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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
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Introduction

This International Standard provides guidelines for specifying the process of estimating future
geomagnetic activity. Geomagnetic indices describe the variation of the geomagnetic field over a certain
time period and provide a measure of the disturbance of the magnetosphere.

The accuracy and method of predicting geomagnetic indices depends on the time scale of prediction.
This International Standard presents existing works based on three categories of time scale:

a) short-term prediction (1 h to a few days);

b) Iiddle-term prediction (a few weeks to a few months);
) ng-term prediction (half year to one solar cycle).

Thesle are required as input parameters for the magnetospheric magnetic field<(I1SO 22009), upper
atmqgsphere (ISO 14222), ionosphere, plasmasphere (ISO/TS 16457), magnetesphere charged particles,
and pther models of the near-Earth space environment. They also serve as\the input paifameters for
orbital lifetime prediction and worst-case environment analysis of electrostatic charging.

Threpe International Standards deal with the Earth’s magnetic field, jricluding ISO 16695 on|the internal
magnetic field, ISO 22009 on the magnetospheric magnetic field,andthis International Stapdard.

© IS0 2013 - All rights reserved v
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INTERNATIONAL STANDARD ISO 16698:2013(E)

Space environment (natural and artificial) — Methods for
estimation of future geomagnetic activity

1 Scope

This International Standard specifies the methods used for estimating geomagnetic indices for time
intenvatsTanging fronT thre shortternT {hrourstoa few moTths) to the formg-ternT {ImoTths tojyears).

Georhagnetic indices are used to describe the activity levels of the disturbance of the geomggnetic field.
Thesge indices can be used to estimate upper atmospheric and plasmaspheric densities andlmany other
spacg environment models. They are also used as the input parameters for orbitallifetimpe prediction
and yvorst-case environment analysis of electrostatic charging.

This|nternational Standardisintended for use to predict future geomagneticindices and space gnvironment.

2 S$ymbols and abbreviated terms

Bs Southward component of the interplanetary fi€ld(Bs = 0 when Bz = 0 and B$ = Bz when
Bz < 0)

Bz North-south component of the interplanétary field

F10.7 flux Measure of the solar radio flux at a.wavelength of 10,7 cm at the earth’s orbit, given in

units of 10-22 W-m—2

GLat Geographic latitude

GLor] Geographic longitude

IMF Interplanetary magnetic field

MLaf Geomagnetic(latitude

MLon Geomaghnetic longitude

MHD Magnetohydrodynamics

Sq Daily geomagnetic field variations during quiet conditions (Solar quiet)
UT Universal time

3 General parameters

3.1 Geomagnetic field variations

The geomagnetic field consists of internal and external magnetic fields. The internal (main) magnetic
field is produced by source currents that are mostly inside the Earth’s core and by induced currents
present in the solid Earth and the ocean, caused by the temporal variation of external magnetic fields.
The external magnetic field is produced by magnetospheric and ionospheric currents.

The magnetosphere is highly dynamic with time scales ranging from minutes to days. Solar wind is
the ultimate source of magnetospheric dynamics. The role played by the IMF (interplanetary magnetic
field) north-south component, Bz, is particularly important, and its southward component, Bs, plays a

© IS0 2013 - All rights reserved 1
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fundamental role in substorm and magnetic storm activity through the process of magnetic field line
reconnection. Solar wind speed also plays an essential role in these dynamics.

3.2 Quietlevel and disturbance fields

Five days of every month are selected as the Five International Quietest Days using the Kp index
(see 3.4.1). Note that the five quietest days are selected regardless of the absolute level of quietness.

Thus, in a di

sturbed month, the quietest days may not be very quiet.

Derivation: The quietest days (Q-days) of each month are selected using the Kp indices based on three
criteria for each day: (1) the sum of the eight Kp values, (2) the sum of squares of the eight Kp values,

and (3) the fnaximum of the eight Kp values. According to each of these criteria, a relative order nu

is assigned {
first to fifth

Reference:
de/kp_indej

Once the qu
obtained as

3.3 Kindex (local 3 h range index)

The K index
the variatio
Each activit
horizontal f
UT (univers

Derivation:
between thd

daily variation) for that element on a magnetically:quiet day. Only the larger value of R, i.e. R for the

disturbed el
observatoryy

References: |

o each day of the month; the three order numbers are then averaged and the days'wit
lowest mean order numbers are selected as the five international quietest days:

Website of the Deutsches
t/qddescription.html).

GeoForschungsZentrum (http://www-app3.gfz-pots

et level is determined using the Five International Quietest Days, disturbance fields c4
deviations from the quiet level of geomagnetic field.

is a number in the range 0 (quiet) to 9 (disturbed) that provides a local classificati
hs of the geomagnetic field observed after subtraction of the regular daily variation
y level relates almost logarithmically to the corresponding disturbance amplitude g
eld component during a 3 h UT interval. In a day, eight K indices are given in successiv
hl time) intervals (O hto3 h,3hto6h, .., 21 hito 24 h UT).

'he ranges R for the H and D (or X and Y).components are defined as the expected diffej
highest and lowest deviation, within thethree-hour interval, from a smooth curve (are

ement, is taken as the basis of K.{To'convert from R to K, a permanent scale prepared for
is used. Table 1 is an example of the permanent scale for the Niemegk observatory.

Bartels et al. [1939], Mayaud [1980], Menvielle et al. [2011]

mber
h the

dam.

in be

bn of
(59).
f the
e3h

ence
pular
most
each

Table 1 — Permanent-conversion scale from R to K for Niemegk observatory
Range (nT) 0-5 5-10~+10-20 | 20-40 | 40-70 | 70-120 | 120-200 | 200-330 | 330-500 =500
Kvalue 0 1 2 3 4 5 6 7 8
3.4 Kp, ZKp, dp,and Ap indices (planetary indices)

yindices, Kp, ¥Kp, ap, and Ap, are derived from 13 selected mid-latitude observatories

The planeta

Table 2). The derivation scheme for each index is described in the corresponding subsection.

(see
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Table 2 — Thirteen observatories that contributed to the Kp index

Observatory, country Code GLat (°N) | GLon (°E) | MLat (°) Notes
Meannook, Canada MEA 54.617 246.667 62.5
Sitka, USA SIT 57.058 224.675 60.0
Lerwick, Shetland Is., UK LER 60.133 358.817 589
Ottawa, Canada OTT 45.400 284.450 589 Replaced Agincourt in 1969
Uppsala, Sweden UPS 59.903 17.353 58.5 Replaced Lovo in 2004
Eskdalemuir, UK ESK 55.317 356.800 54.3
Brorfelde, Denmark BJE 55.625 11.672 52.7 Replaced Rude Skov|in 1984
Fredericksburg, USA FRD 38.205 282.627 51.8 Replaced Chelfenhain in 1957
Wingst, Germany WNG 53.743 9.073 50.9
Nienjegk, Germany NGK 52.072 12.675 48.8 Replaced)Witteveen|in 1988
Hart]and, UK HAD 50.995 355.517 50.0 Replaced Abinger in|1957
CanBerra, Australia CNB -35.317 149.367 -45.2 Replaced Toolangi ir] 1981
Eyrewell, New Zealand EYR -43.424 172.354 -50.2 Replaced Amberley in 1978
3.4.1 Kp index (planetary 3 h range index)
The Kp index is assigned to successive 3 h UT intervals (0:hoto 3 h,3hto6h, ..., 21 h to 24 i UT), giving

eight

denofted by -, o, or +, resulting in Oo, 0+, 1-,10, 1+, 2—20, 2+, ..., 8-, 80, 8+, 9-, and 9o.

Deriy
conv
Bart
deriy

Refer

3.4.2
YKp

3.4.3

The |
the 4
COrr

values per UT day, and ranges in 28 steps from 0 (quiet) to 9 (disturbed) with interms

ration: The K indices at the 13 observatofies given in Table 2 are standardized 1

bls [1949]. The standardized K indices, called the Ks index, are averaged using weighti
e the Kp index.

ences: Bartels [1949], Mayaud [1980], Menvielle et al. [2011]

XKp index (planetary.daily range index)

s the sum of the eight Kp values of the day.

ap index (planetary 3 h equivalent amplitude index)

Kp index is\not linearly related to the geomagnetic disturbances measured in the unit o
p indexis/introduced as it is roughly proportional to the geomagnetic disturbances.
b sponds to approximately 2 nT of geomagnetic variations.

diate values

y means of

ersion tables that have been established-through the rather complicated procedure introduced by

hg factors to

FnT. Instead,
One ap unit

Deriy

ation-The ap indexisderived dirm‘ﬂy fromthe Kp index hy ncing the canversion table shay

/n in Table 3.

References: Bartels and Veldkamp [1954], Mayaud [1980], Menvielle et al. [2011]

Table 3 — Conversion table from the Kp index to the ap index

Kp 0o 0+ 1- 1o 1+ 2- 20 2+ 3- 30 3+ 4~ 40 4+
ap 0 2 3 4 5 6 7 9 12 15 18 22 27 32
Kp 5- 50 5+ 6- 60 6+ 7- 70 7+ 8- 80 8+ 9- 90
ap 39 48 56 67 80 94 | 111 | 132 | 154 | 179 | 207 | 236 | 300 | 400
© IS0 2013 - All rights reserved 3
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3.4.4 Ap index (planetary daily equivalent amplitude index)

The Ap index is the average of the eight values of the ap index in a UT day.

3.5 aaindex (antipodal amplitude index)

The aa index is a simple measure of global geomagnetic activity, which can be traced back

continuously to 1868.

Derivation: The aa index is produced from the K indices of two nearly antipodal magnetic observatories
in England and Australia, which are listed in Table 4. The K indices at the two observatories are converted

g P
values of anmplitude using the welghtlng factors, A, shown in Table 4.

References: Mayaud [1971]

hern

Table 4 — Observatories in England and Australia contributing to the@a-index
Observatory, country Code Period GLat (°N) GLon (°E) MLat (°) A
Greenwich, England 1868-1925 1,007
Ablinger, England ABN 1926-1956 51.18 359.62 53.4 0,934
Hartland, Enlgland HAD 1957- 50.97 35552 54.0 1,039
Melbourne, Australia 1868-1919 0,947
Toolangi, Auptralia TOO 1920-1979 -37.53 145.47 -45.6 1,033
Canberra, Aystralia CNB 1979- -35.30 149.00 -429 1,044

Table 5 — Conversion table from the K index at the aa observatories to amplitudes

K index 0 1 2 3 4 5 6 7 8

Amplitude 2,3 7,3 15 30 55 95 160 265 415 4

67

3.6 Dstindex (storm time disturbance index)

The Dst index is a measure of theyaxially symmetric part of the H component along the geomag|
equator on fhe ground, and thedmain physical source is a combination of the equatorial ring curren
plasma shedt current and thé-ntagnetopause current.

Derivation: The Dst indéxis defined as the average of the disturbance variations of the H compo
Dj, at the folir obseryatories (i = 1 to 4) listed in Table 6, divided by the average of the cosines d

netic
L, the

nent,
f the

dipole latitydes atthe observatories for normalization to the dipole equator. Dst is computed for|each
UT hourly ifteryal from the four observatories.
References: Sugtara{1964}-Sugivra-and Kamei-H99H
Table 6 — Four observatories contributing to the Dst index

Observatory, country Code GLat (°N) GLon (°E) Dipole Lat (°)
Kakioka, Japan KAK 36.230 140.190 26.0
San Juan, USA SJG 18.113 293.850 29.6
Honolulu, USA HON 21.320 201.998 21.1
Hermanus, South Africa HER -34.425 19.225 -33.3

4 © IS0 2013 - All rights reserved
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3.7 ASY and SYM indices (mid-latitude disturbance indices)

The disturbance fields in mid- and low latitudes are generally not axially symmetric, in particular in the
developing phase of a magnetic storm. To describe the asymmetric and symmetric disturbance fields
in mid-latitudes with a high time resolution of 1 min, longitudinally asymmetric (ASY) and symmetric
(SYM) disturbance indices were introduced and derived for both the H and D components. The SYM-H
index is approximately the same as the Dst index, while its time resolution is 1 min.

Derivation: The ASY/SYM indices are derived from six selected mid-latitude observatories (see Table 7)
in the following four steps: (1) subtraction of the geomagnetic main field and the Sq field to obtain the
disturbance field component, (2) coordinate transformation to a dipole coordinate system, (3) calculation
of th todi fcImdices; = -D; i T ance fields
six stations, and (4) calculation of the asymmetric disturbance indices, ASY-H. and ASY-D, by
uting the range between the maximum and the minimum asymmetric fields.

Referfences: lyemori et al. [1992], Menvielle et al. [2011]

Table 7 — Six observatories contributing to the SYM/ASY indices

Observatory, country Code GLat (°N) | GLon (°E) | MLat (°) |~ MLon (°E) | Rotatipn angle (°)
Memjambetsu, Japan MMB 439 144.2 34.6 210.2 -16.1
Honglulu, USA HON 21.3 202.0 215 268.6 0.5
Tuscpn, USA TUC 32.3 249.2 40.4 314.6 2.7
Fredgricksburg, USA FRD 38.2 282.6 49.1 352.2 0.4
Hermanus, South Aflica HER -34.4 19:2 -33.7 82.7 -10.1
Urmyqu, China WMQ 43.8 87.7 34.3 162.5 7.7

3.8 | AU, AL, AE, and AO indices (auroral electrojet indices)

The huroral electrojet indices are measures of the intensity of the auroral electrojets and consist of
four [indices, AU, AL, AE and AO. The*AU and AL indices are intended to express the strongest current
intensity of the eastward and weStward auroral electrojets, respectively. The AE index represents the
overall activity of the electrojets,'and the AO index provides a measure of the equivalent zopal current.

Deriyation: The auroral electrojet indices are derived from geomagnetic variations in the H component
obsefved at 12 selected‘ebservatories along the auroral zone in the northern hemisphere (see Table 8).
The AU and AL indices-are respectively defined by the largest and the smallest values thus selected. The
symbols, AU and AL,/derive from the fact that these values form the upper and lower env¢lopes of the
supefrposed plotsief all the data from these stations as functions of UT. The difference, A minus AL,
defirles the AE index, and the mean value of the AU and AL, i.e. (AU+AL)/2, defines the AO index.

RefenengesyDavis and Sugiura [1966], Kamei and Maeda [1981]

© IS0 2013 - All rights reserved 5
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Table 8 — Twelve (and obsolete three) observatories contributing to the AE index

Observatory, country Code | GLat(°N) | GLon (°E) | MLat (°) | MLon (°E) Notes
Abisko, Sweden ABK 68.36 18.82 66.06 114.66
Dixon Island, Russia DIK 73.55 80.57 64.04 162.53
Cape Chelyuskin, Russia CCS 77.72 104.28 67.48 177.82
Tixie Bay, Russia TIK 71.58 129.00 61.76 193.71
Pebek, Russia PBK 70.09 170.93 63.82 223.31 Opened in 2001/04
Barrow, USA BRW 71.30 203.25 69.57 246.18
College, USA CMO 64.87 212.17 65.38 261.18
Yellowknife,|Canada YKC 62.40 245.60 68.87 299.53
Fort Churchilll, Canada FCC 58.80 265.90 67.98 328.36
Sanikiluaq, Janada SNK 56.5 280.8 66.6 349.7 Opened in 2007/12
Narssarssuap, Denmark NAQ 61.20 314.16 69.96 37.95
Leirvogur, Ideland LRV 64.18 338.30 69.32 71.04
Cape Wellen Russia CWE 66.17 190.17 62.88 24136 Closed in 199p
Great Whale|River, Russia GWR 55.27 282.22 65.45 351.77 Closed in 1984407

Opened in 1984f09
Poste-de-la-Baleine, Canada PBQ 55.27 282.22 65.45 351.77

Closed in 2007411
3.9 Time|lagin the derivation and temporal resolution (sampling)
Some of the|indices mentioned above have different classes (generations) for operational use. That is,
for quasi-repl-time derivation, a different naming, convention is used to distinguish from the original
definition with quality-controlled data. For example, in the case of the Dst index, there are Real{[ime
(Quick-Look) Dst, Provisional Dst and Final«Bst. There are also attempts to increase the temporal
resolution of the indices (e.g. Gannon and Love, 2011). (See Annex A.)
4 Classification of prediction
The accurady and method of predicting geomagnetic indices depends on the time scale of predigtion.
Subclauses 4.1 to 4.3 introduce.some of the existing works which are based on a classification of three
time-scale dategories: shott:térm (1 h to a few days), middle-term (a few weeks to a few months), and
long-term (half year to_6ue solar cycle). Some of them are actually used and the results made available

online (see 4

4.1 Short

Annex B)e

-term prediction

Stimulated by the space weather programmes, there are many proposed methods and related research
papers for predicting geomagneticindicesin atime scale of 1 h to a few days. These fall into four categories:
(1) linear prediction technique, (2) neural network model, (3) probabilistic prediction with solar wind
data, and (4) MHD (magnetohydrodynamics) simulation. Most of the recent techniques need real-time
solar wind parameters and near-real-time geomagnetic observations as the input. Predicting solar wind
disturbance from solar surface observation may be a key to improving geomagnetic index predictions.

© ISO 2013 - All rights reserved
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McPherron R.L., Predicting the Ap index from past behavior and solar wind velocity, Phys. Chem.
Earth (C), 24, pp. 45-56, 1999. (Type 1)

Boberg F. et al., Real time Kp predictions from solar wind data using neural networks, Phys. Chem.
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Costello K.A., Moving the Rlce MSFM 1nto a real time forecast mode using solar wind driven
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Wing S. et al.,, Kp forecast models, J. Geophys. Res., 110, A04203, dpi10.1029/2004JA010500,
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Detman T. and Joselyn J., Real-time Kp predictions from ACE real time solar wind, Solay Wind Nine,
edited by Habbal et al., AIP Conf. Proc., 271, pp. 729-732, 1999. (Type 2)
McPherron R.L. et al.,, Probabilistic forecasting of the 3-h ap index, IEEE Trans. Plagma Sci., 32,
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emori, T. and Maeda H., Prediction of geomagnetic activities from solar wind paramet
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undstedt H., Solar origin’ of geomagnetic storms and prediction of storms with the u
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tepanova M.L~et.al., Prediction of Dst variations from polar cap indices using time-
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urton RuK\'et al,, Empirical relationship between interplanetary conditions and Dst,

es., 80, pp. 4204-4214, 1975. (Type 3)
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.F. Donnelly,

se of neural

Helay neural

J. Geophys.

‘Bpien T.P. and McPherron R.L., Forecasting the ring current Dst in real time, J. At

os. Sol.-Terr.

Prys., 6Z, pp. 1295-1299, 2000. (Type 3)

Temerin M. and Li X., A new model for the prediction of Dst on the basis of the solar wind, J. Geophys.
Res., 107, p. 1472, d0i:10.1029/2001JA007532, 2002. (Type 3)

Fok M.-C. et al., Comprehensive computational model of the Earth’s ring current, J. Geophys. Res.,
106, pp. 8417-8424, 2001. (Type 4)
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nly a few research papers that use recurrences of geomagnetic disturbances in a time
ks to a few months.

rediction:

nd Wei F.-S., Prediction of recurrent geomagnetic.disturbances by using adaptive filtg
s Space, 50, pp. 839-845, 1998. (prediction of theXKp index)

term prediction

ery few proposed techniques and/orresearch papers on predicting geomagnetic indig
of half a year to one solar cycle, asscompared with those on solar activities such as sun|
F10.7 flux. However, the sun spot'number or F10.7 flux indicates quite different behaj
gnetic indices such as the_aa index during some solar cycles. Therefore, the long-
hethod of geomagnetic indices is necessary.

prediction:

K.O. et al., Statistical technique for intermediate and long-range estimation of 13-m
bd solar flux and geomagnetic index, NASA Technical Memorandum 4759, 1996. (predi
p index)

W. etaly’A prediction of geomagnetic activity for solar cycle 23, . Geophys. Res.,
[-6876;-1999. (prediction of the aa index).

p224,

tions
514,

scale

ring,

esin
spot
yiour
term

onth
ction

104,

Long-term

rediction of solar activities (cnn spot number and E10.7 ﬂny) is prpcpnh:d hy NQA AI/(

pace

Weather Prediction Center (see Annex B). The possibility of combining the technique of solar activity
prediction with the solar-geomagnetic disturbance relationship has been examined in a number of studies.

Examples of solar-geomagnetic disturbance relationship:

Clilverd M.A. et al., Increased magnetic storm activity from 1868 to 1995, J. Atom. Sol.-Terr. Phys., 60,
pp. 1047-1056, 1998.

Stamper R. et al,, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104,
pp. 28325-28342, 1999.
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5 Methods of prediction

The prediction methods can be split into two broad categories: (1) those based on a statistical model,
and (2) those based on a physical principle.

5.1

Prediction based on statistical models

5.1.1 Prediction filter

This method of prediction uses data from a preceding interval of similar (or longer) length to that of the

perig

dtaobe prnr]infnr‘ Precisionof prnﬂir‘h'nn gnnnra”y r‘]opnnr‘c onthe fnmpnrn] distance

between the

most
of th
para

5.1.2

Ther]
one 4
data

5.1.3

This
or se
requ
pred

5.2
This

pring
(197

6 1

6.1

For 4
of th
meaq

6.2

recent data and the period to be predicted. There are two types of prediction: one‘us
e preceding interval as the input data (see Zhou and Wei, 1998) and the other uses th
eters (see lyemori and Maeda, 1980; McPherron et al., 2004; Li et al., 2007).

Neural network model

e are several neural-network models. This method is applicable for{time scales of sey
unspot cycle. It has been concluded that the interplanetary magnetic field and solar v
are significant components for any of the models (see Thomson;<1996; Wing et al., 200

Regression analysis

method is based on the periodicity of geomagnetic disturbances such as the sun spot ¢
mi-annual variation (see Joselyn, 1995). Predictions made over long time scales (one {
re the prediction of a sunspot number (see Feynman and Gu, 1986). Similar technig
jct the F10.7 flux and Ap index (e.g. Niehuss et1al.,1996) are also available.

Prediction based on physical principle

type of prediction is based on numeérical MHD simulation of the magnetospheric proce
iple. These methods need the selar wind parameters as the input. See, for example, |
h) and Kitamura et al. (2008);

tvaluation of prediction efficiency

Definition of prediction error

simple timeseries, the most popular definition of prediction error is as the average 9
e differefices between the predicted values and the observed values. This provides g
ure of prediction error.

es the index
b solar wind

eral days to
vind plasma
b).

ycle, annual
o ten years)
ues used to

Ss or energy
Burton et al.

f the square
reasonable

Methods of evaluation

It has been reported that the accuracy of prediction is different for the sunspot maximum and minimum
period. It has also been reported that the accuracy is different for different solar cycles (see Feynman
and Gu, 1986). Accuracy is also different depending on the time scale of prediction. The prediction

effici

ency should therefore be given together with the conditions applied for its evaluation.

A prediction can be evaluated using a skill score. In the case of a dichotomous forecast, the true skill
statistics, the Gilbert skill score, the Heidke skill score, and others can be used (see Detman and Joselyn,
1999). If predicting continuous-variables, the mean square skill score can be used (see Murphy, 1988).

Thes

© ISO

e skill scores are detailed in Annex C.

2013 - All rights reserved


https://standardsiso.com/api/?name=f9b9e75b4e6bb77b42e02bbae0cbda09

ISO 16698:2013(E)

7 Compliance criteria

7.1 Rationale

The prediction principle and scheme should be described concisely and clearly. They should be published
as scientific articles in refereed/peer-review international journals and their references should be
available to the public. Otherwise, journal-style documents suitable for publication in international
journals should be accessible to the public.

7.2 Reporting

Prediction fesults of geomagnetic indices should be made public for evaluation and applicdtign by
third parties (e.g. individuals or institutes who are interested in the prediction results). As a@inimum,
digital valugs of the prediction results should be given in the same data format as the cortesponding
geomagnetif indices, such as the WDC exchange format.

7.3 Documenting
The following information relating to prediction should be clearly documented or displayed.
a) Input:
1) typgps of data;
2) soufrce of data;
3) timp resolution of data;
4) nurmber of data points;
5) timp of data acquisition.
b) Output:
1) typgs of predicting data;
2) timp of predicting data;
3) timp at which predictipnswas performed.
c) Miscellgneous:

1) type of prediction'method (choose from the four typeslisted in Clause 4, otherwise describe briefly);

2) point of contact.

7.4 Publishing
When the geomagneticindex becomes available, comparison should be made with the prediction results.

Comparison includes calculating the prediction error, skill score, correlation coefficients, and so on, as
listed in Clause 5.

7.5 Archiving

The results of prediction should be archived and available to the public for evaluation.

10 © IS0 2013 - All rights reserved
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Annex A
(informative)

Websites where geomagnetic indices are available

(1) GFZ-Potsdam

http;

JWWwW-app3.giz-potsdam.de/ RKp_index; (Kp)

(2) Service International des Indices Géomagnetiques (ISGI)

http:

'/isgi.latmos.ipsl.fr/lesdonne.htm (aa, am, Kp, AE, Dst, PC)

(3) WDC for Geomagnetism, Kyoto

http:
(4) A
http:

'/wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html (AE, Dst, ASY/SYM, RT-AE; RT-Dst)
rctic and Antarctic Research Institute

'/www.aari.nw.ru/index_en.html (PCS)

(5) WDC for Geomagnetism, Copenhagen

ftp:/
(6) U
http:

ftp.space.dtu.dk/WDC/indices/pcn/ (PCN)
S Geological Survey

'/geomag.usgs.gov/dst/ (RT-USGS-Dst)

© ISO

2013 - All rights reserved
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Annex B
(informative)

Websites where the space weather predictions and/or “now

(1) NOAAS

casting” are presented

nace Enviranmant Cantar

http://www
(2) Magnet
http://space
(3) Interna
http://www
(4) NiCT Sp
http://www

.swpc.noaa.gov/

pspheric Specification and Forecast model (MSFM)
.rice.edu/ISTP/dials.html

fional Space Weather Service
.ises-spaceweather.org/

hce Environment Information Service

2.nict.go.jp/y/y223/sw_portal/sw_portal-e.html

(5) Belgium SIDC

http://sidc.a
(6) The Aug
http://www
(7) WINDM
http://orion|
(8) Lund sp
http://www
(9) CISM fo
http://www
http://lasp.

ma.be/

tralian Space Weather Agency
.ips.gov.au/Space_Weather

I model
.ph.utexas.edu/~windmi/

ace weather model
Jlund.irf.se/rwc/

Fecast model

.bu.edu/cism/

folorade.edu/cism/

(10) Solar @

ycle Progression, NOAA/Space Weather Prediction Center

http://www.swpc.noaa.gov/SolarCycle/

12
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Annex C
(informative)

Definition of various skill scores

C.1 Dichotomous forecast

In the following contingency table:

Forecast
Yes No
Observed Yes x (hits) y (misses)
No z (false alarm) w (correet negatives)

The true skill score (TSS) is defined as:
_ Xw-yz
(x+y)(z+w)
The Gilbert skill score (GSS) is defined as:

dss=——1
X+y+z—cq
d = (x+y)(x+2)
X+y+z+w

The Heidke skill score (HSS) is defined as:

X+w—-c
HSS = 2
xtyt+z+tw-c4

d = (x+y)(x+zye(w+y)(w+2z)
C By +Z+w

C.2 | Confinuous variables

The ean-square skill score (SS) is defined as:

_,_ MSE(f,x)
" MSE(x,x)

. 2
MSE(f,x) :%Z(fi —X;)
i=1

where MSE represents “mean square error”; f; and x; denote the ith forecast and ith observation,
respectively; x is the mean value of xoveri=1 - n.
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