

INTERNATIONAL
STANDARD

ISO
20720

First edition
2018-10

**Microbeam analysis — Methods of
specimen preparation for analysis of
general powders using WDS and EDS**

*Analyse par microfaisceaux — Méthodes de préparation des
échantillons pour l'analyse des particules*

STANDARDSISO.COM : Click to view the full PDF of ISO 20720:2018

Reference number
ISO 20720:2018(E)

© ISO 2018

STANDARDSISO.COM : Click to view the full PDF of ISO 20720:2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Abbreviated terms	1
5 Analytical purposes and methods of specimen preparation for particle analysis^[1]	1
5.1 Methods of specimen preparation for particle analysis	1
5.2 Description of preparation methods	2
5.2.1 Analysis of whole particles or surface of particles	2
5.2.2 Analysis of cross-section of particles	4
5.3 Choosing preparation methods	5
6 Electric conductivity processing	6
Annex A (informative) Examples of X-ray strength dependency on tablet-forming pressure	7
Annex B (informative) Example of X-ray strength dependency on tablet-forming particle size	8
Bibliography	9

STANDARDSISO.COM : Click to view the full PDF of ISO 20720:2018

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 202, *Microbeam analysis*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Although there are many applications of electron probe microanalysis (EPMA) and scanning electron microscopy (SEM) for powder analysis, there are some difficulties, especially in the case of individual particle analysis, as follows:

- (a) the prevention of agglomeration of particles during preparation of the specimen;
- (b) the fixation of specimens, especially when there is a small amount of tiny particles, either for surface analysis or cross-section analysis;
- (c) the cross-section preparation in the case of small particles with core-shell structures;
- (d) the protection of particle surfaces from damage by electron beam irradiation in cases where the surfaces of particles are sensitive;
- (e) the counteraction of charging of the specimen under electron radiation to prevent the powder from scattering or dispersing due to electrical repulsion;
- (f) the interpretation of qualitative and/or quantitative analysis results when the X-ray generation volume is larger than that of the particles.

Even in the case of elemental compositional analysis of a powder, the specimen preparation can affect the results of analysis, because the roughness and/or void space within a particle aggregate or agglomerate can impact X-ray intensity.

To cope with these difficulties, the standardization of specimen preparation for particle analysis is very important.

STANDARDSISO.COM : Click to view the full PDF of ISO 20720:2018

Microbeam analysis — Methods of specimen preparation for analysis of general powders using WDS and EDS

1 Scope

This document specifies specimen preparation methods for the analysis of particles in powders using energy-dispersive spectrometers (EDS) or wavelength-dispersive spectrometers (WDS) installed on an EPMA or SEM. The preparation methods for powder particle analysis are classified by the analytical purpose and the particle size.

This document applies to inorganic particles larger than 100 nm and smaller than 100 µm in diameter.

It applies only to analysis of “general” powders, which means that it excludes procedures for special applications such as forensic or trace analysis.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

4 Abbreviated terms

EDS	energy-dispersive X-ray spectroscopy/spectrometry
EPMA	electron probe microanalysis/electron probe microanalyzer
SEM	scanning electron microscopy/scanning electron microscope
WDS	wavelength-dispersive X-ray spectroscopy/spectrometry/spectrometer

5 Analytical purposes and methods of specimen preparation for particle analysis^[1]

5.1 Methods of specimen preparation for particle analysis

The following methods of specimen preparation are widely used for particle analysis (see [Figure 1](#)). The specific procedure is indicated in [5.2](#).

This list is not comprehensive and does not preclude the use of other specimen preparation methods for particle analysis that can be more appropriate in some cases.

Preparation methods of particle specimen

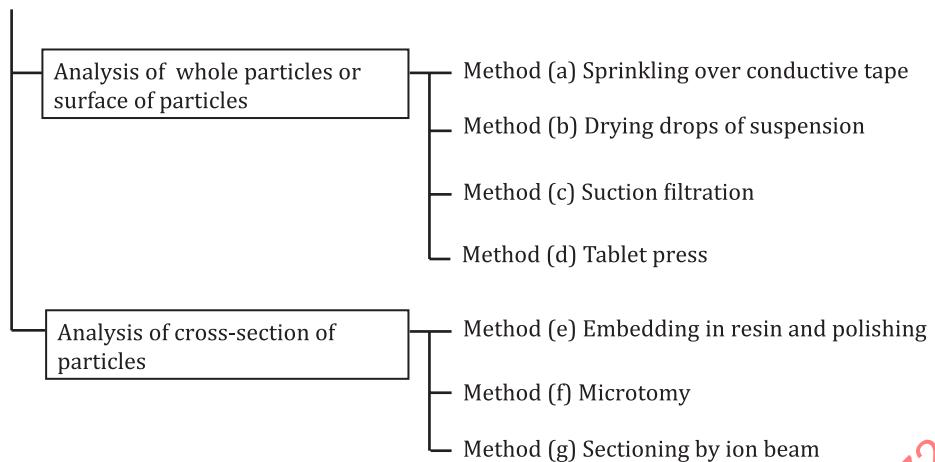


Figure 1 — Methods of specimen preparation for particle analysis

5.2 Description of preparation methods

5.2.1 Analysis of whole particles or surface of particles

For the analysis of whole particles or the surface of particles, methods (a), (b), (c) and (d) are adopted (see [Figure 2](#)).

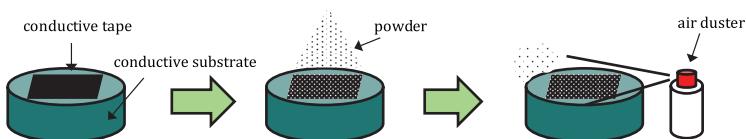
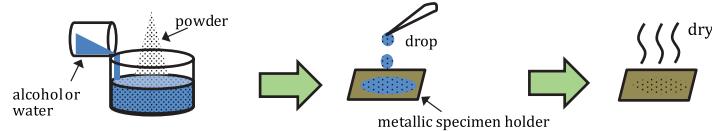
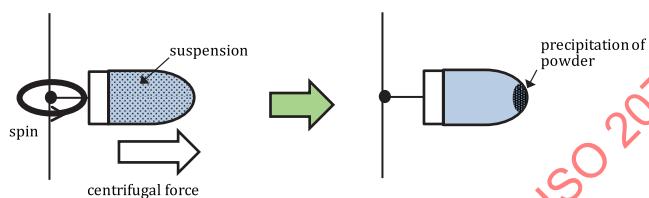
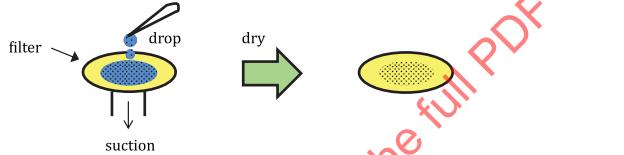
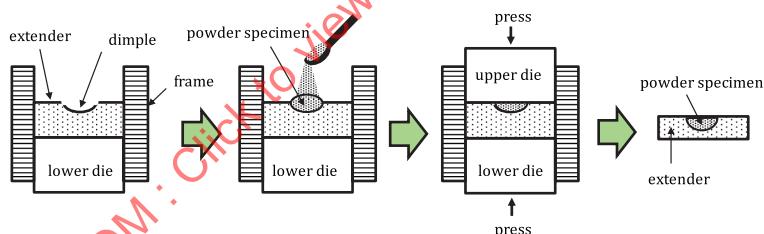
- Method (a) Sprinkling over conductive tape:

Place a piece of conductive tape on a conductive substrate, then sprinkle the specimen powder onto the conductive tape. (Before sprinkling the powder, it is better to put the substrate into a vacuum to remove any air beneath the conductive tape.) Remove any poorly-adhered material, for example by blowing away extra powder with an air duster or by turning the mount on its side and sharply tapping it.

- Method (b) Drying drops of suspension (for agglomerated powder):

Suspend the powder in alcohol or water and drop the suspension liquid onto a metallic specimen holder. Next, dry the suspension liquid. After suspending the powder in the liquid, it is useful in many cases to remove agglomerations by centrifugation.

- Method (c) Suction filtration (for powder suspended in a liquid):






Drop the liquid with floating powder onto the filter. After the suction filtration, dry the filter.

When performing a filtration, it can be effective to use a filter funnel, fritted glass disk filter support or stainless steel mesh filter support. When using an ultrasonic bath, ensure that the ultrasonication has removed any agglomeration of particles in the suspension.

- Method (d) Tablet press (for a minute amount of powder):

Place an extender on the lower die of a tablet press and make a dimple on the surface of the extender. Next, put the powder onto the dimple and press from both sides to make a tablet. Finally, remove the tablet from the die set.

By sufficiently pressing and solidifying the powder, quantitative accuracy similar to that of solids can be obtained, even for powder. However, if powder pressing is insufficient then quantitative analysis accuracy is affected.

Method (a) Sprinkling over conductive tape**Method (b) Drying drops of suspension (for agglomerated powder)****Principle diagram of the method of centrifugation****Method (c) Suction filtration (for powder suspended in a liquid)****Method (d) Tablet press (for a minute amount of powder)**

Figure 2 — Description of preparation methods (analysis of whole particles or surface of particles)

For method (d), silver flakes may be used when analyzing individual particles^[2].

Place the silver flakes on the lower die of a tablet press. Next, sprinkle the specimen powder onto the silver flakes without making a dimple on the surface of the flakes. It is better to use tin flakes if the powder specimen is a sulfide, because sulfides react with silver. Press the mixture at a pressure of about $1,4 \times 10^3$ GPa and mildly anneal to densify. Keep the disk together for further processing. Finally, grind and polish the composite disk to reveal the polished analyte surface.

The surface conditions of tablets made using the press method differ depending on composition, particle size of the powder specimen and press pressure. The X-ray strength detected by EDS and WDS analysis is influenced by the condition of the specimen; therefore, it is important to choose an appropriate press pressure in press forming and to remove any voids in the tablet formed from the particles (see [Annexes A](#) and [B](#)).

5.2.2 Analysis of cross-section of particles

For analysis of the cross-section of particles, methods (e), (f) and (g) are used (see [Figure 3](#)).

- Method (e) Embedding in resin and polishing:

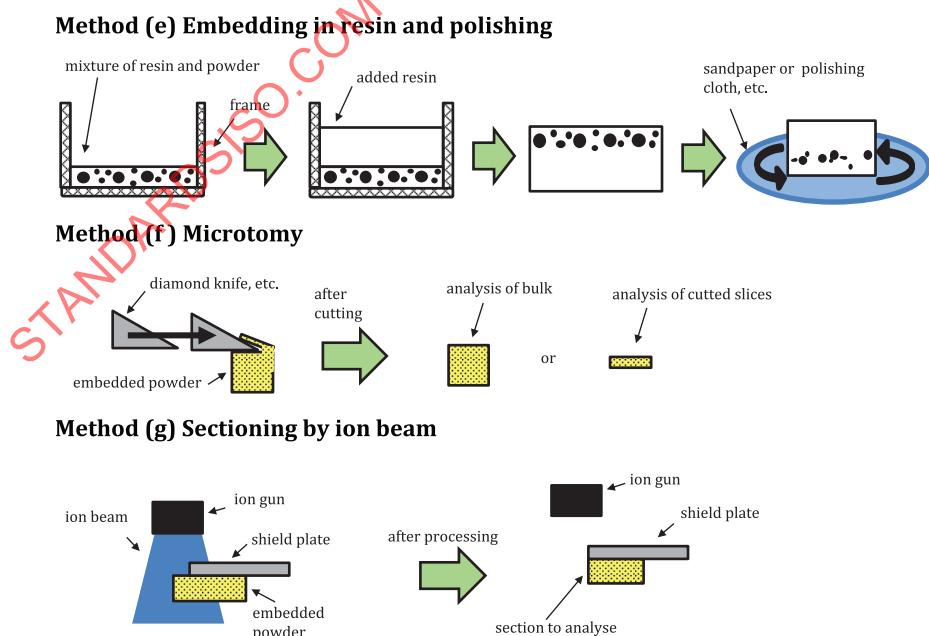
Mix the specimen powder with resin and place it in a moulding frame. Then add resin to the mixture of resin and powder. After the resin has hardened, remove the mould and polish to expose a cross-section of powders.

When the powder is mixed with resin, first add a large amount of powder to a small amount of resin and mix it thoroughly so that the powder is uniformly dispersed in the resin.

For thermal-sensitive particles, a resin shall be chosen that does not cause the temperature to rise during hardening.

The method of embedding in resin and polishing is suitable for observing the cross-sectional structure of particles. Quantitative analysis is also possible if the particle size is large enough. The analysis area and depth of electron penetration can be estimated by referring to ISO 14594:2014, Annex A and Annex B, respectively.

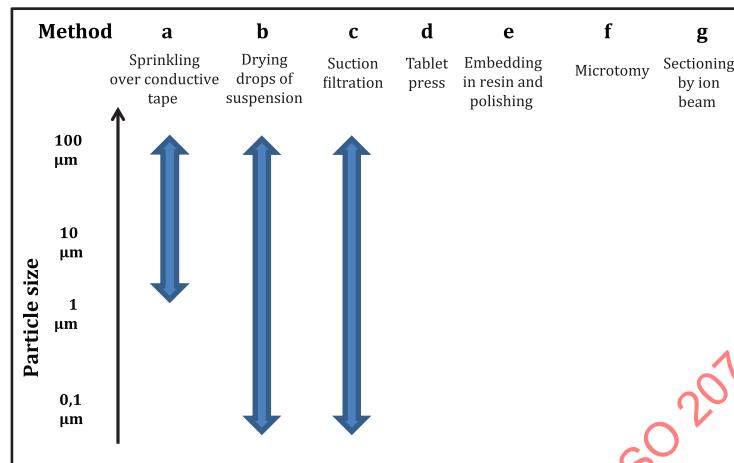
- Method (f) Microtomy:

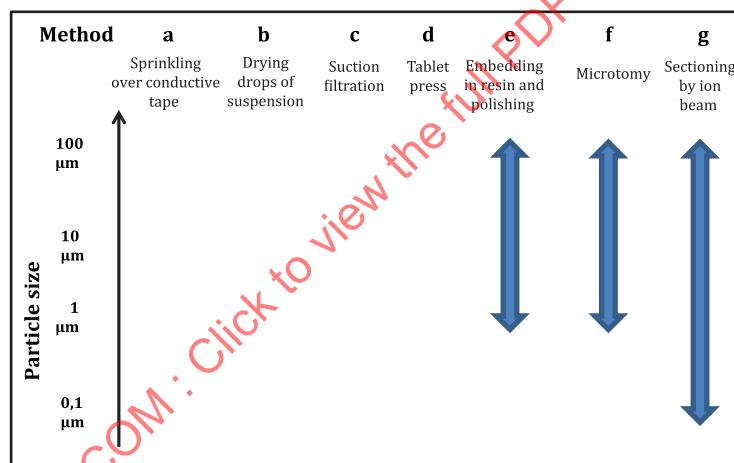

Mix powder with resin. After the resin has hardened, cut it using a microtome.

For method (e) and method (f), it can be helpful in some cases to use a conductive resin to impart conductivity to the specimen.

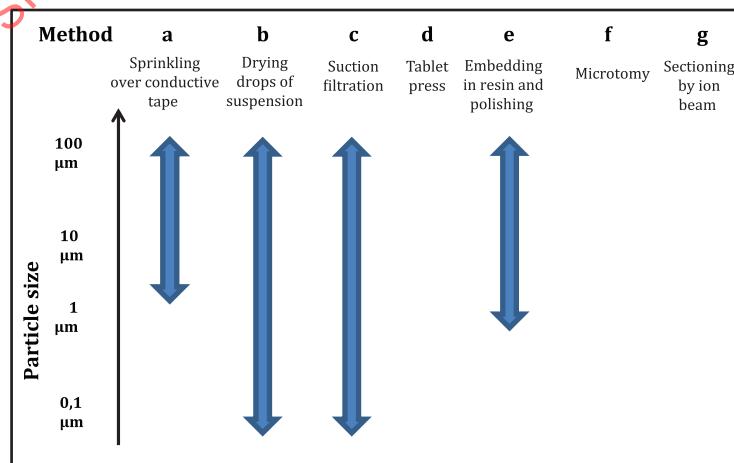
- Method (g) Sectioning by ion beam:

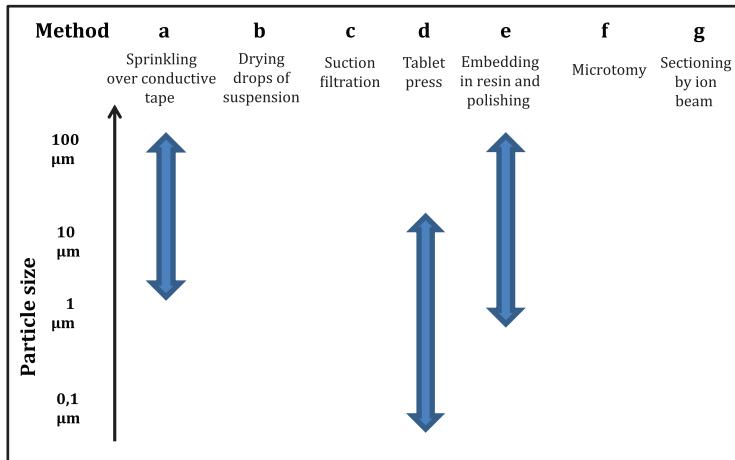
Make a pellet of powder and resin in the same manner as for method (e). After the resin has hardened, etch the surface of the pellet using an ion beam.


There are two methods of etching. The first is by using a focused ion beam (FIB). FIB preparation allows the sectioning to target individual particles. The second is sectioning using a broad argon ion beam, as described in [Figure 3](#). This allows sectioning of many particles at once.


Figure 3 — Description of preparation methods (analysis of cross-section of particles)

5.3 Choosing preparation methods


Figure 4, (a) to (d), should be used to choose an appropriate preparation method according to the analysis purpose and the particle size of the specimen.


(a) Analysis of surface of particles

(b) Analysis of cross-section of particles

(c) Analysis of agglomerated particles

(d) Statistical analysis (e.g. type/size/distribution of particles)

Figure 4 — Diagrams for choosing preparation methods

6 Electric conductivity processing

For analysis of a non-conductivity specimen, an electroconductive metal or carbon is required to be coated on the surface of the specimen (see ISO 22489:2016, 4.2).

Vacuum deposition and ion plating are the two main methods used to secure conductivity. They are widely used in microbeam analysis and an appropriate method is selected according to the analysis purpose. Typical principles of conductivity processing methods and their features are illustrated in Figure 5.

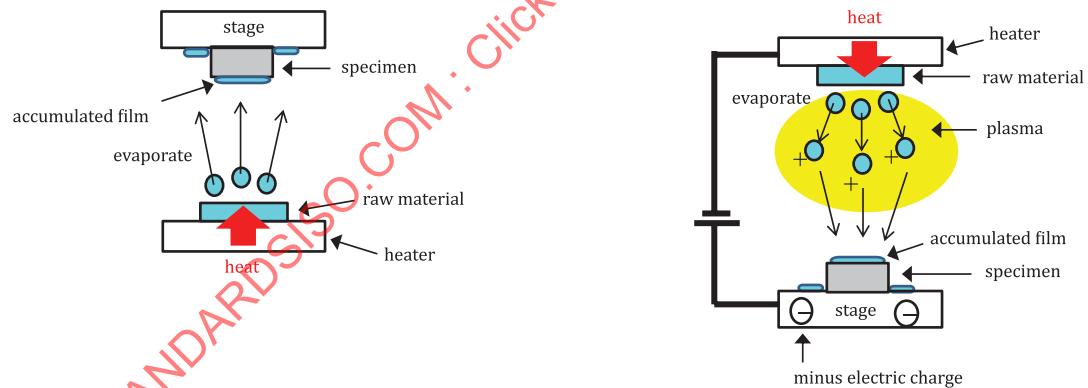


Figure 5 — Methods of (a) vacuum deposition and (b) ion plating

Particles sensitive to heat or energy transfer through an electron beam shall be protected by an additional layer. This layer shall have a good thermal conductivity, such as that provided by Au or Pt. In preparation method (g), a protective layer can be produced by platinum deposition in a dual-beam or cross-beam device using a gas injection system (GIS). To protect the structure of the surface of the particles, the deposition can be carried out using electron-beam-induced deposition.