system. Software identification tags have the
ability to specify all the files that are associated with a particular piece of software. Using an appropriate
algorithm, a SAM discovery tool can quickly validate that a system with a specific software identification tag
also includes the necessary files that are associated with that title. The reconciliation engine can then filter out
the known application filenames from the collected list of executable filenames. Any filenames that remain in
the list at the end of this process would be considered exceptions and may require that a SAM practitioner
investigates these files further.

7 Platform requirements and guidance

7.1 Types of platforms

For the purposes of this part of ISO/IEC 19770, the term platform refers to a computer or hardware device and/or
associated operating system, or virtual environment, on which software can be installed or run (4.1.17). The
Linux™ operating system, for example, is used on a wide variety of hardware, from cell phone devices to
mainframe computers, and each variation can be considered a separate platform for the purposes of this
part of ISO/IEC 19770. Additional example platforms include, but are not limited to:

a) Redhat™ Linux™ Enterprise 4.0 Intel x86

b) Novell SuSE™ Linux™ 10.2 Intel x64

c) Macintosh™ OS 10.4 Intel x64

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 25

d) Microsoft Vista® x64

e) HP-UX 11i Itanium™

A platform can also be exemplified by a virtual environment (i.e., such as Java™ or .NET™) and, in such
cases, hardware support is generally unimportant. Versioning, however, is of great consequence in virtual
environments. Software written and compiled for one version of Java™ or .NET™, for example, may not run in
a prior version's environment. It is expected that virtual environments will also provide a software identification
tag to identify specific details about the version of the environment installed.

NOTE Do not confuse the terms virtual environment and virtual machine. The latter may run within a host operating
system platform but still represents a complete operating system environment by itself. The virtual machine, supplied
with virtual hardware, should therefore be treated as a separate hardware instance comparable to that of a separate
physical machine.

7.2 Basic platform services

Platforms exist independently of the software identification tag details of software configuration items they
contain and should be indifferent to them. A platform, however, should define processes to store and retrieve
these software identification tags efficiently.

It is recommended that platforms store and retrieve software identification tags in a process similar to how
operating systems manipulate files, the exception being that software identification tags should be stored in a
central location for ease of discovery. If a centralized repository is unavailable for software identification tags,
they should then be stored in a common location related to the software configuration items they define (as
defined in section 6.1.4) as well as in each software package installation’s top level directory. This means that
discovery tools need to collect software identification tags that may be located in multiple directories (such as
in the top level directory of a software package's installed files) in order to provide a complete inventory of
tags.

A platform meeting the requirements of this part of ISO/IEC 19770 shall provide the following services:

a) Basic add, modify, read and delete operations.

b) Audit capabilities

1) Identify who installed a given software configuration item and when installation occurred.

2) Identify who modified a given software configuration item and when modification occurred.

3) Identify who uninstalled a given software configuration item and when uninstallation occurred.

NOTE There is no requirement to retain software identification tags when software is uninstalled. For consistency,
it is recommended that they be removed. Audit trails should be used instead to identify previous installations, where
this information is desired.

c) Security

1) Determine who can create and modify software identification tags.

2) Determine who can read software identification tags.

7.3 Virtual environments

Virtual environments are typically installed on a computing device and should provide their own software
identification tags to identify themselves to discovery tools.

EXAMPLE When a Java™ Virtual Machine (JVM) is installed on a computing device, it should be installed with a
software identification tag just as any other software package should.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

26 © ISO/IEC 2009 – All rights reserved

The globally unique identifier and other identifier information for a virtual environment's software identification
tag can then be utilized by other packages to identify a software configuration item's compatibility with the
virtual environment.

EXAMPLE Once the JVM is installed, the identifier information from that package can be referenced by Java™-
based applications that utilize the JVM. This should be done by the Java™-based application specifying that the JVM is a
dependency.

7.4 Virtual machines

Virtual machines provide a guest operating environment that is independent of the host operating
environment. As far as software is concerned, the installation and discovery process will generally be exactly
the same, with the exception that the discovery process will occur completely within the virtual machine or
within the virtual machines disk (which is often just a file on the host operating system). In these
environments, the software identification tag should be provided just as it would be for any other computer.

It is expected that discovery tools will collect information about the system on which the tag is discovered as
part of the discovery process. If the system is a virtual machine, the details about the virtual machine, its host
environment, etc should be collected as well. The SAM reconciliation process then will use the details of the
software identification tags that are collected, in addition to details about the environment the tag is installed
on (virtual machine type, host for the virtual machines, etc.) and use these pieces of information to aid in
reconciliation.

There are numerous virtualization technologies in use today and this part of ISO/IEC 19770 cannot provide
definitions for how software identification tags should be used on all existing, or future technologies.
Virtualization vendors, however, should be aware that application installation and use should be tracked and
monitored in order to comply with software entitlements. As such, these virtualization technologies should
provide a means of discovering software packages or applications that are available for use and/or are being
used on a particular computing device. This may be done by providing software identification tags that are
discoverable along with a virtualized environment, or may be provided through a discovery process on a
virtualized disk.

7.5 Support for software installed on removable media

Software can often be installed on removable media. In these cases, the software identification tag needs to
identify that the software was installed on a specific computing device as well as provide tag information that
follows the removable media. This shall be done by providing a software identification tag in the common
system location (either the OS defined tag store, or tags located in common directories) for the computing
device. A second copy of the software identification tag shall be included in the top level directory used to
install the software package.

Tool providers should recognize that two or more identification tags may be discovered on the same
computing device and be able to recognize that the computing device only has one installation of a software
package. In the instance where the removable media is discovered on another computing device, the software
entitlement rules for that particular package shall specify if the package should be considered a single entity
(the installation on the removable media), or two entities (the system the software was installed on as well as
the actual software on the removable media).

7.6 Hardware and platform identification

This part of ISO/IEC 19770 is focused on software identification tags. In most use cases, these software
identification tags will be collected as part of a standard SAM or software discovery/inventory process. The
tool used to handle the discovery is expected to collect and return hardware and other platform information
(such as operating system details) that will be associated with any software identification tags collected. This
provides an automated association of software with the hardware and platform on which it is installed.

As portable devices become more and more capable, virtual environments and virtual machines become more
diverse and automated data collection is improved, it is expected that additional hardware and platform
identification information may be required to assist with IT asset management processes. Should an official, or

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 27

de-facto standard be defined that provides additional unique hardware and platform asset identification
information; details specified in that standard should be utilized to develop a consistent installation_target_id
that may be used on any platform. Should some type of hardware identification become an official standard, it
is expected that information from that standard will be included in the conformance section of a future version
of this part of ISO/IEC 19770.

8 Elements

8.1 General

Elements describe common attributes of all or most software configuration items. Operating systems and
discovery tools can use these attributes to identify software configuration items.

Elements may be altered by an assortment of tag modifiers (6.2.3, 6.2.4).

This part of ISO/IEC 19770 enumerates 37 distinct elements, and this list is not exhaustive. They are
predefined to ensure consistency between software identification tags (8.2).

Elements are described with examples in clauses 8.3 and 8.4, respectively. The examples are specified in
XML syntax, the format which shall be used for software identification tag creation. The examples provide
insight as to what information is to be included within data elements. For extended examples of software
identification tags, please refer to Annex H.

This part of ISO/IEC 19770 does not require a specific process for generating content for elements.

Mandatory elements (8.3) are required for a software identification tag to be considered valid or complete.
Incomplete software identification tags should be flagged by discovery tools as invalid, notifying the software
identification tag data SAM practitioner that these are not valid or complete. There are five mandatory
elements.

It is recommended that tag providers maintain a central repository of all software identification tags created for
all product releases containing at least the mandatory elements. This repository can then be used to validate
the uniqueness of GUIDs as well as ensuring that the software creator name and GUID remain consistent
throughout the product line. This part of ISO/IEC 19770 does not require an external registration agency for
software identification tags, so it is up to each tag creator to ensure each of their tags is unique.

Optional elements (8.4) may or may not be provided in a software identification tag. The data elements that
correspond to optional elements permit software identification tag creators additional opportunities to improve
reliability of information for SAM practitioners and tool providers. If these optional elements are used, then
they shall be used in accordance with the requirements in this section.

Extended elements (8.5) are provided in the software identification tag to allow the inclusion of additional
values that have not been predefined. Extended elements shall be in an XML format and should include an
XSD reference that can be used to validate the information in this section.

Unlike the mandatory and optional sections, there may be multiple extended sections in a tag. Each extended
section should be specific to a particular tag creator or modifier, and not have mixed usage. For example, a
tag creator may include extended elements that it wants included for its own discovery tool. A software
consumer organization may want to include extended elements related to their overall software lifecycle
policies and procedures.

8.2 Element names

Software identification tag content shall be identified in accordance with the element names specified in
clauses 8.3 and 8.4 below. This naming requirement ensures consistent interpretation of software
identification tag content, regardless of mandatory or optional nature.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

28 © ISO/IEC 2009 – All rights reserved

If an element is optional, its description still shall adhere to this naming requirement and to limitations
specified in the definitions of clause 8.4.

8.3 Mandatory elements

8.3.1 Entitlement required indicator (‘entitlement_required_indicator’)

XML Tag entitlement_required_indicator

Type Boolean

Definition This element is a Boolean tag that indicates if a software entitlement must match up against
this item in order for a software reconciliation to be considered successful. Open Source
software, for example, may not “require” a software entitlement in the reconciliation process
to be legally installed and used. This does not mean that the software does not have a
software entitlement; rather that it does not need a software entitlement specified in a SAM
system for the reconciliation to be complete. This provides the ability for a practitioner to
manage by exception and focus only on those items that are legally required to be in
compliance. This does not mean that an organization will not manage compliance of items
such as open source, or freeware products, simply that they can make that choice.

This element shall occur exactly once in the software identification tag.

Example <entitlement_required_indicator>true</entitlement_required_indicator>

8.3.2 Product title (‘product_title’)

XML Tag product_title

Type XML character string

Definition Name of product, as assigned by the software creator. This value is primarily used in end-user
or computing device focused reports and is not typically going to be used as part of the
process of reconciliation.

This element shall occur exactly once in the software identification tag.

Example <product_title>Viewmaster Standard</product_title>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 29

8.3.3 Product version (‘product_version’)

XML Tag product_version

Type Complex type

Definition Version of the product defined as two elements – numeric version and version name.

This element allows software creators to provide purely numeric version information which is
used for comparison purposes against software entitlement information and for grouping
purposes. Additionally, the String version is provided so software creators have the ability to
specify any textual representation they want an end-user to see in a report.

A good example of this is Microsoft Vista®. Most SAM practitioners will immediately
recognize a text version for this OS if it is listed as Microsoft Vista®, Version SP1. However,
many SAM practitioners will not recognize the numeric version of 6001.18063.

Each element is independent, but they should be related and consistent with each other.

The numeric-based version number consists of four levels: major and minor version numbers
plus build and maintenance numbers. If a vendor does not choose to use all available levels,
the non-used levels should be set to 0. The numeric version is expected to be used for
comparison purposes against software entitlement information during the reconciliation
phase of the software asset management process.

The string version of the product version may contain numeric and/or alphabetic characters.
It is a more user friendly name of the product version than numeric-based version number.
This value will typically be used in end-user or computing device oriented reports.

This element shall occur exactly once in the software identification tag.

XML tag Type Definition

name XML character string

One entry

Textual name of the version

Data
Structure

numeric ProductVersionComplexType -
Complex type consisting of four
elements with numeric values: “major”,
“minor”, “build”, “review”

One entry

Numeric version identifier

Example <product_version>
 <name>10.2 Fix Pack 1</name>
 <numeric>
 <major>10</major>
 <minor>2</minor>
 <build>0</build>
 <review>0</review>
 </numeric>
</product_version>

OR

<product_version>
 <name>6.2.1279.00</name>
 <numeric>
 <major>6</major>
 <minor>2</minor>
 <build>1279</build>
 <review>0</review>
 </numeric>
</product_version>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

30 © ISO/IEC 2009 – All rights reserved

8.3.4 Software creator identity (‘software_creator')

XML Tag software_creator

Type Complex type – EntityComplexType

Definition This element allows a discovery process to identify the specific software creator that produced
the software package.

Software creator names in different countries may be exactly the same, but refer to separate
legal entities. To ensure uniqueness, this element shall contain the regid of the software
creator as well as the name.

This element shall occur exactly once in the software identification tag.

XML tag Type Definition

name XML character
string

One entry

This element provides the name of the entity defined in the
tag. This name should be consistent between software
products and software releases.

Data
Structure

regid regid type

One entry

Regid of the software creator (as specified in
section 6.1.3.) If the entity is unknown, or is no longer in
business, this value may be set to "unknown".

Example <software_creator>
 <name>Example Corp</name>
 <regid>regid.1995-09.com.example</regid>
</software_creator>

8.3.5 Software licensor identity (‘software_licensor')

XML Tag software_licensor

Type Complex type – EntityComplexType

Definition This element allows a discovery process to identify the specific software licensor that owns the
copyright for the software package.

Software licensor names in different countries may be exactly the same, but can refer to
different legal entities. To ensure uniqueness, this element shall contain the regid of the
software licensor as well as the name.

This element shall occur exactly once in the software identification tag.

XML tag Type Definition

name XML character
string

One entry

This element provides the name of the entity defined in the
tag. This name should be consistent between software
products and software releases.

Data
Structure

regid XML character
string

One entry

Regid of the software licensor (as specified in section
6.1.3.) If the entity is unknown, or is no longer in business,
this value may be set to "unknown".

Example <software_licensor>
 <name>Example Corp</name>
 <regid>regid.1995-09.com.example</regid>
</software_licensor>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 31

8.3.6 Software unique identifier (‘software_id’)

XML Tag software_id

Type Complex type

Definition The software_id provides information that can be used to reference a specific version of a
specific product. This element requires the tag creator to ensure that the unique_id is unique
for each software title and version. Different upgrade levels of a software package shall be
distinguished by unique software identifiers. To avoid the need for an external registration
agency, each tag creator must use their own regid as specified in section 6.1.3.

The regid is provided along with a unique ID (unique_id) within that regid. Different platforms
and/or development environments may have different methods of creating unique IDs. The
unique_id could be a GUID, or it may be simply a unique reference within the development
environment. For example, an organization could decide their unique_id would be something
like <productname>_<version>_<releaseID>.

It will be possible for multiple tag creators to create their own unique software_ids for the
same software product. This is likely to be the case where the software creator did not create
a software identification tag (such as for legacy software), and multiple competitive service
organizations then create their own tags for use with such software.

This element shall occur exactly once in the software identification tag.

XML tag Type Definition

tag_creat
or_regid

XML character string

One entry

This element specifies the identification
of the organization that created the tag.

Regid of the tag creator as specified
section 6.1.3. Note that the
tag_creator_regid and the
software_creator_regid may be the
same values – this will be the case
where the software creator is creating
the tags. Including the
tag_creator_regid helps ensure
uniqueness of the software_id and also
allows SAM practitioners and SAM
tools to identify the provenance of any
discovered software identification tag.

This element shall not contain
characters that are inconsistent with
filename use such as '/', '\', '[', etc.

Data
Structure

unique_id XML character string

One entry

Unique ID that identifies the specific
version of a specific product.

The unique_id shall follow the
restrictions for URI character use as
specified in IETF RFC 3986, section 2,
Characters.

Additionally, this element shall not
contain characters that are inconsistent
with filename use such as '/', '\', '[', etc.

Example <software_id>
 <unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

32 © ISO/IEC 2009 – All rights reserved

OR

<software_id>
 <unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
</software_id>

8.3.7 Tag creator identity (‘tag_creator')

XML Tag tag_creator

Type Complex type – EntityComplexType

Definition This element allows a discovery process to identify the specific tag creator for the software
package.

Tag creator names in different countries may be exactly the same, but refer to separate legal
entities. To ensure uniqueness, this element shall contain the regid of the tag creator as well
as the name.

This element shall occur exactly once in the software identification tag.

XML tag Type Definition

name XML character
string

One entry

This element provides the name of the entity defined in the
tag. This name should be consistent between software
products and software releases.

Data
Structure

regid XML character
string

One entry

Regid of the software licensor (as specified in section
6.1.3.) If the entity is unknown, or is no longer in business,
this value may be set to "unknown".

Example <tag_creator>
 <name>Example Corp</name>
 <regid>regid.1995-09.com.example</regid>
</tag_creator>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 33

8.4 Optional elements

8.4.1 Abstract (‘abstract’)

XML Tag abstract

Type Complex type

Definition Summary that provides information for the software package that this tag applies to, including
a language component to allow for multi-language support.

The abstract element may occur more than once in a software identification tag, but shall only
occur once for each language specified.

If language is not specified, it is assumed to be English ("en").

This element may occur zero to unlimited times in the software identification tag.

XML tag Type Definition Data
Structure

lang XML character string. This is an
optional tag attribute

The language the abstract is written in.
Languages shall be specified as defined
in IETF RFC 4646 (see http://www.rfc-
editor.org/rfc/rfc4646.txt).

Example <abstract lang="en">The View Master software enables viewing of all kinds of document
formats.</abstract>

8.4.2 Component association (‘component_of’)

XML Tag component_of

Type Complex type

Definition Component_of is an element that is used to show a child to parent relationship between
packages (i.e. which parent does this package belong to). Typically, this element will be used
when additional components are installed, but are related to an existing package on a
computing device. This element is not used as part of a suite definition, rather it is used
when a package is installed that adds functionality to an existing package on the computing
device.

Typically either component_of or complex_of will be used to specify a product grouping, not
both at the same time.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

software_id Software

identification type
described in 8.3.5

One to unlimited
entries

List of unique software identifiers that define an
association between this package and a parent package.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.rfc-editor.org/rfc/rfc4646.txt
http://www.rfc-editor.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

34 © ISO/IEC 2009 – All rights reserved

Example <component_of>
 <software_id>
 <unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
</component_of>

Or

<component_of>
 <software_id>
 <unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
</component_of>

8.4.3 Components list (‘complex_of’)

XML Tag complex_of

Type Complex type

Definition Complex_of is an element that specifies child relationships for this package (i.e. which
packages belong to this one). This element is typically used to provide a list of products that
are a part of a “suite”. This element is made up of a list of unique identifiers that represent
the products that make up the suite. Typically either complex_of or component_of will be
used to specify a product grouping, not both at the same time.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

software_id Software

identification type
described in 8.3.5

One to unlimited
entries

Unique Software identifier that defines an association
between this package and its child packages. This item
is generally used when defining the packages that make
up a suite.

Example <complex_of>
 <software_id>
 <unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
 <software_id>
 <unique_id>a584c19-b5a1-9f16-ed203e5ab45fc</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
</complex_of>

Or

<complex_of>
 <software_id>
 <unique_id>com.adobe.Acrobat-3D-Win-Multilingual-8.00</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
</complex_of>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 35

8.4.4 Data source (‘data_source’)

XML Tag data_source

Type XML character string

Definition Basis for the data source of the final installation.

Values include, but are not limited to, strings such as the following: CD, MSDN CD,
Electronic distribution and Definitive software library – Released for distribution. By providing
such values in the software identification tagging process, SAM practitioners can rapidly
assess what software configuration items are installed on which platforms and how each was
installed. This element does not require normalization between different tag creators because
many organizations have their own definitions for the type of data source and this information
is informational to the SAM practitioner, and is not typically required.

Values used in this element should be consistent within an organization and across product
lines.

This element may occur zero to one time in the software identification tag.

Example <data_source>DVD</data_source>

8.4.5 Dependency (‘dependency’)

XML Tag dependency

Type Complex type

Definition This element is provided in order to allow software to specify that it requires a different
product in order to run. This is not necessarily related to software licensing or software
entitlements, but simply to requirements. For example, a Java™ application may be
dependent on a specific version of Java™ to run properly. An Excel® template requires
Excel®. These dependencies are not necessarily strict dependencies that will be used by the
software to validate that a specific software identification tag is available before the
application runs, but rather guidance that is provided to the SAM database to assist with
software relationships and/or potentially to provide information to a help desk environment.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

software_id Software
identification
type
described in
8.3.5

One to
unlimited
entries

Unique Software identifier that defines the dependency
tag.

Example <dependency>
 <software_id>
 <unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </software_id>
</dependency>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

36 © ISO/IEC 2009 – All rights reserved

8.4.6 Element owner list (‘elements_owner')

XML Tag elements_owner

Type Complex type

Definition This element provides the ability to specify who claims ownership over elements in the tag.
This ownership claim is not as authoritative as using a digital signature, however, it does
provide guidance to tag modifiers. By listing an element as being "owned", it indicates that the
value specified in the element should not be changed unless explicitly agreed to by the
existing owner of the element.

The tag creator should specify the elements that may not be modified by any tag modifier.

The element utilizes element IDs which the XSD supports. These element IDs are created by
the tag creator and need only be uniquely specified and referenced for each software
identification tag. IDs are utilized to reference specific other tag elements from within the tag
itself. See the examples below as well as in section 6.1.12 to see how IDs are used.

This element may occur zero to unlimited times in the software identification tag.

XML tag Type Definition

owner_regid XML
character
string

one entry

If the elements_owner is specified, this item specifies the
company that owns the values. In general, commercial,
off-the-shelf (COTS) software will use the regid as the full
definition of the owner. Internally built applications may
also specify the owner_name.

owner_name XML
character
string

Zero or one
entry

This element provides more detail on who owns the values
specified in the software identification tag. In general, the
owner_name will only be used for internally built
applications where an individual or group also needs to be
specified to know who should be contacted. If desired,
commercial applications may also use the owner_name
element to specify additional contact details related to the
owned elements.

Data
Structure

element_id XML
character
string

Zero to
unlimited
entries

Element_id provides a list of IDs that are owned by the
specified owner. IDs are specified by the element creator
and must be unique for a specific tag, but there is no
requirement that they be unique between different tags
since they are only used to show relationship links within
the tag, or to reference specific elements within a specific
tag. See the example for how IDs may be specified and
used by the elements_owner structure.

Example <swid:entitlement_required_indicator ID=”e8_3_1”>true</swid:entitlement_required_indicator>
 <swid:product_title ID=”e8_3_2”>Adobe Photoshop CS3</swid:product_title>
 <swid:product_version ID=”e8_3_3”>
 <swid:name ID=”e8_3_3sub1”>10.2</swid:name>
 <swid:numeric ID=”87_3_3sub2”>
 <swid:major ID=”e8_3_3sub2sub1”>10</swid:major>
 <swid:minor ID=”e8_3_3sub2sub2”>2</swid:minor>
 <swid:build ID=”e8_3_3sub2sub3”>0</swid:build>
 <swid:review ID=”e8_3_3sub2sub4”>0</swid:review>
 </swid:numeric>
 </swid:product_version>
 <swid:software_creator ID=”e8_3_4”>
 <swid:name>Adobe Systems Incorporated</swid:name>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 37

 <swid:regid>regid.1986-12.com.adobe</swid:regid>
 </swid:software_creator>
 <swid:software_licensor ID=”e8_3_5”>
 <swid:name>Adobe Systems Incorporated</swid:name>
 <swid:regid>regid.1986-12.com.adobe</swid:regid>
 </swid:software_licensor>
 <swid:software_id ID=”e8_3_6”>
 <swid:unique_id>Photoshop-CS3-Win-GM-en_US</swid:unique_id>
 <swid:tag_creator_regid>regid.1986-12.com.adobe</swid:tag_creator_regid>
 </swid:software_id>
 <swid:tag_creator ID=”e8_3_7”>
 <swid:name>Adobe Systems Incorporated</swid:name>
 <swid:regid>regid.1986-12.com.adobe</swid:regid>
 </swid:tag_creator>

 <!-- Optional elements -->

 <swid:elements_owner>
 <swid:owner_name>Adobe Systems Inc. </swid:owner_name>
 <swid:owner_regid>regid.1986-12.com.adobe</swid:owner_regid>
 <swid:elements_ID>e8_3_1</swid:elements_ID>
 <swid:elements_ID>e8_3_2</swid:elements_ID>
 <swid:elements_ID>e8_3_3</swid:elements_ID>
 <swid:elements_ID>e8_3_4</swid:elements_ID>
 <swid:elements_ID>e8_3_5</swid:elements_ID>
 <swid:elements_ID>e8_3_6</swid:elements_ID>
 <swid:elements_ID>e8_3_7</swid:elements_ID>
 </swid:elements_owner>

8.4.7 Installation details (‘installation_details’)

XML Tag installation_details

Type Complex type

Definition This element provides specific details for the full path information on the locations of the
software identification tags for a particular software package installation as well as installation
instance details. Each software installation will have two software identification tags added to
the system – one in the common platform directory (as specified in section 6.1.4) and one in
the root directory of the installed software package.

It is strongly recommended that the tag locations be included whenever possible since this
allows SAM tool providers to link two software identification tags together as a related tag.

On platforms where software products are allowed to be moved easily (such as the Apple
Macintosh™ platform), it is highly recommended that the software application regularly
validate that the installation_details element is defined properly and that SAM tool providers
validate the location where the tags are discovered and compare that to the
installation_details.

Installation instances are provided for software that may be installed multiple times on a single
platform. This may be done in the case of installations for specific end-users, or it may be
done to provide multiple copies of a particular software package for an end-user, or on the
system in general.

This element may occur zero to one time in the software identification tag.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

38 © ISO/IEC 2009 – All rights reserved

Data
Struc-
ture

XML tag Type Definition

location_platform XML
character
string

Zero or one
entry

This is the full path to the directory where the common
software identification tag is located. If the common path is
in a system specified location (such as in the case of
Microsoft Vista®), then "system" may be specified.

location_installation XML
character
string

Zero or one
entry

This is the full path to the software identification tag that is
installed in the root directory of the software package.

 installation_instance XML
character
string

Zero or one
entry

If a software title allows multiple installations, the
installation_instance allows organizations to provide a
unique identifier for each installation.

For example, if multiple instances can be created for
individual end-users, each installation might be identified
by the end-user id. If the software may be installed multiple
times for the same end-user or the system, this identifier
may simply be a number that is incremented as other
software identification tags are discovered during
installation.

This element shall not contain characters that are
inconsistent with filename specifications such as '/', '\', '[',
etc.

installation_locale XML
character
string

zero to
unlimited
times

This element specifies the locale or locales supported by
the installed software. Locales shall be specified as
defined in IETF RFC 4646 (see http://www.rfc-
editor.org/rfc/rfc4646.txt). If the installed version of
software supports multiple locales, this can be identified by
the software identification tag containing multiple
installation_locale elements.

installation_target_id XML
character
string

Zero or one
entry

A value which will allow the identification of the machine,
storage device, and/or virtual environment on which
software has been installed.
This element shall not contain characters that are
inconsistent with filename specifications such as '/', '\', '[',
etc.
The software installer (or self-installing programs) should
provide for installation-specific parameters which
determine the value to be put into this element. A specific
value may be given in a parameter, or there may be a
specification of the operating system call to use to obtain
the required information. In the absence of any other
specification by the software publisher, a default value
shall be used, with the media serial number (of the media
onto which the software has been installed) being the
recommended default value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.rfc-editor.org/rfc/rfc4646.txt
http://www.rfc-editor.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 39

The installation_target_id may include asset number,
media serial number for the media on which the software
is installed, a NIC MAC address, or other unique reference
items.

It is recognized that some of these values can change
without the underlying identity truly changing, e.g. a
network interface card may need to be changed which will
change the NIC MAC address. Software asset
management procedures will need to deal with such
issues.

This value is a recommended component of the installed
version of the filename for a software identification tag.
(See 6.1.7)

It is anticipated that conventions will evolve as to what
types of values will typically be placed into this element,
and that these conventions will be supported by platform
providers.

Exam-
ple

<installation_details>
 <location_platform>C:\Documents and Settings\All Users\Application Data \adobe\adobe.com-
photoshop8.0pro.swidtag</location_platform>
 <location_installation>C:\Program Files\Adobe\Photoshop CS\adobe.com-
photoshop8.0pro.swidtag</location_installation>
 <installation_instance>1<\installation_instance>
 <installation_target_id>0018F8096CE1</installation_target_id>
 <installation_locale>en-US</installation_locale>
 <installation_locale>en-GB</installation_locale>
 <installation_locale>en-AU</installation_locale>
</installation_details>

8.4.8 Keywords (‘keywords')

XML Tag Keywords

Type Complex type

Definition This element provides the ability for a tag creator or modifier to add specific keywords to the
software identification tag. The keyword values are not specified in this part of ISO/IEC 19770,
but are instead provided as a way for the tag creator or modifier to help search engines find
software identification tags that relate to a particular subject.

Individual keywords may be added by tag modifiers, they may be specified in the
"elements_owner" element and they may also be signed. Since the keywords element allows
multiple keyword sub-elements, each sub-element may be owned or signed by its individual
owner.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

40 © ISO/IEC 2009 – All rights reserved

XML tag Type Definition Data
Structure

Keyword XML
character
string

Zero to
unlimited
entries

This is the element used to specify keywords that are
applicable to a specific software identification tag.
Keywords are entered one at a time, and may be identified
as being owned (by elements_owner - 8.4.6) and may be
included in a digital signature as well (see Authenticity of
software identification tags 6.1.13).

Multiple tag modifiers may add their own keywords to the
list as well.

Example <keywords>
 <keyword>Acme</keyword>
 <keyword>Painter</keyword>
</keywords>

8.4.9 License and channel information (‘license_linkage’)

XML Tag license_linkage

Type Complex type

Definit-
ion

This element provides information that can be used to help determine the proper software
entitlement structure for the product installation that is related to this tag. The elements that
are part of the license_linkage element provide information on how the product may have been
installed and its current license state on the particular system the tag is discovered on.

NOTE License state is not directly related to a software entitlement. License state is for an installation
of a specific software package on a specific machine. Entitlements, on the other hand, specify the legal
ownership of license use rights. Entitlement details are specified in part 3 of ISO/IEC 19770.

Elements provided as part of the license_linkage element can help SAM practitioners quickly
identify when un-authorized software is installed in their environment. These tags are optional,
but they will help the SAM practitioner by providing more information about where software
may have come from. By providing these tags, SAM practitioners can build rules that help
them manage by exception rather than having to monitor each and every change that may
occur in the environment they work in.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

activation_stat
us

XML character
string

Zero to unlimited
entries

The values in this element are related to the various
licensing levels that a specific software licensor may
track for an individual machine. Every software licensor
may have a different set of status values, but as much
as possible, the values should be consistent for one
software licensor. A representation of these values may
include:

a) Trial – this indicates that the software is in a trial
mode and this value may include the number of
days the trial mode is valid, or that the trial has
expired.

b) Serialized – this indicates that the end-user or

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 41

software consumer has entered a valid serial
number during the installation process, but that the
product has not yet been activated.

c) Fully Licensed – this indicates that the product has
been activated and as far as the software licensor is
concerned, this is a fully capable installation for a
specific system.

d) Unlicensed – this indicates that the software should
no longer be able to be run on a device, or it is
running in a limited mode. Software can get into this
state by the following:

1) A trial period has expired

2) A time-based license has expired

3) Package was serialized, but never activated in

the given timeframe.

Values used in this element should be consistent within
an organization and across product lines.

channel_type XML character
string

Zero to unlimited
entries

Provides information on which channel this particular
software was targeted for. The values used in this
element may be unique to the software vendor, but
should be consistent between products published by a
particular vendor. A representation of these values may
include:

a) Volume

b) Retail

c) OEM

d) Academic

If used by a software licensor, it allows a SAM
practitioner to identify software that may be installed in
an organizations environment but that doesn’t follow
organizational policy. For example, software that was
destined for an academic channel is not generally
considered appropriate for installation in a corporate
setting.

Values used in this element should be consistent within
an organization and across product lines.

channel_name XML character
string

Zero or one entry

This element provides a location for the name of the
channel. This allows reseller organizations to create
software identification tags that include the name of a
distribution or channel partner.

customer_type XML character
string

Zero to unlimited

Customer type identifies the target customer, not the
channel. The values used in this element may be
unique to the software vendor, but should be consistent
between products published by a particular vendor. A
representation of these values may include:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

42 © ISO/IEC 2009 – All rights reserved

entries
a) Government

b) Corporate

c) Educational

d) Retail

With current software entitlements, there is often a
different cost associated with products that are targeted
at different customers. However, there are also
limitations placed on the installation of these products.
For example, a copy of software that is created for an
educational customer is typically sold at a lower cost
and often not licensed for use in a corporate setting.

Values used in this element should be consistent within
an organization and across product lines.

Example <license_linkage>
 <activation_status>Fully Licensed</activation_status>
 <channel_type>Volume</channel_type>
 <channel_name>Reseller name</channel_name>
 <customer_type>Corporate</customer_type>
</license_linkage>

Or

<license_linkage>
 <activation_status>Trial</activation_status>
 <channel_type>Retail</channel_type>
 <customer_type>Retail</customer_type>
</license_linkage>

8.4.10 Package footprint (‘package_footprint’)

XML Tag package_footprint

Type Complex type

Definition Specifies a set of files and other entries that indicate a product is installed. Also provides for a
link to a package_footprint from an external URI. On the Windows® platform, other entries
may include registry entries, WMI entries, and MSI data. Other platforms may include
additional platform specific information that may be desirable to include.

Package_footprint information will be used by SAM tools and SAM practitioners to provide
confidence levels on software identification tag information and cross reference details that a
software creator indicates should be present against what is actually discovered during an
inventory process. Note that the package_footprint is not intended to validate that a software
installation is complete, nor that the software will actually run.

The items listed in the primary section can be used to validate that a software identification
tag is installed on a device that does, in fact, have the software installed. Secondary and
other items are provided by tag creator to ease the burden of SAM tools and SAM
practitioners. By providing footprint information for an application, SAM tools and SAM
practitioners can use this information to filter out the extensive list of discovered data they
receive from all devices and can move towards an exception based SAM management
practice as they have a more accurate list of what is authorized to be installed as opposed to

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 43

what is discovered.

NOTE Examples of the various elements can be found in section 8.6.6 FootprintModuleComplexType
which provides details on how the various types and structure of the type used in the package_footprint
element work together.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

external_de
scription

URI string

Zero or one
entry

This element allows a tag creator to keep the list of entities
associated with a particular system available through an
indirect reference to their site. By doing this, the tag creator
owns the list and can update the list as necessary without
having to distribute a patch, or a new version of the product
with a new set of files listed.

primary FootprintModule
Complex type

Zero to one
entry

Defines files and other items that are considered "primary"
to a software package. If items in the primary element are
found on a device, then software is considered to have a
high probability of being installed and the tag should be
considered to be valid in that the software to which the tag
refers has a high likelihood of being installed on the device.

NOTE 1 A filename by itself is not unique. To ensure
uniqueness, this element provides multiple characteristics that can
be defined including: name, size, md5, version and "other" types
that can be tag creator defined.

NOTE 2 There may be multiple entries for a particular file in the
primary element. This allows a single footprint to be used for
multiple patch releases where files may change size, version or
MD5 sums. In these cases, the discovery tool only needs to
discover a single unique file definition for each unique filename
presented (i.e. if file "abc.com" has 3 different sizes and MD5
entries, and the SAM tool matches one discovered file against one
of those 3 entries, than file "abc.com" is defined as existing on the
device).

NOTE 3 If one version of each primary item (file, as well as
os_configuration_record or other element in the
FootPrintModuleComplex type) defined in the primary element is
present, then SAM tools and SAM practitioners should have a high
confidence that the software identification tag is properly
identifying installed software. If some primary items are not
discovered on a device, this would indicate that an exception has
occurred and the SAM practitioner or release manager should
investigate why the device does not have all primary items.

Data
Structure

secondary FootprintModule
Complex type

Zero to one
entry

Defines files and other items that are considered
"secondary" to a software package. These items are not
used to validate that the tag refers to software that is, in fact
installed, but are instead provided so they can be used as a
filter by software recognition algorithms that determine if a
software package is installed based on files found. By
providing a list of files that can be safely "filtered out", the
software recognition engine will end up with many fewer
unmatched files requiring research.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

44 © ISO/IEC 2009 – All rights reserved

Similar to the primary element above, files may include
other specific characteristics to ensure uniqueness to the
tag creator.

related FootprintModule
Complex type

Zero to one
entry

Defines files and other items that are "loosely coupled" to a
software package, but that may also be installed with a
particular software package. These file entries are also
used to filter a complete list of files that a discovery agent
may collect in order to remove files that are associated with
"known" software.

An example of this is an installer that installs an Original
Equipment Manufacturer (OEM) version of a software
package. The files in the OEM installation should be able to
be loosely associated with the primary package (so they
can be appropriately filtered by a software recognition
process), but if another software package claims ownership
to those files, then the software claiming ownership gets
precedence over any software that has a loose association.
Other loose couplings would include components that are
shared between software packages and/or components that
may be installed as optional add-ons to a software
package.

Example <package_footprint>
 <external_description>http://www.adobe.com/acrobat/(sofware_id)/filelist.xml</external_descriptio
n>
</package_footprint>

Or

<package_footprint>
 <primary>
 <file>
 <name>acrobat.exe</name>

 <size>349808</size>
 <version>8.1.0.137</version>
 <md5>9bb7d80f752d9aba168f7795a5ffa7f6</md5>

 </file>
 <os_configuration_record>
 <record_type>WMI</record_type>
 <path>Root\CIMV2</path>
 <name>Win32_Product</name>
 <internal_path>Name= ‘Adobe Acrobat 8 Professional’</internal_path>
 <entry>
 <name>Version</name>
 <value>8.1.2</value>
 <type></type>
 </entry>
 <entry>
 <name>Vendor</name>
 <value>Adobe Systems</value>
 <type></type>
 </entry>
 </os_configuration_record>
 </primary>
</package_footprint>

NOTE The filelist.xml file would use the same structure as the software identification tag and the
"package_footprint" element would be used to provide the file definitions for a particular software_id

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 45

8.4.11 Packager (‘packager’)

XML Tag packager

Type Complex type

Definition Provides details of who modified a software package for a particular set of installation
procedures. This element will most often be specified by a release manager within an
organization as software is configured for installation within that company. In these cases,
the packager element will often be associated with details such as release_id, and
release_package.

The element may also be used by third-parties in cases where a product is OEM'd and
repackaged, or if the software package is configured to install with a specific configuration.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

by XML
character
string

One entry

Attribute which gives information about third party
packaging product company. Examples of the types of
values that could be beneficial here:

a) Packaging company name

b) Packaging technology used

c) Internal group name of the packager

d) Desktop management product used
Additional information on this item may be available on
the web site: http://standards.iso.org/19770.

Data
Structure

part XML
character
string

One entry

Additional information about third party product reference
details such as part number.

Example <packager>
 <by>ACME Widget Corp</by>
 <part>Photoshop CS3 – OEM'd into widget designer – P#345ABD</part>
</packager>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

46 © ISO/IEC 2009 – All rights reserved

8.4.12 Product category (‘product_category’)

XML Tag product_category

Type Complex type

Definition Means by which product titles are classified by high-level function. A standardized list of
categories/groups is provided by the United Nations Standard Products and Services Code:
UNSPSC (for more information see http://www.unspsc.org/), COMMODITY listing number
43230000). UNSPSC codes found in the section numbered 43230000 of the specification
are where the bulk of commonly used software categories will be found. Product
categorization shall be done using the UNSPSC codes.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

UNSPSC_ver XML
character
string

One entry

Version number of the UNSPSC code set used. The
version is not required to use the code, however, if a tool
uses the version to provide additional functionality (such
as providing various names in one of 9 other languages),
the version will be needed by the tool.

An example of the format of the UNSPSC versions is
10.0501.

segment_title XML
character
string

One entry

Name of the segment the product belongs to

family_title XML
character
string

One entry

Name enabling recognition of the family of the product

class_title XML
character
string

One entry

Name of the class

commodity_title XML
character
string

One entry

Name of the commodity

Data
Structure

code Numerical
value with 8
digits

One entry

Codes shall be specified as defined in the UNSPSC code
list.

Example <category>
 <UNSPSC_ver>10.0501</UNSPSC_ver>
 <segment_title>Information Technology Broadcasting and Telecommunications</segment_title>
 <family_title>software</family_title>
 <class_title>Finance accounting and enterprise resource planning ERP software</class_title>
 <commodity_title>Enterprise resource planning ERP software</commodity_title>
 <code>43231602</code>
</category>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.unspsc.org/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 47

8.4.13 Product family (‘product_family’)

XML Tag product_family

Type XML character string

Definition Product family provides an element software publishers and software licensors can use to
group related software products together for SAM practitioner reports. An example of the type
of product that would use this element is a backup tool where the backup services, server
backup and client backup portions for the tool are sold as independent products. In this case,
if all products have the same product_family defined, a SAM tool can automatically group
discovered software identification tag data appropriately as shown below:

 Example Backup Utility
 Backup Server - 20 installations discovered
 Server Backup Utility – 240 installations discovered
 Client Backup Utility – 10,240 installations discovered

Example <product_family>Example Backup Utility</product_family>

8.4.14 Product identifier (‘product_id’)

XML Tag product_id

Type XML character string

Definition Identification of the product. It is independent from its version.

Product_id should be a unique reference, but this can be unique within the software
manufacture and does not need to be a globally unique ID.

It is recommended that the Product ID not be the product name, or other marketing term as
these often change from release to release. Instead the product_id should be an identifier that
can follow products through their lifecycle without requiring marketing changes.

Product_id is used to define a lineage between products for identification of allowed upgrades.
This value may or may not be used by a software entitlement. If a software entitlement
specifies that a product may allow upgrades during a certain period of time, the software
entitlement document cannot know which future product names or product versions can be
applied and will become available during that time. The product_id allows a software
entitlement document to specify that a specific version of the product is entitled to be installed
initially, and any updated products that have the same product_id are also entitled to be
installed as long as the release_date falls within the range provided in the software entitlement.

NOTE There may be more than one entry for product_id. This may happen in the case where a creator
comes out with a new product and allows end-users or software consumers using different older products
to upgrade to the new one. For example:

Product A
 product_id = 1234XYZ

Product B
 product_id = ABCDPDQ

Product C (this product allows maintenance upgrades from Product A or Product B)
 product_id = 9876HJK <- this is the new product ID for Product C…
 product_id = 1234XYZ

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

48 © ISO/IEC 2009 – All rights reserved

 product_id = ABCDPDQ

If later releases of Product C only wanted to allow maintenance upgrades from earlier versions
of Product C, the product_id would only include the new ID for that product – 9876HJK.

This element may occur zero to unlimited times in the software identification tag

Example <product_id>fc3cc419-b5a1-9f16-ed203e537c40</product_id>

8.4.15 Release date (‘release_date’)

XML Tag release_date

Type XML dateTime type

Definition This tag will typically be used by a software consumer organization as part of an ITIL release
process.

Date software configuration item was released for installation. The software configuration item
should use a single date of release in order to facilitate reconciliation.

This element may occur zero to one time in the software identification tag.

Example <release_date>2008-01-21T12:00:00</release_date>

8.4.16 Release identifier (‘release_id’)

XML Tag release_id

Type XML character string

Definition This tag will typically be used by a software consumer organization as part of an ITIL release
process.

Data used in reconciliation to identify release package attributes upon installation and
associated software entitlements. Entries for this element shall be kept consistent across all
software identification tags for any given software configuration item.

This element may occur zero to one time in the software identification tag.

Example <release_id>COE-Base-Ver 8, 2008-01-21</release_id>

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 49

8.4.17 Release package (‘release_package’)

XML Tag release_package

Type Complex type

Definition This tag will typically be used by a software consumer organization as part of an ITIL release
process.

Validation information that a release package has been built to conform to the service
provider's systems architecture, service management and infrastructure specifications.

NOTE End-use software packages will almost always be customized to the needs of the service
provider, with specific installation options and/or combinations of software bundling specified. (Release
software identification tags are completely independent of any external software provider software
identification tag).

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

Sign_off XML character
string

One entry

This entry indicates the person who authorized that the
software was packaged properly and is ready to go into a
testing phase.

Sign_off_date XML dateTime
type

One entry

This entry indicates the date the software package was
signed off.

Data
Structure

By XML character
string

One entry

This entry indicates the software developer who created
the package. This information may be used if questions
come up during the testing phase.

Example <release_package>
 <sign_off>Jane Doe</sign_off>
 <sign_off_date>2008-01-10T12:00:00</sign_off_date>
 <by>John Doe</by>
</release_package>

8.4.18 Release rollout (‘release_rollout’)

XML Tag release_rollout

Type Complex type

Definition Validation information relevant to who signed off a release package as ready for production
use and when the sign off occurred.

This element may occur zero to one time in the software identification tag.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

50 © ISO/IEC 2009 – All rights reserved

XML
tag

Type Definition

Sign_off XML character string

One entry

This entry indicates the person who authorized that the
software was properly tested in a production pilot and is
ready to go into a production use.

Data
Structure

Sign_off
_date

XML dateTime type

One entry

This entry indicates the date the software pilot was
signed off.

 By XML character string

One entry

This entry indicates the SAM practitioner who managed
the pilot testing phase. This information may be used if
questions come up once the software is in production.

Example <release_rollout>
 <sign_off>Mary Jane</sign_off>
 <sign_off_date>2008-01-16T12:00:00</sign_off_date>
 <by>John Smith</by>
</release_rollout>

8.4.19 Release verification (‘release_verification’)

XML Tag release_verification

Type Complex type

Definition Validation information that a release package has been verified against a testing environment
that matches the requirements of the target production environment.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

Sign_off XML character string

One entry

This entry indicates the person who authorized that
the software was properly tested in a controlled
environment and is ready to go into a pilot testing.

Data
Structure

Sign_off_date XML dateTime type

One entry

This entry indicates the date the software testing was
signed off.

 By XML character string

One entry

This entry indicates the SAM practitioner who
managed the controlled testing phase. This
information may be used if questions come up once
the software is in the pilot testing phase.

Example <release_verification>
 <sign_off>Jane Smith</sign_off>
 <sign_off_date>2008-01-14T12:00:00</sign_off_date>
 <by>Doug Johnson</by>
</release_verification>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 51

8.4.20 Serial number (‘serial_number’)

XML Tag serial_number

Type XML character string

Definition Unique identifying number; may be represented as a combination of numbers, letters or
symbols. Serial Number is a commonly used unique number assigned for identification of a
particular title and purchase. In the case of software identification tags, the unique_id
becomes the primary unique key, but many organizations may still want to use the serial
number where it is available.

NOTE 1 The serial number may be put through a one way hash that obfuscates the actual serial
number – this is still useful to the SAM practitioner – especially if the same reference serial number is
included on the purchase order, invoice or other details provided by the distributor to the software
consumer.

NOTE 2 If the tag creator chooses not to provide a serial number, they may choose to provide some
other referencable data value that may be used to associate information in purchase orders. This allows
a tag creator to assist SAM providers in finding entitlement information.

This element may occur zero to one time in the software identification tag.

Example <serial_number>1088-9015-2034-4567</serial_number>

Or

<serial_number>10PQR28FTQN2008</serial_number>

8.4.21 SKU (‘sku’)

XML Tag sku

Type XML character string

Definition A Stock Keeping Unit (SKU) is a unique identifying number for a software provider. The SKU
may be represented as a combination of numbers, letters or symbols. SKU is a commonly
used unique number assigned for identification of a particular title and purchase. In the case
of software identification tags, the unique_id becomes the primary unique key, but many
organizations may still want to have direct access to the SKU value.

NOTE If the tag creator chooses not to provide a SKU, they may choose to provide some other
referencable data value that may be used to associate information in purchase orders. This allows a tag
creator to assist SAM providers in finding entitlement information.

This element may occur zero to one time in the software identification tag.

Example <sku>065-04940</sku>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

52 © ISO/IEC 2009 – All rights reserved

8.4.22 Software creator alias (‘software_creator_alias')

XML Tag software_creator_alias

Type Complex type – EntityDataComplexType

Definition Provides additional software creator information enabling SAM practitioners and SAM tool
providers to identify previous entities who were related to the creation of the software
identified in the tag. Though not strictly required for software discovery purposes, this entry
will ease the burden of a SAM practitioner by providing them with previous software creator
details which can be used to more easily find an older software entitlement. This is
especially important in the case where an upgrade is allowed from a previous software
provider's version of a product to the current provider's version.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

alias Complextype
-
AliasDetailsC
omplexType

Zero to
unlimited
entries

Details of previous creators who may have a relationship
to the software title identified by the software
identification tag.

Example The following example is appropriate for a Macrovision product that was purchased by and is now
owned by Adobe®

<software_creator_alias>
 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>regid.1998-02.com.macrovision</alias_regid>
 </alias>
</software_creator_alias>

Or, if the regid of the alias entity is unknown:

<software_creator_alias>
 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>unknown</alias_regid>
 </alias>
</software_creator_alias>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 53

8.4.23 Software licensor alias (‘software_licensor_alias')

XML Tag software_licensor_alias

Type Complex type – EntityDataComplexType

Definition Provides additional software licensor information enabling SAM practitioners and SAM tool
providers to identify previous entities who were related to the licensing of the software
identified in the tag. Though not strictly required for software discovery purposes, this entry
will ease the burden of a SAM practitioner by providing them with previous software licensor
details which can be used to more easily find an older software entitlement. This is
especially important in the case where an upgrade is allowed from a previous software
provider's version of a product to the current provider's version.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

alias Complextype

-
AliasDetailsC
omplexType

Zero to
unlimited
entries

Details of previous licensors who may have a
relationship to the software title identified by the software
identification tag.

Example <software_licensor_alias>
 <alias>
 <alias_name>Adobe Systems</alias_name>
 <alias_regid>regid.1986-12.com.adobe</alias_regid>
 </alias>
</software_licensor_alias>

Or, if the regid of the alias entity is unknown:

<software_licensor_alias>
 <alias>
 <alias_name>Adobe Systems</alias_name>
 <alias_regid>unknown</alias_regid>
 </alias>
</software_licensor_alias>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

54 © ISO/IEC 2009 – All rights reserved

8.4.24 Supported languages (‘supported_languages’)

XML Tag supported_languages

Type Languages as specified in IETF RFC 4646

Definition Languages that the program interface presents to the user. Languages shall be specified as
defined in IETF RFC 4646.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

Language XML
character
string

One to
unlimited
entries

Languages supported by this software package.
Language may occur multiple times. Specification of the
language shall be specified as defined by IETF RFC 4646
(see http://www.ietf.org/rfc/rfc4646.txt) and the process
used for matching language tags is specified in IETF RFC
4647 (see http://www.ietf.org/rfc/rfc4647.txt).

Example <supported_languages>
 <language>en</language>
 <language>fr</language>
</supported_languages>

8.4.25 Tag creator alias (‘tag_creator_alias')

XML Tag tag_creator_alias

Type Complex type – EntityDataComplexType

Definition Provides additional tag creator information enabling SAM practitioners and SAM tool
providers to identify previous entities who were related to the creation of the software
identification tag. Though not strictly required for software discovery purposes, this entry will
ease the burden of a SAM practitioner by providing them with previous tag creator details
which can be used to more easily find an older software entitlement.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition Data
Structure

alias Complextype

-
AliasDetailsC
omplexType

Zero to
unlimited
entries

Details of previous tag creators who may have a
relationship to the software title identified by the software
identification tag.

Example The following example is appropriate for a Macrovision product that was purchased by and is now
owned by Adobe®

<tag_creator_alias>
 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>regid.1998-02.com.macrovision</alias_regid>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.ietf.org/rfc/rfc4646.txt
http://www.ietf.org/rfc/rfc4647.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 55

 </alias>
</tag_creator_alias>

Or, if the regid of the alias entity is unknown:

<tag_creator_alias>
 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>unknown</alias_regid>
 </alias>
</tag_creator_alias>

8.4.26 Tag creator copyright (‘tag_creator_copyright')

XML Tag tag_creator_copyright

Type XML character string

Definition This element is provided in order to enable the tag creator the chance to specify the copyright
for this particular tag. It is expected that software creators will allow their tag to be collected
and distributed as long as creator-specified contents of the tag are not modified. This allows
SAM tool providers and others to access and use software identification tags easily within
their tools.

An independent 3rd party that creates tags may put more limitations on the use and/or
redistribution of the software identification tag data.

See Annex F for more details on copyright information.

The abstract element may occur more than once in a software identification tag, but shall only
occur once for each language specified.

If language is not specified, it is assumed to be English ("en").

This element may occur zero to unlimited times in a software identification tag.

XML tag Type Definition Data
Structure

lang XML character string. This is an
optional tag attribute

The language the abstract is written in.
Languages shall be specified as
defined in IETF RFC 4646 -
http://www.ietf.org/rfc/rfc4646.txt.

Example <tag_creator_copyright lang="en">This tag may be used by used, stored, referenced and distributed by
any software tool provider and or third party tag collection agency as long as the following elements are
not modified:

 - entitlement_required_indicator
 - product_title
 - product_version
 - software_creator
 - software_licensor
 - software_id
 - tag_creator

Extended information may also be added to the tag.
</tag_creator_copyright>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.ietf.org/rfc/rfc4646.txt
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

56 © ISO/IEC 2009 – All rights reserved

8.4.27 Tag version (‘tag_version’)

XML Tag tag_version

Type Complex Type

Definition This element provides a data element for tag creators or tag modifiers to provide tag version
information. A properly defined software identification tag does not need to have a version
specified by the tag creator since every software identification tag is unique. However as
tags move through the software lifecycle, multiple tag modifiers may want to make changes
to elements they are allowed to modify and/or to add extended elements to a software
identification tag. In these cases, a version reference is required. There is a need to allow
multiple entities to provide their own version information, meaning this element may be
included multiple times within a single software identification tag. Each time a version
element is provided all elements within the version element are required items to ensure
uniqueness.

This element may occur zero to unlimited times in the software identification tag.

XML tag Type Definition

name XML character
string

One entry

This element provides the name of the entity defined in the
tag. This name should be consistent between software
products and software releases.

regid regid type

One entry

Regid of the software creator (as specified in section
6.1.3.) If the entity is unknown, or is no longer in business,
this value may be set to "unknown".

Data
Structure

numeric_ve
rsion

ProductVersion
ComplexType -
Complex type
consisting of
four elements
with numeric
values: “major”,
“minor”, “build”,
“review”

One entry

Numeric version identifier

Example <tag_version>
 <name>My Example Corp</name>
 <regid>regid.1995-09.com.example</regid>
 <numeric_version>
 <major>1</major>
 <minor>0</minor>
 <build>0</build>
 <review>0</review>
 </numeric_version>
</tag_version>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 57

8.4.28 Upgrade for (‘upgrade_for’)

XML Tag upgrade_for

Type Complex type

Definition Product title that represents an upgrade for an earlier, down-level version, providing specific
details about what is upgraded.

This element may occur zero to unlimited times in the software identification tag.

XML tag Type Definition

upgrade_id Software
identification
type described
in 8.3.5

One to unlimited
entries

This refers to the software_ids that may be upgraded to
the version indicated in this tag. If the software_ids are
provided, SAM managers can then do a completely
automated reconciliation to ensure that all upgrades are
done appropriately.

Data
Structure

upgrade_d
escription

XML character
string

Zero or one
entry

Optional description of upgrade

Example <upgrade_for>
 <upgrade_id>
 <unique_id>fc3cc419-b5a1-9f16-ed203e537c40</unique_id>
 <tag_creator_regid>regid.1986-12.com.adobe</tag_creator_regid>
 </upgrade_id>
 <upgrade_description>{Optional description of upgrade}</upgrade_description>
</upgrade_for>

8.4.29 Usage identifier (‘usage_identifier’)

XML Tag usage_identifier

Type Complex Type

Definition Provides information specifying which running process should be used to validate usage of
the product. The usage element does not need to specify software components that load at
startup, but can for example specify those components that indicate that an end-user is
actually using the product.

This element may occur zero to unlimited times in the software identification tag.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

58 © ISO/IEC 2009 – All rights reserved

XML tag Type Definition

filename XML character
string

Zero to
unlimited entries

This defines the filename that is executed to start an
application.

This element may occur zero to unlimited times in the
software identification tag.

processna
me

XML character
string

Zero to
unlimited entries

This defines the process name as it would be found in the
process table for the application.

By default, this value will be interpreted as a literal
expression. Processname has an attribute called "type"
that allows for the definition of a "literal" or "regexp"
(regular expression). If the type for processname is
"regexp", the value provided shall follow the regular
expression syntax as defined at
http://www.w3.org/TR/xmlschema-2/#regexs.

This element may occur zero to unlimited times in the
software identification tag.

Data
Structure

URI XML URI type

Zero to
unlimited entries

This defines a web based location that needs to be
accessed at runtime to determine application usage. This
may be used in the case of an on-line tool that an
organization wants to track usage on, or it may be used in
a case where an application requests information from a
URI during execution.

By default, this value will be interpreted as a literal
expression. URI has an attribute called "type" that allows
for the definition of a "literal" or "regexp" (regular
expression). If the type for URI is "regexp", the value
provided shall follow the regular expression syntax as
defined at http://www.w3.org/TR/xmlschema-2/#regexs.

This element may occur zero to unlimited times in the
software identification tag.

Example <usage>
 <filename>winword.exe</filename>
 <processname>windword.exe</processname>
</usage>

Or

<usage>
 <URI type=”regexp”>https?://[^/]*/MyWebApp/</URI>
</usage>

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2/#regexs
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 59

8.4.30 Validation (‘validation’)

XML Tag validation

Type Complex Type

Definition Provides a callout that a discovery agent can use to validate the software identification tag.
Due to system issues, installation and uninstallation defects or other issues, a software
identification tag may not be fully in sync with the software installation. This element allows a
software identification tag to include a validation callout that may be used, if required, to
validate that the software identification tag is correct.

It is expected that software applications will regularly validate software identification tags
with which they are associated at the time they are executed – this would be considered a
self-healing process. During this self-healing, the tag sub-elements that are part of the
validation element, last_validated_by and last_validated_date would be updated to show that
the tag has been compared and found to be accurate.

In those cases where a software package is not run for an extended period, the
last_validated_by and last_validated_date would not be updated. A discovery agent, by
policy, may require that a software identification tag be validated within a specified period
(for example, if a software identification tag has not been validated in 3 months, it may be
considered suspect and possibly out of sync). If the last_validated_date is older than the
specified period, the discovery agent can call the routine defined in validation_call to ensure
the software identification tag is up-to-date.

This element may occur zero to one time in the software identification tag.

XML tag Type Definition

validation_c
all

XML character
string

One entry

This is a call that a discovery agent can make to validate
that the software identification tag is valid. It is expected
that this call would be to one of the executable applications
in the software package with a command line parameter
that specifies that the tag should be validated.

The validation_call could also be specified as a URL
reference.

last_validat
ed_by

XML character
string

Zero or one
entry

This element identifies the process that was used to
validate the software identification tag. It is expected that
the software creator will create an ID for any validation
routines and include that ID in this element.

Depending on the software creator, this reference may be
the same for all software creator's titles (i.e. ACME's
validation routine), or it may be unique per package. It may
even be possible that an installation routine may be used
to do a tag validation.

last_validat
ed_date

XML dateTime
type

Zero or one
entry

The last date and time that this tag was validated.

Data
Structure

last_validat
ed_result

XML character
string

This element will be "True", "False" or "Unknown" (case of
the string value does not matter). The purpose of this
element is to provide a method that can identify if the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

60 © ISO/IEC 2009 – All rights reserved

Zero or one
entry

Validation_call returns with a "True" – that the tag was
found to be valid, "False" - that the tag was not valid and
should be reviewed, or "Unknown" – that the validation call
could not be made, or failed to return a result, so it is
unknown if the tag is valid or not.

For the SAM practitioner, if they receive software
identification tag information that includes
"Validation_result=false", that will provide an exception that
needs to be investigated. It does not indicate that the tag is
not valid, it simply indicates that there is an issue with the
validation process and lets the SAM practitioner become
aware of a problem.

Example <validation>
 <validation_call>c:\program files\ACME\ACME_validator.exe /tag-validate</validation_call>
 <last_validated_by>ACME_validator.exe</last_validated_by>
 <last_validated_date>2008-03-31T12:00:00</last_validated_date>
 <last_validated_result>true</last_validated_result>
</validation>

8.5 Extended elements

8.5.1 Extended information (‘extended_information’)

XML Tag extended_information

Type Sequence of elements of any type

Definition Supplemental information that may be provided by the software or tag creators, the
purchaser of the software, or a 3rd party (such as a distributor, SAM tool or desktop
management tool).

Data shall be provided in an XML structure.

This element contains any extended information required. Data provided in this section shall
be provided in an XML-compliant structure. Additionally, an XSD should be provided so this
section can be properly validated. The XSD file shall be referenced properly in the software
identification tag XML file as per standard XML definitions.

Since this element is optional, it may not appear in the software identification tag. If this
element is in the software identification tag, it may appear multiple times. The expectation is
that every extended_information section included in the software identification tag is owned
and managed by a single organization. Thus, a software creator may provide one
extended_information element, a reseller may provide another extended_information
element and a release manager may provide a 3rd extended_information element. Each of
these will be independent entries and a tag modifier should generally not modify data in an
extended_information section that they did not create or own.

This element may occur zero to unlimited times in the software identification tag.

Example <extended_information>
 <software_creator_activation_ref>xyzzy</software_creator_activation_ref>
</extended_information>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 61

8.6 Data type definitions

8.6.1 AliasDetailsComplexType

Data Type Complex Type

Definition This type is used to define aliases that may have previously been associated with
the software identified in the tag. Aliases are associated with
software_creator_alias, software_licensor_alias and tag_creator_alias.

In general, aliases would be used if an organization changed names, or if a
software product changed owners. Providing the alias details allows SAM
practitioners with information they may need in order to associate a discovered
software title with previously purchased versions of related software.

XML Tag Type Definition

alias_name XML character string

One entry

This element provides for the
definition of the names of previous
entities that may have been
associated with the software defined
by a specific tag.

Data Structure

alias_regid XML character string

One entry

This element provides for the
definition of a specified Regid of
previous entities (as specified in
section 6.1.3.) If the entity is
unknown, or is no longer in
business, this value may be set to
"unknown".

 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>regid.1998-02.com.macrovision</alias_regid>
</alias>

8.6.2 EntityComplexType

Data Type Complex Type

Definition This type is used to define the specific unique details for entities defined in
software_creator, software_licensor or tag_creator.

XML Tag Type Definition

name XML character string

One entry

This element provides the name of the
entity defined in the tag. This name should
be consistent between software products
and software releases.

Data Structure

regid XML character string

One entry

Regid of the entity. If the entity is unknown,
or is no longer in business, this value may
be set to "unknown".

 <tag_creator>
 <name>Adobe</name>
 <regid>regid.1986-12.com.adobe</regid>
</tag_creator>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

62 © ISO/IEC 2009 – All rights reserved

8.6.3 EntityDataComplexType

Data Type Complex Type

Definition This type is used to define the additional aliases for entities associated with the
software identified by a specific software identification tag. This includes any
aliases (other owners) that may have previously been associated with the
software identified in the tag as well as a regid to be specified for a specific entity.

XML Tag Type Definition Data Structure

alias Complex type
AliasDetailsComplexType

Zero to unlimited entries

This element provides for the
definition of previous entities that
may have been associated with the
software defined by a specific tag.
In general, aliases would be used if
an organization changed names, or
if a software product changed
owners. Providing the alias details
allows SAM practitioners with
information they may need in order
to associate a discovered software
title with previously purchased
versions of related software.

 The following example is appropriate for a Macrovision product that was purchased by and
is now owned by Adobe®.

<tag_creator_alias>
 <alias>
 <alias_name>Macrovision</alias_name>
 <alias_regid>regid.1998-02.com.macrovision</alias_regid>
 </alias>
</tag_creator_alias>

8.6.4 GUIDType

Data Type GUIDtype

Definition This data type specifies a GUID and validates that the data value matches a
GUID definition that should look something like the following:

 00001101-0000-1000-8000-00805f9b34fb

Type String Data Structure

Restrictions pattern value="[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-
fA-F]{4}-[0-9a-fA-F]{12}"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 63

8.6.5 ProductVersionComplexType

Data Type ComplexType

Definition This data type is created to provide a standardized 4 digit numeric version. If the
version number used for the product has less than 4 levels, lower levels should
be set to zero '0'

XML Tag Type Definition

major Integer

One entry

Highest level of the version number.
Typically, this is called the major version.

Data Structure

minor integer

One entry

2nd level of the version number. Typically,
this is call the minor version

 build integer

One entry

3rd level of the version number. Many
organizations call this the build version.

 review integer

One entry

4th level of the version number. Many
organizations call this the patch or review
level.

8.6.6 FootprintModuleComplexType

Data Type Complex Type

Definition This type is used to define the files, registry entries and other data values
associated with a specific software package installation.

XML Tag Type Definition

referenced XML URI type

zero to one entries

This element is similar to
the external_description but
can be used for the specific
footprint module only.

Data Structure

file File footprint complex type:

 <file>
 < name>
 (<size>)*
 (<md5>)*
 (<version>)*
 (<other name>)*
</file>

zero to unlimited entries

This element represents
description of the file with its
attributes: size, MD5,
version, and any other
needed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

64 © ISO/IEC 2009 – All rights reserved

 os_configurati
on_record

OS configuration entry complex
type

<os_configuration_record>
 <record_type>
 (<path>)?
 (<name>)?
 (<internal_path>)?
 (<entry>)+
 (<name>)?
 (<value>)?
 (<type>)?
 </entry>
</os_configuration_record>

zero to unlimited entries

This element provides other
OS configuration
information that a software
manufacture may want to
provide to indicate that their
software is installed.
Expected values for the
record_type element are:
a) Registry
b) WMI
c) RPM
d) ODM
e) file-entry

Examples showing use of
these items are shown
below.

Other types may be defined
over time see the ISO
19770 web page for
updates -
http://standards.iso.org/iso/1
9770/.

 other Other footprint complex type
<other type>
 <param name>
</other>

zero to unlimited entries

This element represents
any footprint information
that is required, but not
listed above. It may contain
any attributes.

 <os_configuration_record> details and examples

registry

An os_configuration_record with record_type of registry uses the specified elements as a
regular request to capture registry values from Microsoft® Windows® computers.
Elements are used as follows:

 <record_type> registry
 <path> full path to the registry value. This includes the fully specified root

(i.e. HKEY_LOCAL_MACHINE)
 <name> NA
 <internal_path> NA
 <entry>
 <name> registry value required for comparison
 <value> comparison value
 <type> type of registry value
 </entry>

Example:

<os_configuration_record>
 <record_type>registry</record_type>
 <path> HKEY_LOCAL_MACHINE\SOFTWARE\Adobe\Acrobat
Reader\7.0\AdobeViewer</path>
 <entry>
 <name>EULA</name>
 <value>1</value>
 <type>REG_DWORD</type>
 </entry>
</os_configuration_record>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://standards.iso.org/iso/19770/
http://standards.iso.org/iso/19770/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 65

WMI

An os_configuration_record with a record_type of WMI uses the specified elements as
part of a WBEM Query Language (WQL) request. Elements are used as follows:

 <record_type> WMI
 <path> namespace where the class is located
 <name> class of the object
 <internal_path> query statement used (i.e. where state='stopped'
 <entry>
 <name> attribute name
 <value> comparison value
 <type> type of class attribute value (optional)
 </entry>

Example:

<os_configuration_record>
 <record_type>WMI</record_type>
 <path>Root\CIMV2</path>
 <name>Win32_Product</name>
 <internal_path>Name= ‘Adobe Acrobat 8 Professional’</internal_path>
 <entry>
 <name>Version</name>
 <value>8.1.2</value>
 </entry>
 <entry>
 <name>Vendor</name>
 <value>Adobe Systems</value>
 <type>string</type>
 </entry>
</os_configuration_record>

RPM

An os_configuration_record with a record type of RPM uses the specified elements to read
data from the RPM data store. Elements are used as follows:

 <record_type> RPM
 <path> NA
 <name> name of the RPM package
 <internal_path> NA
 <entry>
 <name> attribute from the RPM package to use for comparison
 <value> comparison value
 <type> type of attribute value
 </entry>

Example:

<os_configuration_record>
 <name>lvm2-2.02.28-1.fc8</name>
 <type>RPM</type>
 <entry>
 <name>Name</name>
 <value>lvm2</value>
 </entry>
 <entry>
 <name>Version</name>
 <value>2.02.28</value>
 </entry>
 <entry>
 <name>Signature</name>
 <value>DSA/SHA1, Thu 25 Oct 2007 06:10:53 AM CEST, Key ID
b44269d04f2a6fd2</value>
 <type>string</type>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

66 © ISO/IEC 2009 – All rights reserved

 </entry>
 <entry>
 <name>Packager</name>
 <value>Fedora Project</value>
 </entry>
</os_configuration_record>

ODM

An os_configuration_record with a record type of ODM uses the specified elements
to read data from the AIX Object Data Manager. Elements are used as follows:

 <record_type> ODM
 <path> NA
 <name> type of ODM information to retrieve
 <internal_path> NA
 <entry>
 <name> attribute from the LPP package to use for comparison
 <value> comparison value
 <type> type of attribute value
 </entry>

Example:

<os_configuration_record>
 <type>ODM</type>
 <name>lpp</name>
 <entry>
 <name>name</name>
 <value>bos.msg.en_US.docsearch.client.Dt</value>
 <type>string</type>
 </entry>
 <entry>
 <name>description</name>
 <value>Lite NetQuestion Local Web Server</value>
 <type>string</type>
 </entry>
 <entry>
 <name>ver</name>
 <value>5</value>
 <type>short</type>
 </entry>
</os_configuration_record>

File_entry

 <record_type> file_entry
 <path> path to file
 <name> NA
 <internal_path> NA
 <entry>
 <name> NA
 <value> comparison value to find in file
 <type> type of attribute value
 </entry>

Example:

<os_configuration_record>
 <type>file-entry</type>
 <path>/etc/inittab</path>
 <entry>
 <value>x:5:respawn:/etc/X11/prefdm -nodaemon</value>
 </entry>
</os_configuration_record>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 67

Annex A
(informative)

Software identification tagging principles

A.1 Introduction

The purpose of this Annex is to provide a conceptual overview of software identification tagging principles. It
restates many of the normative requirements specified in the body of this part of ISO/IEC 19770, but is not
intended to add to or modify those requirements.

The fundamental objective of the software identification tag is to facilitate the identification and management
of installed software. This must take into account the ways software is created, distributed, licensed and used.

A.2 Life cycle of a software identification tag

A.2.1 Overview

Data within the software identification tag will be created and/or modified at four major points through the
software identification tag life cycle as shown below:

Figure A.1 — Life cycle of a software identification tag

Each phase of this process may be specified by different entities. In general, the creation process is specified
by the software creator, the release process is specified by the release manager and the installation process
is typically specified by the software licensor or the software creator, with some installation-specific
information being specified by the software consumer organization.

A.2.2 Creation process

When software is created as a gold master, it will often include a software identification tag that has a number
of elements pre-defined. These elements are generally owned by the software creator or the software
licensor. These elements include (elements in bold are required elements):

1. abstract

2. component_of

3. complex_of

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

68 © ISO/IEC 2009 – All rights reserved

4. data_source

5. dependency

6. elements_owner

7. entitlement_required_indicator

8. license_linkage

9. package_footprint

10. product_category

11. product_identifier

12. product_title

13. product_version

14. release_date

15. sku

16. software_creator

17. software_creator_alias

18. software_licensor

19. software_licensor_alias

20. software_id

21. supported_languages

22. tag_creator

23. tag_creator_alias

24. tag_creator_copyright

25. upgrade_for

26. usage_identifier

27. validation

In general, these elements should be relatively static for a particular software product and should be provided
in the installation master copy.

Software creators may choose to create tags only at installation time. This process is acceptable as long as
the data in the tag that is actually installed matches the same type of data that would be provided as part of a
product that provides a pre-installation version of the tag. Procedures should be defined that allow the
software consumer to provide their own values for release elements in the tag as well as the potential to
provide software packagers with the ability to alter specified tag elements.

A.2.3 Software packaging process

Some software will go through a packaging process that may be done by a 3rd party. This may be done in the
case of an OEM product that is integrated into a complete software solution, or by licensed bundlers who may
combine multiple products into a suite.

In these cases, the elements that may be updated will vary based on the agreed terms between the software
creator, software licensor and the software packager. It may entail the software packager creating their own
software identification tag to replace the existing tag, or alternatively to create a package tag which will refer to
the existing tag and software as a component. Another alternative is that it may entail the modification and/or

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 69

addition of software identification tag elements. If the tag is simply incorporating the existing product without
modifying the software_creator or software_licensor owned elements, the elements that may be expected to
be added or modified include (none of which are mandatory elements):

1. component_of

2. complex_of

3. data_source

4. dependency

5. elements_owner

6. license_linkage

7. packager

By providing additional information in the software identification tag elements above, software packagers can
specify information that can assist a SAM practitioner with identifying software that is linked to their package
rather than something that is a stand-alone package.

A.2.4 Release process

Once a software master version is delivered to an organization, it is often provided with customized installation
details and tested prior to the software being distributed and finally installed. During this phase, the release
manager is the owner of certain elements in the tag and will often modify specified elements in a software
identification tag. The elements relevant to the release process include (none of which are required items)

1. elements_owner

2. packager

3. release_id

4. release_package

5. release_rollout

6. release_verification

Larger software consumer organizations may also choose to add extended information to the software
identification tag that provides additional data that can be used for support, SAM procedures, or other
processes.

A.2.5 Installation process

This process is typically defined by the software creator or software licensor and may be modified as
appropriate by the release manager within an organization.

When a software product is installed on a computing device, the software identification tag will receive its final
filename. As mentioned in section 6.1.7, the use of a unique_sequence_id that includes machine identifying
information is highly preferred since it provides general uniqueness to the filename across the enterprise, but
more importantly, it provides the ability to identify which system was used to install a software package on a
removable device.

At the time of installation, a number of data values will also be updated. These values typically include (none
of which are required items):

1. installation_details

2. serial_number

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

70 © ISO/IEC 2009 – All rights reserved

3. validation

A.3 Unique definition of software_id

A unique software_id corresponds to a unique product at the binary level for distribution/update purposes.
Uniqueness is guaranteed by a combination of a unique tag_creator_regid name and a tag_creator
maintained unique_id.

The software_id for a specific version of a specific software package should remain consistent for every
distribution of that software package. Other details in the software identification tag may change to indicate
differences in channel distribution, or even the fact that a software product is included in a bundled version of
a 3rd party’s software suite.

There may be instances where the actual software_id installed with a software bundle may not be known until
installation time. This would be the case in products where multiple configurations of the software are
available through a single installer and the installer is only made aware of which version of a software
package will reside on a computing device at install time. In these cases, each configuration option that may
include different licensing entitlements should be provided with its own unique software_id.

A.4 Filename specification

A.4.1 Overview

Filenames will have two different forms – one when the filename is used prior to the software package being
installed (distribution filename), the other when the software package is installed on a computing device
(installation filename).

A.4.2 Distribution filename

The distribution filename should follow the rules specified in section 6.1.6. This filename includes the unique
software identity and provides information about the tag_creator. The distribution filename is specified by the
software_creator or the tag_creator, and is likely to be exactly the same for every distribution copy of the
software created.

A.4.3 Installation filename

When a software identification tag is installed on a computing device, the filename must be unique for that
particular device. This is a requirement because multiple software identification tags may be installed in the
same directory, and every filename must be unique. This is accomplished using the filename specification as
defined in section 6.1.7.

Additionally, it is highly recommended that software identification tag installation routines follow the
recommendation in section 6.1.7 to include machine unique information in the installation filename. Doing this
provides the ability for SAM practitioners (and others) to identify which machine was used to install software
on removable, or shared (network-based) media.

The unique machine information may also include details specific to a particular virtual machine. Though not
specifically identified in section 6.1.7, the more unique information that can be provided in a machine ID, the
more likely it will be that software identification tags can be associated with the specific device that was used
to install the software.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 71

A.5 Tag installation locations

There are two locations where a software identification tag will be installed on a computing device. One is a
common system location (see sections 6.1 and A.6.3); the other is the top level of the installation directory for
the software package.

A.6 Principles of operation without a registration authority

A.6.1 General

This part of ISO/IEC 19770 has been written to avoid the necessity for a registration authority. A registration
authority could maintain central lists of many of the types of information covered by this part of
ISO/IEC 19770, such as:

a) All platforms, their respective owners, and where software identification tags should be stored on each

b) Unique software creator names and identifiers

c) Unique software identifiers

A.6.2 Unique references to identified creators and licensors

The following principles have been incorporated into this part of ISO/IEC 19770 to facilitate operation without
a registration authority:

a) The elements tag_creator, software_creator and software_licensor must all utilize a specific registration
ID (regid) that is guaranteed to be unique to the organization and that can be used to identify the
organization. This regid is created based on the definition developed for the iSCSI standard as specified
in the IETF RFC 3720.

b) The regid incorporates the creator's domain name (as specified in IETF RFC 1034, section 3.5 and
IETF RFC 1123, section 2.1). Using the regid (and by extension components of the domain for the
organization) allows this part of ISO/IEC 19770 to provide for a unique ID that does not require an
independent registration authority and provides additional information to track back to the original tag
creator.

c) The tag creator has the responsibility for ensuring a unique_id for everything created for the tag creator’s
regid.

d) There are provisions for on-line reference information, such as for package footprint information. When
used as an on-line reference, these require a URI, which uniquely identifies the tag-creator.

This approach allows tag creators to exist and operate independently of software creators, to allow the
creation of software identification tags for the software of software creators which may have gone out of
business, or which are not creating tags for their software. It also allows the ready creation of software
identification tags for software which was created before this part of ISO/IEC 19770 was developed.

A.6.3 Platform storage specifications

The only information which is not contained within the tag itself, or by an embedded reference, is the
specification of where a given platform (e.g. Windows®, UNIX®, and Linux™) will store its software
identification tags. There are a comparatively limited number of platforms, but the requirement for information
in this area is dealt with in the following ways:

a) Each platform provider has the right to specify where this information will be held on its platform. The
platform provider will be able to communicate this information in any way it chooses, e.g. via its website. It

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

72 © ISO/IEC 2009 – All rights reserved

is the recommendation of this part of ISO/IEC 19770 that platform providers publish this information, at
least, in a subdirectory named ‘19770’ under their main domain name address.

b) Common system directories that should be used for tag storage on various platforms have been specified
in section 6.1.

c) Technical Reports may be published on http://standards.iso.org/iso/19770/-2/ with consolidated
information about known platforms and conventions for data values being used commonly by industry in
software identification tags.

Furthermore, each software creator should have a unique software creator identity (‘software_creator’), which
will facilitate the consolidation of information by software creator even if produced by different tag creators.
However, the lack of such unique identifiers for specific software creators will not prevent the successful
implementation of this part of ISO/IEC 19770.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

http://standards.iso.org/iso/19770/-2/
https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 73

Annex B
(informative)

Software provider use cases and guidance

B.1 Introduction

The software provider will implement the ISO 19770-2 standard for several reasons:

a) Ease of identification — Software consumers will find it easier to identify software and collect inventory;
while allowing increased implementation of SAM practices. Software audits and software auditors
(internal or otherwise), will have a better understanding of what is installed across the organization.

b) Accuracy of identification — Current methods of software identification typically rely on software
recognition signatures based on application components discovered on machines. These signatures are
often not at the same resolution level as software entitlements. Additionally, many product titles have no
obvious correlation to the application components that are actually installed. These issues make
identification results hard to reconcile with software entitlements.

c) Control over software identification — To ensure consistency, software creators are able to specify
exactly what can and cannot be changed in the software identification tag (tag).

When electronic software entitlements become standardized, the software creator and provider who already
use tags will be able to implement software entitlements that provide automated or nearly automated
reconciliations to existing tags. As a software creator is implementing tags for their product lines, they will
need to consider details of how software entitlements may influence how much information is provided in the
tag.

From a software product definition and development perspective, it is beneficial to define the tag as early in
the project as possible to ensure that the software portion is focused on the right tools and technology to meet
the requirements specified for the target languages and platforms.

The use of standardized tags benefits both software consumers and software creators alike. Software
consumers gain increased efficiencies through a simplified discovery process and a more effective overall
process. Software creators benefit from software consumers having sound asset management practices
ensuring software will be installed and used in accordance with the software license agreements.

The following use cases provide different perspectives on how the tag is created and updated through the
lifecycle of a software product.

B.2 Roles involved in the software identification tag creation/management

Numerous individuals occupying different roles will be responsible for ensuring a software identification tag is
created and maintained properly, including (but not limited to):

a) Product manager — this person defines the product being developed/enhanced and specifies many
aspects of the product that are referenced in the tag. Referring to the tag as part of the product definition, a
more specific product document can be created.

b) Development manager — this person determines the technology used to develop and deliver software.
Having the tag specifications provided in advance allows them to have a clearer understanding of the end-
user environment for the product.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

74 © ISO/IEC 2009 – All rights reserved

c) Software licensing/product release specialist — this person ensures end-users, IT specialists and auditors
know exactly which piece of software they are using. If a suite or bundle consists of multiple products, this
group needs to understand how that may impact licensing or product release activities (including catalog
updates). This person is responsible for making sure that a software item, its license and any associated
catalog information is correct and properly cross-referenced.

B.3 Product manager role

The product manager is responsible for defining the requirements for a software product. Part of these
requirements will be to specify the elements a software identification tag (tag) needs to include and often the
values that must be specified for certain tag elements. The more details a product manager can specify about
the various tags that may be associated with a product, the more details product development and software
release specialists will have available to understand product requirements.

The following elements will often be important to the product manager and should be well understood.

a) Mandatory elements

As the product manager generates the product definition, the definition template should include a section that
specifies required portions of the tag. Initially the product manager will work through the mandatory elements
in the tag:

1) Entitlement required — this tag determines whether or not the discovered software should be
accounted for during the reconciliation process. The product manager can clearly state when an
entitlement is needed (when a software license sold to software consumers), or not (when software is
installed in trial mode, or is provided for free).

2) Product title — this element corresponds to the official marketing name of the product as defined by
the software creator. Typically this is the name which the SAM practitioner and IT specialists will call
the product. The title itself may not have a direct impact in the reconciliation process.

3) Product version — this important element allows the definition of both a text-based marketing version
(commonly used by software creators to simplify the naming of a particular version for promotional
purposes), and the formal numeric version for the software. The numeric version may include up to
four elements which provide the complete version information: major version number, minor version
number, build, and review. A software vendor may license a software product by its major or minor
version only. In such cases, the product manager should make sure that the software entitlement
information (purchase order, invoice, software license certificate or equivalent) can be clearly linked
to the specified version number to ensure there is no confusion during the reconciliation process.

4) Software creator identity — the purpose of this element is to provide a unique and consistent
identification of the vendor producing the software. While some software companies may have
slightly different regional names, it is important to augment the name with an identifier that will remain
constant across all countries, regions and languages – this is specified in the regid element. This
value should be the same for all products and releases from the software creator.

5) Software unique identifier — the product manager working with the rest of the development
organization will define a unique identifier for each product version. The unique identifier will enable
proper comparison at reconciliation time.

b) Optional elements

The product manager will define other elements that need to be specified. A best practices approach to the
definition of a software identification tag should include allowing the software creator to know which optional
elements are best specified as the software is shipped as well as understand which software elements are
likely to be modified as the software progresses through the sales channel and eventual installation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 75

The ISO 19770-2 standard includes a rich set of optional elements that augments the content of the tag itself
and increases efficiencies in the identification and reconciliation processes. This section highlights the use of
a few key optional tags defined in the standard.

1) Component association and components list — these two optional elements enable product
managers to tag a software program as a component of a licensing product entity such as suite or
bundle. Likewise, the components list element provides the ability to list the remaining components
associated with the same licensing entity (i.e., the suite). Inclusion of one or both optional elements
in the tag greatly improves the proper identification of seemingly independent software installations
and at the same time ensures the reconciliation process will account for the proper software license
of suite versus point products and vice-versa.

2) License and channel information — this additional element further refines the identification of the
software installed on a given machine, increasing the efficiency of the SAM practitioner and the
effectiveness of the overall license reconciliation process. For example, knowing the source of an
installation would make it easy for SAM practitioners to separate software purchased directly versus
titles included as OEM with the purchase of new personal computers (PCs).

3) Package footprint — this element allows the software creator to specify the files, registry entries, and
other information that can be used to identify a software package. The element provides for multiple
entries per file so that patches and minor releases can be handled efficiently with a single referenced
file. The goal is to provide information that a discovery agent can use to validate that a tag is
correctly identifying installed software. An additional benefit allows a discovery tool to eliminate all
"known" files from the discovered list. Providing an authoritative list of files, registry entries, WMI
entries, or other platform specific information for a particular product helps discovery tools and SAM
practitioners to filter information from the list of all discovered items. By filtering out "known"
information, practitioners will have a useful perspective of unknown or new software that may be
installed in their environment.

4) Product identifier — this element is meant to be an identifier that follows a specific product from
release to release. This should not be used as a marketing term for the product (such as the product
title), but should be an identifier that is consistent from release to release. For example, if an
organization may create and sell a product called "Acme Widgets 2007 Pro" and the next release of
that product came out with the name "Acme Widgets 2008 Expert", using a product title, a
practitioner would not know whether these two products were part of a specified maintenance
agreement. However, if both products had the Product Identifier of "fc3cc419-b5a1-9f16-
ed203e537c40", then a practitioner could determine that both products were part of the same
maintenance agreement and then determine compliance. This element allows an organization to
specify which upgrades are allowed through maintenance agreements without identifying a specific
title.

5) Serial number — including the serial number as part of the identification tag is directly proportional to
the importance of the serial number as a software entitlement element for the software license
purchased by software consumers. Software publishers that require software consumer and/or
purchase-specific serial numbers in order to install and use the software should strongly consider
including the serial number element in the tag for direct correlation to the purchase order / software
entitlement during the reconciliation process. Serial numbers are known at the time of installation,
therefore making it possible to establish a direct link between the installation and the licensing
software entitlement.

i) Special consideration regarding serial numbers in the tag: because serial numbers often
represent the enablement of specific software features, product managers must consider
whether to include the serial number in the clear as part of the identification tag, or otherwise
include a one-way hash form of the software consumer-specific serial number to minimize
exposure and possible leakage of valid serial numbers over the Internet. If a software vendor
chooses to include an obfuscated/hashed version of the serial number in the tag, the same
obfuscated/hashed version should be included in the purchase order, software entitlement or
software license certificate for use during the manual or automated reconciliation process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

76 © ISO/IEC 2009 – All rights reserved

6) SKU — The SKU may be an important element for those companies that do not utilize serial
numbers as part of the activation of software. with the SKU is typically needed to associate installed
software with a software entitlement.

7) Supported languages — The supported languages element allows software creators to specify the
specific language(s) installed on a machine. This information is important for software vendors who
sell language-specific software licenses as the software entitlement/purchase order would specify the
language-specific products sold to the software consumer.

8) Software creator alias — This optional element reflects the name of the creator prior to an
acquisition; this is particularly important in the case where a specific upgrade is allowed from a
previous software creator’s version to the current creator’s version. This should be an included
element in the tag when releasing new versions of software products after an acquisition.

9) Upgrade for — This element is designed to simplify automated reconciliations to ensure that
upgrades are reconciled properly. This allows a product to identify itself as an upgrade for a specific
product or products. With this information, SAM practitioners or auditors will be able to reconcile
existing installations of the upgrade product with known entitlements of the older products. Software
creators expect to enforce upgrade licenses, and this element allows association of current titles with
the original versions.

The use of digital signatures ensures the integrity of elements remains unchanged after the tag has been
created. Cost will need to be considered for the extra protection versus the implementation and testing
requirements in order to make a decision whether or not to sign specific elements within the tag.

B.4 Development manager

The development manager will work directly with the product manager to ensure the product specification is
clear and complete. The development manager will need the same level of detail as the product manager.

However, when it comes to design and implementation, the development manager will need more detail. The
following list summarizes some implementation details that need to taken into consideration and decided upon
prior to proceeding with implementation:

a) Software identification tag file creation: When and how will the software identification tag be created?

There are multiple approaches to consider. The specific circumstances of each software creator,
development cycles, operational and manufacturing process will determine the approach that will work
best. Possible options include:

1) Pre-generated tag file(s) — included with the installation disc, selected and copied to the target
machine at installation time.

2) Generated at installation time — software identification tag file is created as part of the installation
process. This allows a tag to include specific installation options, such as which version was actually
installed.

3) Partially pre-generated and updated on the fly — this option allows the software identification tag to
be provided upon initial installation of the software and updated as necessary. Updates may include
changes to activation status or other elements as the product is run and/or registered.

b) Software identification tag file for multi-product licensing entities (e.g. suites) — How will the tag file be
created and maintained?

Development managers need to consider where and how the tag file(s) for the suite components will be
created and maintained. Options for the creation of software identification tags may include providing a
software identification tag for the suite and separate individual software identification tags for each

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

© ISO/IEC 2009 – All rights reserved 77

individual product, or creating one software identification tag that details the entire suite. Additionally, if a
product is validating its tag, will it validate for an individual application and for the suite, or for all
applications that are part of the suite.

c) Lifecycle management of software identification tag files — How does the software identification tag file
evolve with changes to the installed software?

Development managers need to anticipate a number of lifecycle scenarios that will impact software
identification tags; scenarios may include:

1) Patches and updates — if the patch or update changes the product version, the tag file will need to
reflect the latest version. If the product version element was originally signed, then the signature as
well should be updated.

2) Missing software identification tag file — tag files may be accidentally deleted by end-users or
corrupted; in such cases, the software should implement self-healing mechanisms to regenerate the
tag.

3) Trial-licenses — when trial-licenses expire, updates to the tag should reflect the trial has expired (i.e.
update the activation status element).

4) Evidence of tampering — if the file includes signed tag elements, the software should perform
periodic signature checks to detect potential tampering. If tag tampering is detected, the software
should implement a self-healing mechanism to regenerate the tag. The development manager and
the product manager should determine business policies concerning tampering.

d) Additional implementation considerations

1) How can the tag be validated for correctness during the QA cycle?

2) Centralized function versus product-specific implementation: mid to large software creators should
strongly consider isolating product teams from the details and implementation overhead through
developing and maintaining a centralized software identification tagging function.

3) Common commercial off the shelf (COTS) software will benefit from providing software provider
specified package footprint information (see package footprint element - 8.4.10). This footprint
information can be hosted on the software creator's site to enable ease of management. Providing
package footprint information will significantly aid SAM tools and SAM practitioners with automatic
filtering out of "known" files, registry and WMI entries and other items found during discovery, and
allow development of an exception-based SAM management practice.

4) Package footprint, if used, will typically refer to a URI location – generally hosted on the software
creator's domain. When providing footprint information, the development manager should institute a
policy that keeps all file information up-to-date as patches and minor releases are released to the
market. The package footprint element allows more than one entry for each file, so referring to a
specific URI location allows tags from multiple versions of a product to be included in a single
package footprint.

The development team needs to ensure that the software identification tag is incorporated into the design and
lifecycle process for software development and maintenance.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

ISO/IEC 19770-2:2009(E)

78 © ISO/IEC 2009 – All rights reserved

Annex C
(informative)

Tool provider use cases and guidance

C.1 Discovery tool providers

C.1.1 Introduction

Discovery tools should be able to read data from software identification tags when available. The roles in a
software consumer organization that would use a discovery tool might include an audit manager tasked with
reconciling software entitlements to software identification tags or a SAM owner tasked with collecting and
analyzing information.

Use cases for tool vendor products and their consumption can be divided into primary and secondary
scenarios.

C.1.2 Primary use cases

Discovery tools should be able to do the following:

a) Implement consistent and uniform values in software identification tag data.

NOTE If the tag_creator that created the software identification tag employs multiple "software licensor identity",
"product identifier”, “serial number” or “stock keeping unit" elements, the discovery tool should be able to refer to a
software recognition table (provided by each tag_creator) to facilitate the reconciliation of different values (8.3.5,
8.4.14, 8.4.20, 8.4.21). This task could require extended elements to be furnished by the tag_creator.

EXAMPLE If software company A were acquired by software company B, then B should provide reconciliation
information for software formerly released and tagged by A. Or, if A released a software package only later to release
a newer version of the same with an altered "software creator name," then A should provide information in the
product_id and software_creator alias elements that allows the relationship between the two products to be
automatically identified.

b) Reconcile data from software identification tags with that from corresponding software entitlements.

NOTE This reconciliation could be facilitated by an agent on the platform or an administrative console reconciling
from multiple agents. Reconciliation processes need both software identification tag and software entitlement data to
determine software license compliance.

EXAMPLE The tool should be able to identify differences between installs of different but related products (by
dependency, complex, platform or product version), such as differences between Microsoft® Excel®, Microsoft®
Excel® Viewer (unaccompanied), Microsoft® Office Standard 2000, Microsoft® Office Standard 2003 and Microsoft®
Office XP Professional.

c) Read all mandatory elements during a discovery including all optional elements, if available. Such
capability would utilize standardization in location and format of software identification tag data.

C.1.3 Secondary use cases

Discovery tools should be able to do the following:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 19
77

0-2
:20

09

https://standardsiso.com/api/?name=67955c88a323098a5482a45abdb52c61

	Scope
	Purpose
	Field of application
	Limitations

	Conformance
	General
	Product conformance
	Example reasons for product conformance
	Product scope
	Software product conformance
	Third party software identification tag conformance
	Software installer product conformance
	Tag tool conformance
	Platform conformance

	Organizational conformance
	Example reasons for organizational conformance
	Organizational scope
	Software provider conformance
	Tag tool provider conformance
	Software consumer conformance

	Agreement compliance

	Normative references
	Terms, definitions and abbreviated terms
	Terms and definitions
	Abbreviated terms

	Alignment and rationalization with prior standards
	Statement of alignment for this part of ISO/IEC 19770
	Alignment with ISO/IEC 19770-1:2006 Information technology —
	Alignment with ISO/IEC 20000-1:2005 Information technology –
	Alignment with ISO/IEC 20000-2:2005 Information technology —

	Implementation of software identification tagging processes
	General requirements and guidance
	Software identification tag overview
	XML and XSD
	Unique registration ID (regid)
	Software identification tag extension and location for insta
	Unique identifiers
	Unique software identification tag file name – distribution
	Unique software identification tag file name - installed
	Consistency among data values
	Software identification tag discovery
	Languages
	Ownership of elements within software identification tags
	Internal element ID
	Authenticity of software identification tags
	Standardization of XSD definition

	Software identification tagging life cycle: operational brea
	Introduction
	Software identification tag creation
	Software identification tag modification
	Software identification tag use
	Software identification tag correction

	Platform requirements and guidance
	Types of platforms
	Basic platform services
	Virtual environments
	Virtual machines
	Support for software installed on removable media
	Hardware and platform identification

	Elements
	General
	Element names
	Mandatory elements
	Entitlement required indicator (‘entitlement_required_indica
	Product title (‘product_title’)
	Product version (‘product_version’)
	Software creator identity (‘software_creator')
	Software licensor identity (‘software_licensor')
	Software unique identifier (‘software_id’)
	Tag creator identity (‘tag_creator')

	Optional elements
	Abstract (‘abstract’)
	Component association (‘component_of’)
	Components list (‘complex_of’)
	Data source (‘data_source’)
	Dependency (‘dependency’)
	Element owner list (‘elements_owner')
	Installation details (‘installation_details’)
	Keywords (‘keywords')
	License and channel information (‘license_linkage’)
	Package footprint (‘package_footprint’)
	Packager (‘packager’)
	Product category (‘product_category’)
	Product family (‘product_family’)
	Product identifier (‘product_id’)
	Release date (‘release_date’)
	Release identifier (‘release_id’)
	Release package (‘release_package’)
	Release rollout (‘release_rollout’)
	Release verification (‘release_verification’)
	Serial number (‘serial_number’)
	SKU (‘sku’)
	Software creator alias (‘software_creator_alias')
	Software licensor alias (‘software_licensor_alias')
	Supported languages (‘supported_languages’)
	Tag creator alias (‘tag_creator_alias')
	Tag creator copyright (‘tag_creator_copyright')
	Tag version (‘tag_version’)
	Upgrade for (‘upgrade_for’)
	Usage identifier (‘usage_identifier’)
	Validation (‘validation’)

	Extended elements
	Extended information (‘extended_information’)

	Data type definitions
	AliasDetailsComplexType
	EntityComplexType
	EntityDataComplexType
	GUIDType
	ProductVersionComplexType
	FootprintModuleComplexType

