

INTERNATIONAL
STANDARD

ISO
10329

Second edition
2017-07

**Coal — Determination of plastic
properties — Constant-torque
Gieseler plastometer method**

*Charbon — Détermination des propriétés plastiques — Méthode du
plastomètre Gieseler à couple constant*

STANDARDSISO.COM : Click to view the full PDF of ISO 10329:2017

Reference number
ISO 10329:2017(E)

© ISO 2017

STANDARDSISO.COM : Click to view the full PDF of ISO 10329:2017

COPYRIGHT PROTECTED DOCUMENT

© ISO 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Principle	2
5 Apparatus	2
6 Calibration	4
7 Sample	4
8 Procedure	4
9 Cleaning of the apparatus	10
10 Calculation and expression of results	11
11 Precision of the method	11
11.1 Repeatability	12
11.2 Reproducibility	12
Bibliography	13

STANDARDSISO.COM : Click to view the full PDF of ISO 10329:2017

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 27, *Solid mineral fuels*, Subcommittee SC 5, *Methods of analysis*.

This second edition cancels and replaces the first edition (ISO 10329:2009), which has been technically revised.

Coal — Determination of plastic properties — Constant-torque Gieseler plastometer method

1 Scope

This document specifies a method for obtaining a relative measure of the plastic behaviour of coal when heated under prescribed conditions. The method is used to obtain values of the plastic properties of coals and blends used in carbonization and in other situations where determination of plastic behaviour of coals is of practical importance.

NOTE The empirical nature of this test requires proper equipment calibration to produce fluidity readings which are a true indication of the relative plastic behaviour of the coal.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 18283, *Hard coal and coke — Manual sampling*

ISO 13909-1, *Hard coal and coke — Mechanical sampling — Part 1: General introduction*

ISO 13909-2, *Hard coal and coke — Mechanical sampling — Part 2: Coal — Sampling from moving streams*

ISO 13909-3, *Hard coal and coke — Mechanical sampling — Part 3: Coal — Sampling from stationary lots*

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at <http://www.electropedia.org/>
- ISO Online browsing platform: available at <http://www.iso.org/obp>

3.1

dial division per minute

measure of stirrer rotation rate, as used in the constant-torque Gieseler plastometer method

Note 1 to entry: There are 100 dial divisions for each full 360° rotation of the stirrer. The fluidity result is expressed as total dial divisions turned by the stirrer in a 1 min time period, i.e. dd/min.

3.2

initial softening temperature

temperature at which dial movement or electronic readout indicates a stirring shaft movement of one **dial division per minute** (3.1), with continued indication of movement of at least 1 dd/min thereafter

3.3

maximum fluidity temperature

temperature at which stirring shaft rotation reaches the maximum rate

3.4

plastic range

difference between the initial softening temperature and the solidification temperature

3.5

final fluidity temperature

temperature at which the last 1 dd/min stirrer rotation rate is reached

3.6

solidification temperature

temperature at which the stirring shaft stops

3.7

maximum fluidity

maximum rate of rotation for the stirring shaft in *dial divisions per minute* (3.1)

3.8

jamming

swelling up of coal into the retort tube during the test, which may produce a lower fluidity result than expected and can only be noted after visual inspection of the disassembled crucible and retort at the conclusion of the test

3.9

breaking

free spinning behaviour of coal, either by rotating at maximum motor speed or by abrupt changes in rotation, which occurs as a result of a molten ball of coal forming around the base of the stirrer, and which makes reporting of the true *maximum fluidity* (3.7) of the coal difficult

4 Principle

Measurements of the plastic properties of coals are made by applying a constant torque to a stirrer placed in a crucible into which the coal is charged. The crucible is immersed in a bath and the temperature increased uniformly. The rotation of the stirrer is recorded in relation to increase in temperature.

5 Apparatus

5.1 Gieseler plastometer retort, composed of the following component parts (see Figure 1).

5.1.1 Retort crucible, cylindrical, with $(21,4 \pm 0,1)$ mm inside diameter, and $(35,0 \pm 0,3)$ mm in depth with exterior threads for joining the crucible to the barrel.

The crucible shall have a $(2,38 \pm 0,02)$ mm diameter notch with an included angle of 70° in the centre of its inside base to serve as a seat for the stirrer.

5.1.2 Retort crucible cover, with interior threads for joining the crucible cover to the crucible and exterior threads for joining the crucible cover to the barrel.

The inside diameter of the hole which accommodates the stirrer shall be $(9,5 \pm 0,1)$ mm.

5.1.3 Guide sleeve, provided near the upper end of the stirrer to guide the latter within the barrel with a clearance of between 0,05 mm and 0,10 mm.

5.1.4 Gas exit hole, provided on the barrel to afford an exit for the volatile products during a test, placed, for example, at the midpoint of the barrel; as an option, a tube may be fitted if desired.

5.1.5 Barrel, $(121,0 \pm 2,5)$ mm long, having an inside diameter of $(9,5 \pm 0,1)$ mm.

The top end of the barrel shall be 12,7 mm in inside diameter to a depth sufficient to allow the fitting of a guide sleeve through which the axle of the stirrer passes when the apparatus is assembled.

5.1.6 Steel stirrer, provided with a straight shaft ($3,95 \pm 0,05$) mm in diameter and equipped with four rabble arms.

The lower end of the stirrer shall be tapered to a point having an included angle of 60° . The rabble arms on the stirrer shall be ($1,6 \pm 0,05$) mm in diameter, ($6,4 \pm 0,05$) mm in length, and shall be placed so as to be perpendicular to the shaft at 90° intervals around the shaft and ($3,2 \pm 0,05$) mm apart centre to centre along the shaft. The middle two rabble arms shall be set at 180° to each other, and likewise, the remaining two arms at 180° to each other. The lowest rabble arm shall be set to give ($1,6 \pm 0,05$) mm clearance between it and the bottom of the crucible when the stirrer is in place. The upper end of the stirrer shall be cut to fit into a slot on the lower end of the axle in the plastometer head.

The rabble arms should be checked before each test to ensure that they are clean and free from distortion or other visual damage. It is essential that the dimensions of the rabble arms on the stirrer meet the requirements in this clause and in [Figure 2](#) and it is important that these dimensions are checked on a regular basis, e.g. every 50 determinations. If after use it is found by accurate measurement that any of the dimensions are outside the specified limits, the rabble arms should be replaced or the stirrer discarded.

5.2 Plastometer head

The plastometer head, shown schematically in [Figure 3](#), shall consist of a fixed-speed motor (approximately 300 r/min) connected directly to a magnetic clutch or hysteresis brake capable of adjustment over a reasonable range on either side of a torque value of 101,6 g·cm (9,66 Nm). A dial drum, attached to the clutch brake output shaft, shall be graduated into 100 divisions for 360° . Each complete drum revolution or 100 dial divisions shall be recorded on a counter actuated by an electric eye or other suitable method. As an alternative, an electronic device capable of measuring rotation rates between 0,01 r/min and 300 r/min may be attached to the clutch or brake output shaft. Using this latter technique, rotation rates can be converted directly to dial divisions per minute (dd/min) and can be displayed or recorded once a minute on a suitable electronic readout or printer.

NOTE Care is needed in the maintenance and lubrication of all bearings, particularly after the instrument has been used with a coal high in volatile matter. Using bearings with a closed race is undesirable due to the increased friction of the closed race compared to bearings with an open race. When using open race bearings, clean and replace on a regular basis.

5.3 Electric furnace

An electrically heated furnace shall be used (see [Figure 4](#)) with suitable controls so that a heating rate of ($3,0 \pm 0,1$) $^\circ\text{C}/\text{min}$ can be maintained over a temperature range of $300\text{ }^\circ\text{C}$ to $550\text{ }^\circ\text{C}$. The furnace shall contain a molten solder bath of approximately 50 % lead and 50 % tin composition. The temperature in the bath shall be measured with a suitable thermocouple in a protection tube of approximately 6 mm in outside diameter immersed in the bath so that the tube touches the outside wall of the crucible and the hot junction of the thermocouple is at the same height as the centre of the coal charge. A stirrer shall be used to agitate the solder.

5.4 Loading device

The loading device shall be provided to pack the coal uniformly in the crucible under a total load of 10 kg and designed in such a manner that, after compression, the crucible and its contents can be removed easily from the device without disturbing the contents. A suitable device, such as shown in [Figure 5](#), has a static weight of 9 kg together with a drop weight of 1 kg which is dropped 12 times from a height of 115 mm.

NOTE The static weight of 9 kg is the combined mass of the cage, packing head, dropping mass shaft and the static mass.

6 Calibration

Torque shall be checked with the string and pulley method shown in [Figure 6](#). In the string and pulley method, a pulley is screwed onto the spindle and a string attached to this pulley is placed over a second vertical pulley, with the required weight attached. A 25,4 mm (1 in) radius pulley and a 40 g weight have been used for that purpose. With the plastometer motor turned on, the brake or clutch suspension, or the torque gauge or transducer, reads $(101,6 \pm 5,1)$ g·cm [$(40,0 \pm 2,0)$ g·in]. All instruments should be checked in this manner as required, at a predetermined frequency based on the laboratory's experimentation on stability or torque setting.

Alternatively, torque can be checked with a suitable gauge or transducer provided it has been validated against the string and pulley method. If this method is used, the torque applied to the shaft is checked as a minimum at two positions at 90° to each other to check that the drive shaft alignment and bearings running are correct. If the torque values are different, this indicates a problem that shall be repaired, otherwise, lower fluidity values will be recorded.

NOTE A pulley/weight assembly is the only one capable of reliably evaluating the torque over a complete 360° rotation.

7 Sample

Collect a representative gross sample of coal in accordance with ISO 18283, ISO 13909-1, ISO 13909-2 and ISO 13909-3. Approximately 4 kg of coal crushed to pass a 4,75 mm sieve shall constitute the laboratory sample. This sample should be representative of the batch being tested. Spread the laboratory sample on a tray and allow it to equilibrate with the laboratory atmosphere. Drying shall not be continued beyond this point so that the plastic properties of the coal are not altered by oxidation. The drying temperature shall not exceed 40°C . After air drying to equilibration, divide the sample representatively to about 500 g. Representatively subsample one quarter of this 500 g portion, then crush this one quarter in successive steps to pass a 425 μm sieve in such a manner as to minimize the production of fines. This is done by alternatively screening and crushing the oversized material until no oversized material remains (the stage crushing process should not violate Table 1 of ISO 13909-4). The size reduction process should aim at keeping the fines of less than 212 μm in diameter to less than 50 % of the final sample.

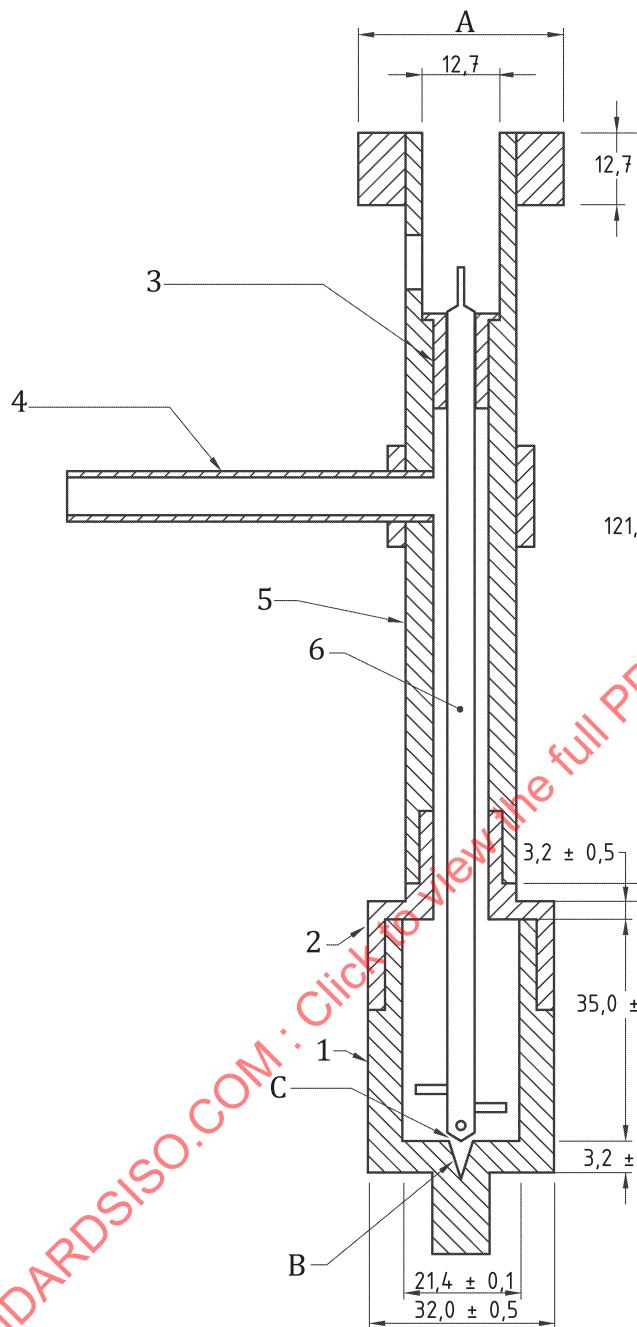
Thoroughly mix the sample, preferably by mechanical means, and withdraw not less than 5 g of this sample by increments. Test the coal for plastic properties by duplicate determinations within 8 h after preparing the sample for passing a 425 μm sieve. Delays in performing the analysis should be avoided because the plastic properties of coal can be significantly affected by deterioration and oxidation. Refrigeration or inert gases should be used to minimize oxidation of prepared samples.

8 Procedure

8.1 Adjust the magnetic clutch or hysteresis brake to $(101,6 \pm 5,0)$ g·cm.

8.2 Mount the crucible, with the stirrer in place, in the loading device shown in [Figure 5](#) but with the 10 kg weight removed and packing tamper raised. Charge 5,0 g of the prepared sample of coal into the crucible. Rotate the stirrer carefully with the fingers in order to fill the voids under the rabble arms. Lower the packing tamper weight, making sure that the total weight is transmitted to the coal charge. Compress the charge by dropping the 1 kg weight 12 times from a height of 115 mm.

NOTE Very dry coal can benefit from the addition of several drops of water and thorough mixing prior to packing.


8.3 Remove the crucible from the loading device and screw on the crucible cover, taking extreme care not to disturb the position of the stirrer in the coal. Screw the crucible and stirrer into the retort assembly. The stirrer should be centred in the guide sleeve. Screw the retort assembly onto the plastometer head,

making sure that the top end of the stirrer fits into the slotted end of the axle. To prevent binding, ensure that there is a space of about 1 mm between the top of the stirrer and the top of the slot.

8.4 Lower the assembled apparatus into the furnace until the bottom of the crucible plug is immersed to a depth of 75 mm in the molten solder bath, which is maintained at a temperature of 300 °C. Place the thermocouple in the bath in accordance with 5.3. The heating control shall be such that the bath will re-attain the initial temperature in (10 ± 2) min after immersion of the retort. Thereafter, heat the retort at a rate of $(3,0 \pm 0,1)$ °C/min on the overall basis. When the movement of the drum or readout from the electronic sensor has reached 1 dd/min, take readings of temperature and dial movement at 1 min intervals. Continue the readings until the dial shows no further movement.

STANDARDSISO.COM : Click to view the full PDF of ISO 10329:2017

Dimensions in millimetres

Key

1	crucible	4	gas exit hole (required)/tube (optional)	A	diameter to fit head coupling
2	crucible cover	5	barrel	B	70° included angle
3	guide sleeve	6	rabble arm stirrer	C	1,6 mm clearance lower arm to crucible

Figure 1 — Retort assembly

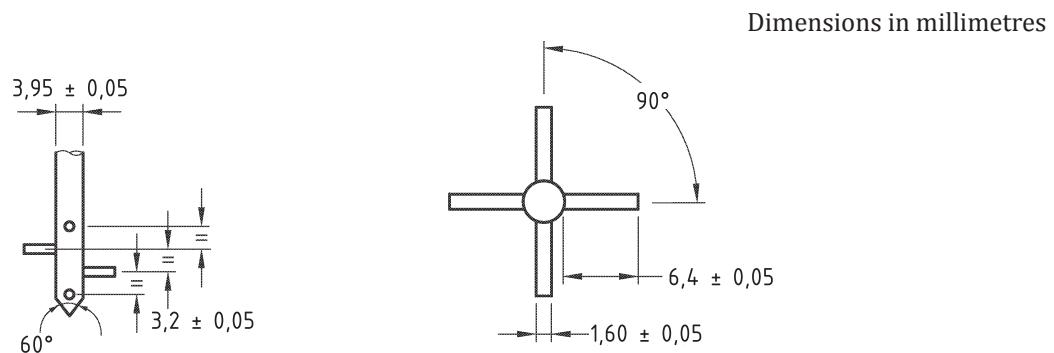
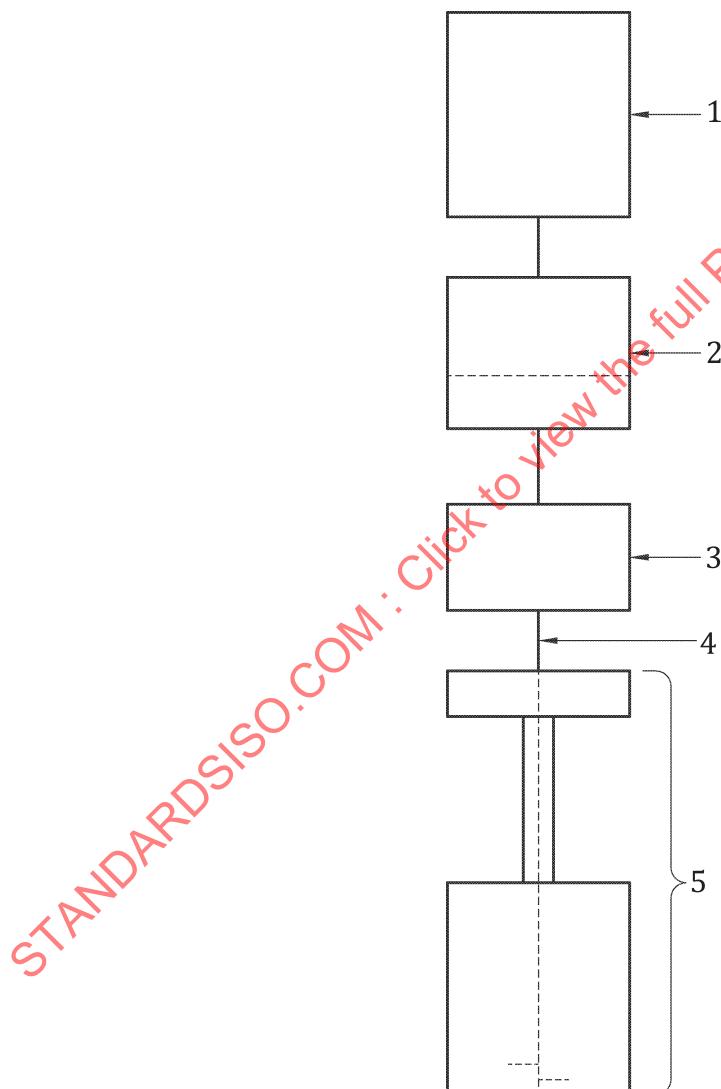
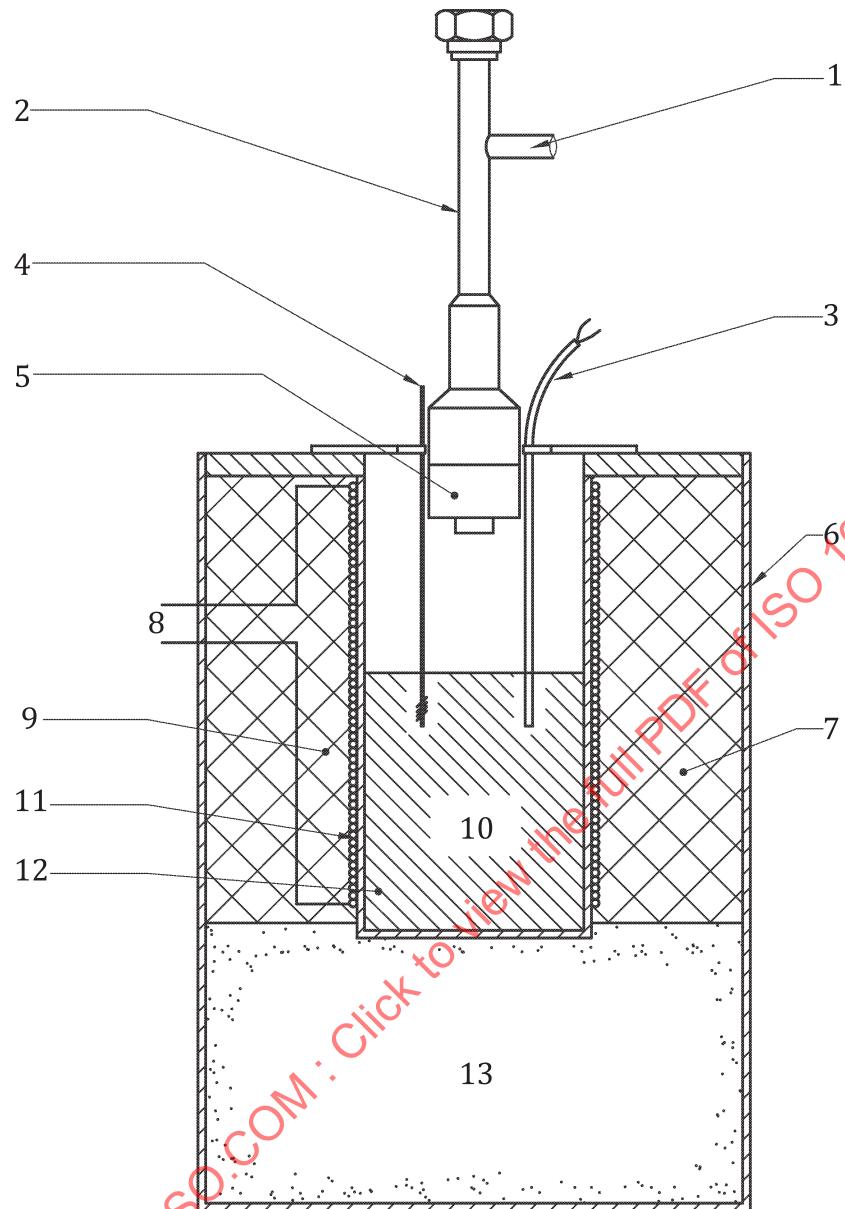
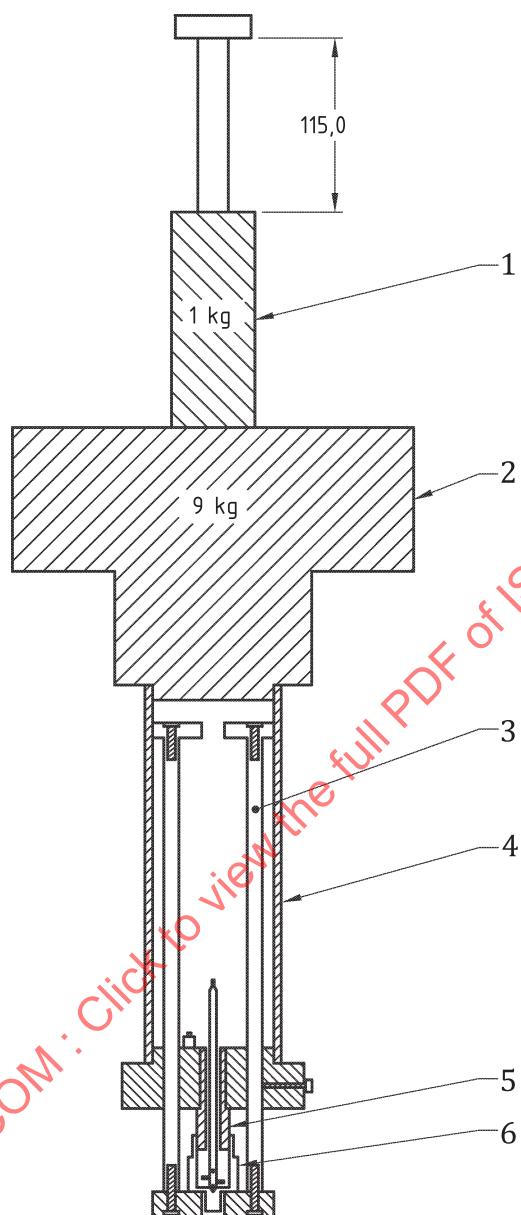




Figure 2 — Stirrer rabble arms

Key

1 motor	3 dial drum or electronic sensor	5 retort assembly (see Figure 1)
2 clutch or brake	4 spindle	

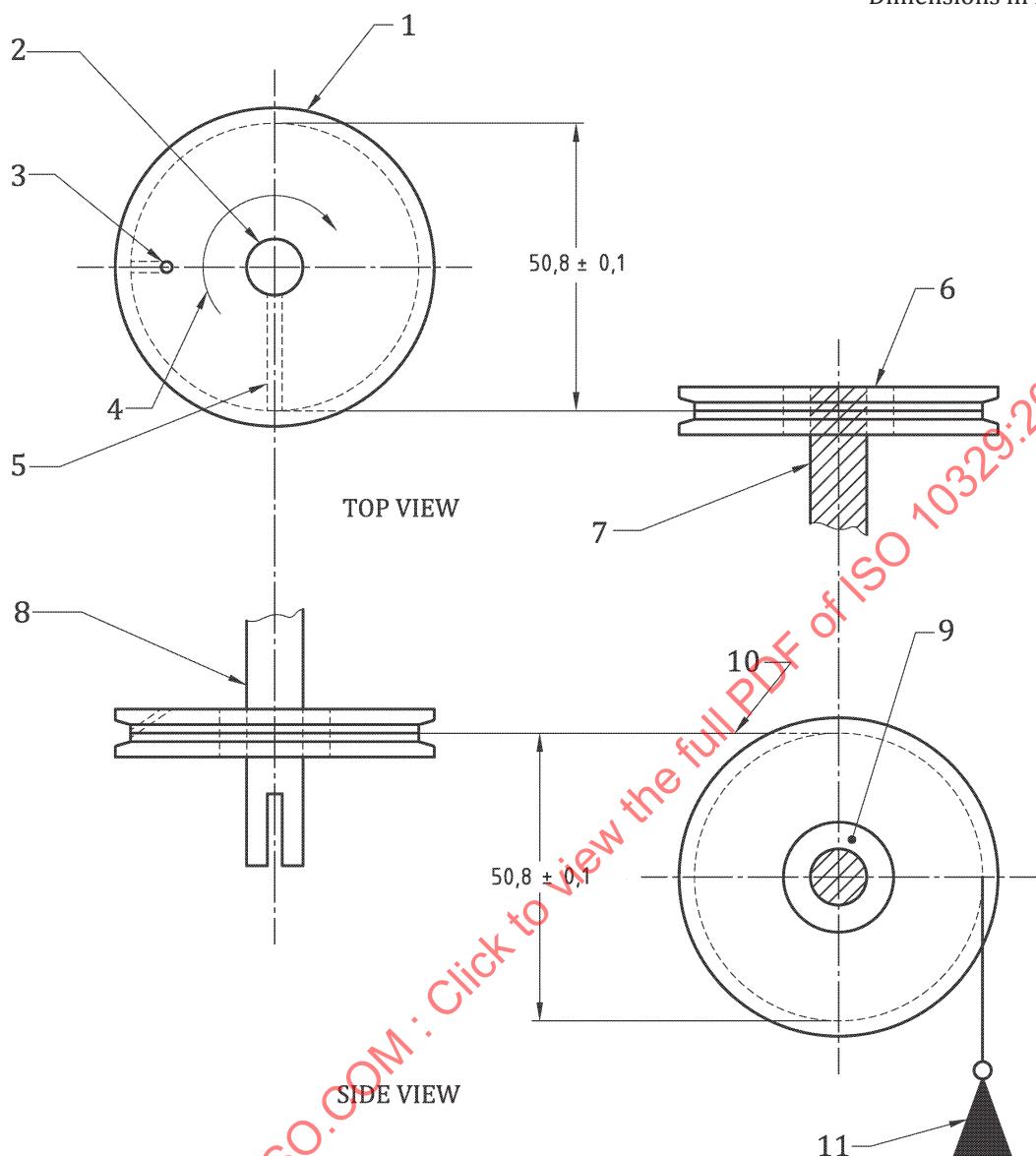
Figure 3 — Schematic representation of plastometer head



Key

1	gas exhaust hole (required)/tube (optional)	8	exit to heating rate controller
2	retort barrel	9	heater winding
3	sheathed thermocouple	10	solder bath
4	bath mixer	11	mica insulating layer
5	retort crucible	12	low-carbon (mild) steel bath vessel
6	housing	13	refractory block
7	insulation		

Figure 4 — Schematic view of retort and furnace


Dimensions in millimetres

Key

- 1 dropped weight (1 kg)
- 2 static weight (9 kg)
- 3 slide rod
- 4 cage
- 5 packing head to fit inside crucible (clearance of 0,5 mm)
- 6 crucible with charge and stirrer

Figure 5 — Typical loading device

Dimensions in millimetres

Key

1	drive pulley	7	transfer pulley support rod
2	centre hole to fit slotted axle	8	slotted axle
3	attachment point for monofilament pulley line	9	sealed low-friction bearing
4	direction of rotation	10	3 kg test monofilament pulley line
5	set screw	11	attached weight ($40 \pm 0,1$) g
6	transfer pulley (aluminium)		

NOTE All angles between the monofilament line and the centre lines are 90° .

Figure 6 — Pulley arrangement for calibrating torque

9 Cleaning of the apparatus

9.1 Clean the stirrer and crucible of all carbonaceous residue after each test.