INTERNATIONAL ISO/IEC
STANDARD 9075-13

First edition
2002-07-01

Information technology — Database
languages — SQL —

Part 13:
SQL Routines and Types Using the Java™
Programming Language (SQL/JRT)

Technologies de l'information — Langages de base de donné¢s — SQL —

Partie 13: Routines et types utilisant le langage de programma3tion Java™
(SQL/JRT)

Reference number
ISO/IEC 9075-13:2002(E)

1IEC

© ISO/IEC 2002

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this

area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event

that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

Contents Page
Foreword. e viii
Introducperr—m——mao—————/——7—"—""—-""-"-"-"-""---""""""""—"¥"¥F¢F¥F""""""""""""""""""— iX
1 S AP . . .o e N 1
2 Normative references N 3
2.1 TCL standardst e AV 3
2.2 ublicly-available specifications L 0 3
3 Definitions, notations, and conventions 5
3.1 efinitions N . 5
3.1.1 efinitions providedin Part 13Co 5
3.1.2 efinitions taken from Java 6
3.2 otations 6
3.3 ONVENTIONSt A e .7
3.3.1 pecification of built-in procedures 80 o7
3.3.2 pecification of deployment descriptor files .57 LT
3.3.3 elationships to other parts of ISO/IEC 9075, .. 8
3.3.3.1 Clause, Subclause, and Table relationships 8
3.4 bject identifier for Database Language SQL12
4 Comeepts. T e 17
4.1 he Java programming language 17
4.2 QL-invoked routines .0). 18
4.3 ava class name resolution 20
4.4 QL result sets () . e .. 20
4.5 arameter MapPPITE vttt e e e e .. 21
4.6 nhandled, Java exceptions e .. 22
4.7 A0 LY DS . o i 23
4.8 ser-defined types i 23
4.8.1 sér-défined type comparison and assignment 26
4.8.2 Aecessingstatiefelds8-o—7 —+—7 ——7¢ —7 ¢ 0 7 — 7 7 00— .. 26
4.8.3 Converting objects between SQL and Java 27
4.8.3.1 SERIALIZABLE e 27
4.8.3.2 SQL D AT A . . e 27
4.8.3.3 Developing for portability 28

© ISO/IEC 2002 - All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

4.9 Built-in procedures. 28
410 Privileges i e 29
411 JARS .o 29
4.11.1 Deployment descriptor files e 30
5 Lexical elements 31
5.1 <token> and <separator> 31
5.2 Names and identifiers e 32
6 Jicalar EXPIreSSIONSottt e NS35
6.1 <method invocation> O35
6.2 <new specification> bl36
7 Predicates T ... 37
7.1 <comparison predicate> e ST ... 37
8 Additional common elements0V ... 39
8.1 <Java parameter declaration list>). 39
8.2 <SQL Javapath>. e NT40
8.3 <routine invocation>, 0 ... 42
8.4 <language clause> N e51
8.5 Java routine signature determinationS% L]bh2
9 $chema definition and manipulation. .. ~7.5H9
9.1 <table definition> 05H9
9.2 <view definition> L S60
9.3 <user-defined type definition> .\ L L61
94 <attribute definition> () ... o i e65
9.5 <alter type statement>. . S69
9.6 <drop data type statement>170
9.7 <SQL-invoked routine>" o7
9.8 <alter routine statement> R £
9.9 <drop routine statement> 75
9.10 | <user-definéd-ordering definition>176
9.11 | <drop us$er-defined ordering statement> 18
10 Accessicontrol L o079
10.1 | &grant privilege statement>. 19
10.2 —<privileges>« " " 80
10.3 <revoke statement> 81
11 Built-in procedures 83
11.1 SQLJ.INSTALL_JAR procedurettt et e et e e et e e 83
11.2 SQLJ.REPLACE_JAR procedurec.0 ittt 85
11.3 SQLJ.REMOVE_JAR procedure.ttt e e e 87
11.4 SQLJ.ALTER_JAVA_PATH procedure, 89

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

12 Java toPiCS 91

12.1 Java facilities supported by this part of ISO/IEC 9075 91

12.1.1 Package java.sql. 91

12.1.2 System Propertiesttt e 91

12.2 Deployment descriptor files e 92

13 Information Schema e 95

13.1 JARIJAR_USAGE VIiew .. . o o T T T T T T . 95

13.2 JARS VIEW . . oot e N . 96

13.3 METHOD_SPECIFICATIONS VIieW oo vttt i e e O .97

13.4 ROUTINE_JAR USAGE VIEWttt e . 98

13,5 TYPE JAR USAGE view iiiiiiiiiniiiinnnlmli o, . 99

13.6 UBER_DEFINED _TYPES view N ety . 100
13.7 Short name VIEWS.ot e . 101
14 Defipition Schema 0 AN . 103
14.1 JAR_JAR USAGE base table. e iy . 103
142 JARSbasetable. Y . 104
14.3 THOD_SPECIFICATIONS base table.¢, 105
14.4 ROUTINE_JAR_USAGE base table &) . . . it . 106
145 ROUTINES basetable S e . 107
14.6 TYPE_JAR_USAGE base table 0 . . ey . 108
14.7 UPBAGE_PRIVILEGES base table @20 iy . 109
14.8 UBER_DEFINED_TYPES base table o ey . 110
15 Status codes. A . 113
15.1 Class and subclass values for uncaught Java exceptions, . 113
15.2 SQLSTATE. A . 114
16 Conformance 0 . 115
16.1 Claims of conforman@el:. 115
Annex SQL Confermance Summaryuiiimirnennnennn . 117
Annex Implémentation-defined elements, . 123
Annex Implementation-dependent elements, . 127
Annex D SQL Feature Taxonomy 129
Annex E Routines tutorial 131
E.1l Technical components. e 131
E.2 OVETVIBW . vttt et e e e e 132
E.3 Example Java methods: region and correctStates 133
EA4 Installing region and correctStates in SQL 133
E.5 Defining SQL names for region and correctStates 135
E.6 A Java method with output parameters: bestTwoEmps........................... 136
E.7 A CREATE PROCEDURE best2 for bestTwoEmps 137

© ISO/IEC 2002 - All rights reserved \

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

vi

E.8 Calling the best2 procedure i 138
E.9 A Java method returning a result set: orderedEmps, 138
E.10 A CREATE PROCEDURE rankedEmps for orderedEmps 140
E.11 Calling the rankedEmps procedure 141
E.12 Overloading Java method names and SQL names 141
E.13 Javamain methods 143
E.14 Java method signatures in the CREATE statements 144
E.15 —Null argumentvaluesand the RETURNS NULL c¢layuse —145
E.16 | Static variables e ... 147
E.17 | Dropping SQL names of Javamethods+<).148
E.18 | Removing Java classes from SQL. Ol148
E.19 | Replacing Java classes in SQL i s ... 149
E.20 | Visibility.o AT150
E21 | Exceptions YT150
E.22 | Deployment descriptors o Nd151
E23 | Paths AN154
E.24 | Privilegeso oo S156
E.25 | Information Schema156
Annex F Typestutorial /8. 157
F1 OVEIVIEW . o vttt ettt i e e SN 157
F.2 Example Java classes.ot N e e 157
F.3 Installing Address and Address2Line in an SQL system159
F4 CREATE TYPE for Address and Address2line160
F.5 Multiple SQL types for a single Javaclass162
F.6 Collapsing subclasses 0 e162
F7 GRANT and REVOKE statemlents for data types164
F.8 Deployment descriptors forclasses.164
F9 Using Java classes as@ata types166
F.10 | SELECT, INSERT,and UPDATE e166
F.11 | Referencing Java.fields and methods in SQL 167
F.12 | Extended visibility rules168
F.13 | Logical representation of Java instances in SQL168
F14 | Staticmethods170
F15 | Staticdfields170
F.16 | Instance-update methods 17
F.17 | Subtypes in SQI/JRT data 173
F.18 References to fields and methods of null instances 174
F.19 Ordering of SQL/JRT data 175
Annex G Incompatibilities with ANSINCITS 331 177
G.1 References i 177
G.2 Incompatibilities e 177
Index. 181

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

TABLES
Tables Page
1 Clause, Subclause, and Table relationships 8
2 System Propertiest 91
3 SQLSTATE class and subclass values 114
4‘ Fl::atuu.c taAUlLUlll‘y fU]. fcatu].c:o UutD;dU CULC SQL o« o . 129

© ISO/IEC 2002 — All rights reserved Vii

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in

liaison with |
established a

International

The main tas
adopted by th
Standard req

Attention is d
patent rights.

ISO/IEC 9074
Subcommitte

ISO/IEC 9074
languages —

Part 1: F
Part 2: F|
Part 3: G
Part 4: P
Part 5: H
Part 9: M
Part 10:

Part 11:

50 and IEC, also take part in the work. In the field of information technology, ISO and
joint technical committee, ISO/IEC JTC 1.

Standards are drafted in accordance with the rules given in the ISO/IEC Directives}-Part 3.
k of the joint technical committee is to prepare International Standards. Draft-International
e joint technical committee are circulated to national bodies for voting. Publication as an Ir

iires approval by at least 75 % of the national bodies casting a vote.

rawn to the possibility that some of the elements of this part of ISO/IEC 9075 may be thg
ISO and IEC shall not be held responsible for identifying any or all such patent rights.

-13 was prepared by Joint Technical Committee CISO/IEC JTC 1, Information f

b SC 32, Data management and interchange.

consists of the following parts, under the.general title Information technology —
SQL:

ramework (SQL/Framework)

bundation (SQL/Foundation)

all-Level Interface (SQL/CLI)

ersistent Stored Modules((SQL/PSM)
ost Language Bindings' (SQL/Bindings)
lanagement of\External Data (SQL/MED)
Dbject Language Bindings (SQL/OLB)

nformation and definition schemas (SQL/Schemata)

IEC have

Standards

ternational

subject of

echnology,

Database

Part 13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)

Annexes A, B, C, D, E, F and G of this part of ISO/IEC 9075 are for information only.

viii

© ISO/IEC 2002 — All ri

ghts reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

D
2)

3)

4)
5)

6)
7)
8)

9)

10)
11)

12)

13)
14)

15)
16)
17)

18)

Clause 1, “Scope”, specifies the scope of this part of ISO/TEC 9075.

Clau
part

Clau
in th

Clau

Clau
routi

Clau
Clau

Clau
vario

Clau
state

Clau

Clau
routi

Clau
IS0/

Clau

Clau
scher

Clau

be 2, “Normative references”, identifies additional standards that, through reference, in
bf ISO/TEC 9075, constitute provisions of this part of ISO/IEC 9075.

s part of ISO/IEC 9075.

be 4, “Concepts”, presents concepts used in the definition of Java routittes and types.

hes and types.

be 7, “Predicates”, defines the predicates of the langtiage.

us parts of the language.

ments associated with the definition of.Java routines and types.

be 10, “Access control”, defines facilities for controlling access to SQL-data.

hes and types.

ke 12, “Java topics”, défines the facilities supported by implementations of this part of
EC 9075 and the conventions used in deployment descriptor files.

be 13, “Informatien Schema”, defines viewed tables that contain schema information.

ke 14, “Definition Schema”, defines base tables on which the viewed tables containing
ha information depend.

ke b, “Status codes”, defines SQLSTATE values related to Java routines and types.

Clause 16, “Conformance”, defines the criteria for conformance to this part of ISO/IEC 9075.

13:2002(E)

this

ke 3, “Definitions, notations, and conventions”, defines the notations and conventions fised

be 5, “Lexical elements”, defines a number of lexical elements u$ed in the definition of]Java

be 6, “Scalar expressions”, defines the elements of the langvage that produce scalar vallues.

be 8, “Additional common elements”, defines addifional language elements that are usgd in

be 9, “Schema definition and manipulation?; defines the schema definition and manipulation

be 11, “Built-in procedures”,«defines new built-in procedures used in the definition of Java

Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the confor-
mance requirements of the SQL language.

Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-defined.

© ISO/IEC 2002 - All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

19)

20)

Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-dependent.

Annex D, “SQL Feature Taxonomy”, is an informative Annex. It identifies features of the SQL
language specified in this part of ISO/IEC 9075 by a numeric identifier and a short descriptive
name. This taxonomy is used to specify conformance to Core SQL and may be used to develop
other profiles involving the SQL language.

21)

22)

23)

In
“LE

blaink space is not significant.

Annex E, “Routines tutorial”, is an informative Annex. It provides a tutorial on us‘iig the
features defined in this part of ISO/IEC 9075 for defining and using SQL-invokéd\rouftines based
on Java static methods.

Annex F, “Types tutorial”, is an informative Annex. It provides a tutorial on using the features
defined in this part of ISO/IEC 9075 for defining and using SQL structured types baded on Java
classes.

Annex G, “Incompatibilities with ANSI NCITS 331”, is an inférmative Annex. It lis{s the
incompatibilities between this edition of this part of ISO/IE€.9075 and NCITS 331.1 pnd NCITS
331.2.

the text of this part of ISO/IEC 9075, Clauses begin a iew odd-numbered page, and inn Clause 5,
xical elements”, through Clause 16, “Conformance?,Subclauses begin a new page. Anly resulting

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

INTERNATIONAL STANDARD ISO/IEC 9075-13:2002(E)

Information technology — Database languages — SQL —

Parf 1 Q an Pnnhnnc and rpynne TTc1n(r f]’\n TqvqTM Drngrqmm1nr

Lahguage (SQLAJRT)

1 BScope

This| part of International Standard ISO/IEC 9075 specifies the ability to invoke static methods
writfen in the Java™ programming language as SQL-invoked roufines and to use classes |defined
in the Java programming language as SQL structured user-defined types. (Java is a regigtered

trademark of Sun Microsystems, Inc.)

© ISO/IEC 2002 - All rights reserved Scope 1

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

2 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this part of ISO/IEC 9075. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 9075 are encouraged to
investigate the possibility of applying the most recent editions of the normative documents indicated below. For
undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC
maintain registers of currently valid International Standards.

2.1 JTC 1 standards

ISO |8824-1:1998, Information technology — Abstract Syntax Notation” One
(ASN.1): Specification of basic notation

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Pard 1:
Framework (SQL/Framework)

ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Parf 2:
Foundation (SQL/Foundation)

ISO/IEC 9075-5:1999, Information technology —<“Database languages — SQL — Part|5:
Host| Language Bindings (SQL/Bindings)

ISO/IEC 9075-10:2000, Information technology — Database languages — SQL — Pant 10:
Obje¢t Language Bindings (SQL/OLB)

2.2 PHublicly-available specifications
The Java LanguageSpecification, Second Edition, Bill Joy (Editor), Guy Steele, James Godling,
and (zilad BrachajAddison-Wesley, 2000, ISBN 0-201-31008-2.

The Java Virtual Machine Specification, Second Edition, Tim Lindholm and Frank Yellin,
Addigon-Wesley, 1999, ISBN 0-201-43294-3.

Java| 2\Platform, Standard Edition, v1.2.2, API Specification,
http://web2.java. sun. coml products/jdk/ 1.2/ docs/api/.

Java Object Serialization Specification,
http://web2.java. sun. com products/jdk/ 1.2/ docs/guide/serialization/spec/serial TOC. doc. htni.

The JavaBeans™ 1.01 Specification,
http://java. sun. conf products/javabeans/ docs/ spec. htm .

© ISO/IEC 2002 — All rights reserved Normative references 3

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
2.2 Publicly-available specifications

JDBC™ 2.0 API, Version 1.0, Seth White & Mark Hapner, Sun Microsystems, Inc., 30 May,
1999.

JDBC 2.0 Standard Extension API, Version 1.0, Seth White & Mark Hapner, Sun Microsystems,
Inc., 7 December, 1998.

JDBC API Tutorial and Reference, Second Edition: Universal Data Access for the Java 2
Platform, Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark Hapner,
Addison Wesley, Reading MA, 1999, ISBN 0-201-43328-1.

W3C[Architecture domain: Naming and Addressing (URLs),
http|//ww. w3. or g/ Addr essi ng/ Activity. htm .

RFC(1738, Uniform Resource Locators (URL), T. Berners-Lee, L. Maxinter, M. McGahill, Decem-
ber, 1994.

RFC(1808, Relative Uniform Resource Locators, R. Fielding, June, 1995.

4 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

3 Definitions, notations, and conventions

3.1 Definitions

3.1.1 Definitions provided in Part 13

[Insert thi

paragraph | For the purposes of this part of ISO/IEC 9075, the definitions given indS@

9075-1, 1

a)

b)

c)

d)

e)

g)

h)

i)

J)

© ISO/IEC 2002 — All rights reserved

SO/IEC 9075-2, ISO/IEC 9075-5, and ISO/IEC 9075-10, and the following definitions,

defal
SQL-

deplpyment descriptor: one or more SQL-statements that specifyi&install actions> and|

<ren]
proce
is ing
PRO

dep
a JA]
2 Plqg
TRUE

external Java data type: an SQL user<defined type defined with a <user-defined type dd

tion>

clasLﬁle: A file containing the compiled byte code for a Java class.

in ﬂ:E deployment descriptor and executed as part of the\install process.

It connection: a JDBC connection to the current SQL-implementation, SQL-session
transaction established with the data source URL ' j dbc: def aul t : cGnnecti on’ .

ove actions> to be taken, respectively, by the SQLJ. | NSTALLAJAR and SQLJ. REMOVE_JA
dures and that are contained in a deplyment descriptor file-; For example, when a JA
talled, one or more <SQL-invoked routine>s that specify LANGUAGE JAVA and eith
CEDURE or FUNCTION and the associated <grant privilege statement>s can be speg

R, for which the JAR’s manifest entry, as déseribed by the java. util.jar section of JJ
tform, Standard Edition, v1.2.2, API Spedification, specifies SQLIDepl oyment Descri pt

that specifies an <external Java type clause>.

exte

speciffies LANGUAGE JAVA and either PROCEDURE or FUNCTION, or defined with a <y
defind type definition> that specifies an <external Java type clause>.

instglled JAR: a JAR whose existence has been registered with the SQL-environment an

whos
proce

Javg
2 Plqg
and

nal Java routine: an external routine defined with an <SQL-invoked routine> tha

e contents have been copied into that SQL-environment due to execution of one of th
dures SQLJ<NSTALL_JAR and SQLJ. REPLACE_JAR.

Archive/(JAR): a zip formatted file, as described by the j ava. util . zi p section of ¢/
tform,~Standard Edition, v1.2.2, API Specification, containing zero or more Java cl a
ber Afiles, and zero or more deployment descriptor files. JARs are a normal vehicle for

/TEC
hpply.

, and

R
R

er
ified

yment descriptor file: a text file containing déployment descriptors that is containled in

pova
or :

fini-

’
ser-

T

pova

distr

]’\11{'1'113‘ Jaxzq programs and the mechanism cpnni‘ﬁnrq }\.‘]7 this International Standard t

provide the implementation of external Java routines and external Java data types to an
SQL-environment.

JVM: A Java Virtual Machine, as defined by The Java Virtual Machine Specification, Second

Editi

on.

ser file: A file containing representations of Java objects in the form defined in Java Object
Serialization Specification.

Definitions, notations, and conventions 5

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.1 Definitions

k) subject Java class: the Java class uniquely identified by the combination of the class’s subject
Java class name and its containing JAR.

1) subject Java class name: the fully-qualified package and class name of a Java class.

m) system class: any Java class provided by a conforming implementation of this part of ISO/IEC
9075 that can be referenced by an external Java routine or an external Java data type without
that class having been included in an installed JAR.

en from Java

3.1.2

This part of ISO/IEC 9075 makes use of the following terms defined in The Java Language Specifi-
cation,

a) bloc
b) clasg declaration
¢) clasg instance
d) clas$ variable

e) fiel
f) instance initializer
g) instgnce variable
h) interface

i) local variable

j) nestped class

k) pacl‘Lage
1) statie initializer

m) subpackage

This part of ISO/IEC 9075 makes use of the following terms defined in The Java Virtual MacHine
SpeciﬁcaIion, Second-Edition:
a) clasg file

b) Javg Virtual Machine

3.2 Notations

| Insert this paragraph | The syntax notation used in this part of ISO/IEC 9075 is an extended version
of BNF ("Backus Normal Form" or "Backus Naur Form"). This version of BNF is fully described in
Subclause 6.1, "Notation", of ISO/IEC 9075-1.

6 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

3.3 Conventions

[Insert this paragraph | Except as otherwise specified in this part of ISO/IEC 9075, the conventions

used in this part of ISO/IEC 9075 are identical to those described in ISO/IEC 9075-1 and ISO/IEC
9075-2.

3.3.1 Specification of built-in procedures

Built-in preeedures—are-speetfiedintermsof:

The scop
Subclaus
in other

3.3.2

Deploym

© ISO/IEC 2002 — All rights reserved

Fun¢tion: A short statement of the purpose of the procedure.

Si
the

ture: A specification, in SQL, of the signature of the procedure. The only ‘purpose
ignature is to specify the procedure name, parameter names, and parameter types. T

manmer in which these built-in procedures are defined is implementation-dependent.

Accd
that

Gen
Whe;
effec
the H
sequ
by a

sequ

Conf
SQL

Fun

ss Rules: A specification in English of rules governing the accessibility of schema obyj
must hold before the General Rules may be successfully applied/

bral Rules: A specification in English of the run-time effect\of invocation of the proce
‘e more than one General Rule is used to specify the effeet-of an element, the require
is that which would be obtained by beginning with the,first General Rule and apply:
fules in numeric sequence unless a Rule is applied that specifies or implies a change
bnce or termination of the application of the Rules: Unless otherwise specified or imp
specific Rule that is applied, application of General Rules terminates when the last in
bnce has been applied.

e of notational symbols is the Subelause in which those symbols are defined. Within
e, the symbols defined in the Sighature, Access Rules, or General Rules can be refere
rules provided that they are‘defined before being referenced.

Specification of\deployment descriptor files
ent descriptor files“are specified in terms of:

btion: A short statement of the purpose of the deployment descriptor file.

Modeel: A briet description of the manner in which a deployment descriptor file is identifi

withi

n it§ containing JAR.

he

ects

dure.
d
ng
in
ied
the

formance Rules: A specification of howthe element must be supported for conformance to

hced

bd

Properties—A BN spectfication of the symtax of the contents of @ deploymentdescriptor

Description: A specification of the requirements and restrictions on the contents of a deploy-
ment descriptor file.

ile.

Definitions, notations, and conventions 7

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

3.3.3 Relationships to other parts of ISO/IEC 9075

3.3.3.1 Clause, Subclause, and Table relationships

Table 1—Clause, Subclause, and Table relationships

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Clause B, “Definitions, notations,
and conventions”

Subclayse 3.1, “Definitions”

Subclayse 3.1.1, “Definitions pro-
vided in} Part 13”

Subclayse 3.1.2, “Definitions taken
from Jgva”

Subclayse 3.2, “Notations”
Subclayse 3.3, “Conventions”

Subclayse 3.3.1, “Specification of
built-in|procedures”

Subclayse 3.3.2, “Specification of
deploynhent descriptor files”

Subclayse 3.3.3, “Relationships to
other parts of ISO/IEC 9075”

Subclayse 3.3.3.1, “Clause, Sub-
clause, pnd Table relationships”

Subclayse 3.4, “Object identifier for
Databage Language SQL”

Clause }, “Concepts”

Subclayse 4.1, “The Java program-
ming language”

Subclayse 4.2, “SQL-invoked rou-
tines”

resolution

Clause 3, "Definitions, notations,
and conventions"

Subclause 3.1, "Definitions"

(none)

(none)

Subclause 3.2, "Notation"
Subclause 3.3, "Conventions"

(none)

(none)

(none)

(none)

Subclause 6.3, "Object identifier for
Database Language SQL"

Clause 4, "Concepts"

(None)

Subclause 4.23, "SQL-invoked
routines"

ISO/IEC 9075-2

ISO/IEC 907%5-2

(none)

(netie)

ISO/IEC 9075-2
ISO/TEC 9075-2

(none)

(none)

(none)

(none)

ISO/IEC 9075-1

ISO/IEC 9075-2
(None)

ISO/IEC 9075-2

Subclayse 4.3, “Java class name (None) (None)
Subclayse4.4,/“SQL result sets” (None) (None)
Subclause-4-5—"Parameter-mappins’——No#e) Note)
Subclause 4.6, “Unhandled Java (None) (None)

exceptions”
Subclause 4.7, “Data types”
Subclause 4.8, “User-defined types”

Subclause 4.1, "Data types"
Subclause 4.8, "User-defined types"

8 SQL Routines and Types Using Java (SQL/JRT)

ISO/IEC 9075-2
ISO/TEC 9075-2

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 4.8.1, “User-defined type
comparison and assignment”

fields”

Subclause 4.8.4, "User-defined type
comparison and assignment"

ISO/IEC 9075-2

ABLE”

portability

Subclause 4.8.2, “Accessing static (None) (None)
Subclayse =483 “Comrver timgobjects Nome) Nome)

between SQL and Java”

Subclayse 4.8.3.1, “SERIALIZ- (None) (None)
Subclayse 4.8.3.2, “SQLDATA” (None) (None)
Subclayse 4.8.3.3, “Developing for (None) (Note)
Subclayse 4.9, “Built-in procedures” (None) (None)
Subclayse 4.10, “Privileges” Subclause 4.31.2, "Privileges" ISO/IEC 9075-2
Subclayse 4.11, “JARs” (None) (None)
Subclayse 4.11.1, “Deployment (None) (None)

descripfor files”
Clause p, “Lexical elements”

Subclayse 5.1, “<token> and <sepa-
rator>"

Subclayse 5.2, “Names and identi-
fiers”

Clause b, “Scalar expressions”

Subclayse 6.1, “<method invoca-
tion>"

Subclayse 6.2, “<new specification>"

Clause [7, “Predicates”

Subclayse 7.1, “<comparison predi-
cate>”

Clause B, “Additional common
elements”

Subclayse\8.1, “<Java parameter

Clause 5, "Lexical elements"

Subclause 5.1, "<teken> and <sepa-
rator>"

Subclause 5.1, "<token> and <sepa-
rator>{

Clause 6, "Scalar Expressions"

Subclause 6.11, "<method invoca-
tion>"

Subclause 6.24, "<new specifica-
tion>"

Clause 8, "Predicates"

Subclause 8.2, "<comparison predi-
cate>"

Clause 10, "Additional common
elements"

(None)

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/TEC 9075-2

(None)

declaration list>"
Subclause 8.2, “<SQL Java path>"

Subclause 8.3, “<routine invoca-
tion>"

Subclause 8.4, “<language clause>”

© ISO/IEC 2002 — All rights reserved

(None)

Subclause 10.4, "<routine invoca-
tion>"

Subclause 10.2, "<language clause>"

(None)
ISO/IEC 9075-2

ISO/TEC 9075-2

Definitions, notations, and conventions 9

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 8.5, “Java routine signa-
ture determination”

Clause 9, “Schema definition and
manipulation”

(None)

Clause 11, "Schema definition and
manipulation”

(None)

ISO/IEC 9075-2

IQOIO oo

Subclayse 91 ~“<tabledefimtionr=*
Subclayse 9.2, “<view definition>"

Subclayse 9.3, “<user-defined type
definitign>"

Subclayse 9.4, “<attribute defini-
tion>”

Subclayse 9.5, “<alter type state-
ment>"

Subclayse 9.6, “<drop data type
statemgnt>"

Subclayse 9.7, “<SQL-invoked
routinep”

Subclayse 9.8, “<alter routine state-
ment>"

Subclayse 9.9, “<drop routine state-
ment>"

Subclayse 9.10, “<user-defined
ordering definition>"

Subclayse 9.11, “<drop user-defined
ordering statement>"

Clause [10, “Access control”

Subclayse 10.1, “<grant privilege
statemgnt>"

Subclayse 10.2, “<priviléges>”

Subclayse 10.3, “<revoke state-
ment>"

JAR pr cedure”?

fal 1 1 131 .Q 1L n 1.1 1 L . 1l
oupllauste 11.0, <Stablc UCIIIIUIUIL~
Subclause 11.21, "<view definition>"

Subclause 11.40, "<user-defined type
definition>"

Subclause 11.41, "<attribute defini-
tion>"

Subclause 11.42, "<alter type state-
ment>"

Subclause 11.48, "<drop data typé
statement>"

Subclause 11.49, "<SQL-invoked
routine>"

Subclause 11.50, "<dlter routine
statement>"

Subclause 11.51,V'<drop routine
statement>"

Subclause*11.54, "<user-defined
ordering’ definition>"

Sabclause 11.55, "<drop user-
defined ordering statement>"

Clause 12, "Access control"

Subclause 12.2, "<grant privilege
statement>"

Subclause 10.5, "<privileges>"

Subclause 12.6, "<revoke state-
ment>"

=0
TOVUMNILU IJUTI=4

ISO/IEC 9075-2
ISO/TEC 9075-2

ISO/IE€ 9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2

ISO/TEC 9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2
ISO/IEC 9075-2

JAR procedure”

Clause [11, “Built:in procedures” (None) (None)
Subclaysed .1, “SQLJ.INSTALL_ (None) (None)
Subclause 11.2, “SQLJ.REPLACE_ (None) (None)
Subclause 11.3, “SQLJ.REMOVE_ (None) (None)

JAR procedure”

10 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

9075”

ties”

Subclause 11.4, “SQLJ.ALTER_ (None) (None)
JAVA_PATH procedure”

Clause 12, “Java topics” (None) (None)
Subclause 12.1, “Java facilities (None) (None)
suppm‘L o b_y ths palt o 1SEAEES

Subclayse 12.1.1, “Package java.sql” (None) (None)
Subclayse 12.1.2, “System proper- (None) (None)
Subclayse 12.2, “Deployment de- (None) (Note)

scriptor] files”
Clause [13, “Information Schema”

Subclayse 13.1, “JAR_JAR_USAGE

view”
Subclayse 13.2, “JARS view”

Subclayse 13.3, “METHOD_
SPECIFICATIONS view”

Subclayse 13.4, “ROUTINE_JAR_
USAGH view”

Subclayse 13.5, “TYPE_JAR_
USAGH view”

Subclayse 13.6, “USER_DEFINED_
TYPES|view”

Subclayse 13.7, “Short name views”

Clause [14, “Definition Schema”

Subclayse 14.1, “JAR_JAR_USAGE
base taple”

Subclayse 14.2, “JARS base table”

Subclayse 14.3, S METHOD_
SPECIFICATIONS base table”

Subclayse\d4.4, “ROUTINE_JAR_

Clause 20, "Information Schema"

(None)

(None)

Subclause 20.32, "METHOD_
SPECIFICATIONS viéw"

(None)

(None)

Subelause 20.65, "USER_
DEFINED_TYPES view"

Subclause 20.69, "Short name
views"

Clause 21, "Definition Schema"
(None)

(None)

Subclause 21.24, "METHOD_
SPECIFICATIONS base table"

(None)

ISO/IEC 9075-2
(None)

(None)
ISO/IEC 9075-2

(None)

(None)

ISO/TEC 9075-2

ISO/IEC 9075-2

ISO/TIEC 9075-2
(None)

(None)
ISO/IEC 9075-2

(None)

USAGE-basetabte”

Subclause 14.5, “ROUTINES base
table”

Subclause 14.6, “TYPE_JAR_
USAGE base table”

© ISO/IEC 2002 — All rights reserved

Subclause 21.33, "ROUTINES base
table"

(None)

ISO/IEC 9075-2

(None)

Definitions, notations, and conventions 11

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 14.7, “USAGE_
PRIVILEGES base table”

Subclause 14.8, “USER_DEFINED_
TYPES base table”

Subclause 21.50, "USAGE_
PRIVILEGES base table"

Subclause 21.52, "USER_
DEFINED_TYPES base table"

ISO/IEC 9075-2

ISO/IEC 9075-2

IQOIO oo

1. Aav & 1 22
Clause [TJ, otatus coues

Subclayse 15.1, “Class and sub-
class vdlues for uncaught Java
excepti¢ns”

Subclayse 15.2, “SQLSTATE”
Clause [16, “Conformance”

Subclayse 16.1, “Claims of confor-
mance”

Annex f\, “SQL Conformance Sum-
mary”

Annex B, “Implementation-defined
elements”

Annex C, “Implementation-
depend¢nt elements”

”

Annex D, “SQL Feature Taxonomy’

Annex E, “Routines tutorial”
Annex F, “Types tutorial”

Annex (&, “Incompatibilities with
ANSI NCITS 331”7

Table 1| “Clause, Subclause, and
Table r¢lationships”

Table 2| “System propertie§”

Table 3| “SQLSTATE e¢lass and
subclasy values”

Table 4| “Feature taxonomy for
feature$ outside Core SQL”

o o0 UL 1 1
LIdUust 24, Oldlius COUCS

(None)

Subclause 22.1, "SQLSTATE"
Clause 8, "Conformance"

Subclause 8.2.3, "Claims of confor-
mance"

Annex A, "SQL Conformance Suni-
mary"

Annex B, "Implementation-defined
elements"

Annex C, "Implementation-
dependent elements!

Annex F, "SQL, feature and package
taxonomy"

(None)
(None)
(None)

(none)

(None)

Table 27, "SQLSTATE class and
subclass values"

Table 32, "SQL/Foundation feature
taxonomy for features outside Core
SQLII

=0
TOVUMNILU IJUTI=4

(None)

ISO/IEE.9075-2
ISOTEC 9075-1
ISO/IEC 9075-1

ISO/IEC 9075-2

ISO/TEC 9075-2

ISO/TEC 9075-2

ISO/IEC 9075-2

(None)
(None)
(None)

(none)

(None)
ISO/IEC 9075-2

ISO/TEC 9075-2

3.4 Object identifier for Database Language SQL

The object identifier for Database Language SQL is defined in Subclause 6.3, "Object identifier for
Database Language SQL", of ISO/IEC 9075-1 with the following additions:

12 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

Format

<i nvoked routine | anguages> ::=

' Al alternatives fromlSQ | EC9075-1
| <invoked Java>

<i nvoked Java> ::=

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

<Part

© ISO/IEC 2002 — All rights reserved

8 | invokedJava <l eft paren> 8 <right paren>

13 yes> :: =

Part 13 conformance>

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

Part 13 routines>

Part 13 types>

Part 13 JAR privil eges>
Part 13 interfaces>

YANEANEANAN

13 conformance> :: =
13
|| sgljrt2002 <left paren> 13 <right paren>

13 routines> ::=
<Part 13 routines no>
|| <Part 13 routines yes> <routines support>

13 routines no> ::=
O | routinesno <left paren> 0 <right paren>

13 routines yes> ::=
U | routinesyes <left paren> 1 <right paren>

13 types> ::=
<Part 13 types no>
|| <Part 13 types yes> <types suppoafit >

13 types no> ::=
0 | typesno <left paren> 0 <fight paren>

13 types yes> ::=
1| typesyes <left paren> 1 <right paren>

13 JAR privil eges>Sii'=
<Part 13 JAR_privil eges no>
|| <Part 13 JAR.privileges yes> <JAR privil eges support>

13 JAR privid-eges no> ::=
0 | JARprivilegesno <left paren> 0 <right paren>

13 JAR-privileges yes> ::=
U N JFARprivil egesyes <left paren> 1 <right paren>

13 interfaces> ::=
<Part 13 serializable> <Part 13 sql data>

13 serializable> ::=
<Part 13 serializable no>
| <Part 13 serializable yes>

13 serializable no> ::=
0 | serializableno <left paren> 0 <right paren>

Definitions, notations, and conventions 13

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

<Part 13 serializable yes> ::=
1| serializableyes <left paren> 1 <right paren>

<Part 13 sgldata> ::=
<Part 13 sql data no>
| <Part 13 sgldata yes>

<Part 13 sqldata no> ::=
0 | sqgldatano <left paren> 0 <right paren>

<Part 13 sgldata yes> ::=

1—t—sagl-dat-aves laft naoran 1 riaht naragn
1 - J ~ b5 ~

<routings support> ::=
routi nes commands> <routines depl oynent >

A

<routings comuands> ::=
<routi nes commands no>
<routi nes commuands yes>

<routings conmands no> ::=
| routinescommandsno <left paren> 0 <right paren>

o

<routings commands yes> ::=
1 | routinescommandsyes <left paren> 1 <right paren>

<routings deploynment> ::=
<routi nes depl oynent no>
<routi nes depl oynent yes>

<routings deploynment no> ::=
| routinesdepl oynentno <l eft paren>Q <right paren>

o

<routings depl oynent yes> ::=
| routinesdepl oynentyes <l eft\paren> 1 <right paren>

=

<types gupport> ::=
t ypes commands> <types . dept oynent >

A

<types ¢onmands> ::=
<types commands_ne>
|| <types conmands-yes>

<types ¢onmands no>\. .=
0 | typescenmandsno <l eft paren> O <right paren>

<types ¢ommands-yes> ::=
1 | typesconmandsyes <left paren> 1 <right paren>

<types deployment> =
<types depl oyment no>
| <types depl oynent yes>

<types depl oynent no> ::=
0 | typesdeploynentno <l eft paren> 0 <right paren>

<types depl oynent yes> ::=
1 | typesdepl oynentyes <left paren> 1 <right paren>

<JAR privil eges support> ::=

14 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

<JAR privil eges commands> <JAR privil eges depl oynent >

<JAR privil eges conmands> ::=
<JAR privil eges commands no>
| <JAR privil eges comands yes>

<JAR privil eges commands no> :: =
0 | JARprivil egesconmandsno <l eft paren> 0 <right paren>

<JAR privil eges commands yes> :: =
1| JARprivilegescommandsyes <left paren> 1 <right paren>

<JAR prifvi | eges depl oynment> ::=
<JAR privil eges depl oynent no>
|| <JAR privil eges depl oynent yes>

<JAR prilvi | eges depl oyment no> ::=
0 | JARprivil egesdepl oymentno <l eft paren> 0 <right paren>

<JAR prifvil eges depl oynment yes> ::=
U | JARprivil egesdepl oynentyes <left paren> 1 <right paren%

Syntax Rules

1) [Insef this SR | Specification of <Part 13 yes> implies that.onformance to ISO/IEC 9075-13 [is
injed.

clainj
2) | Inset this SR | If <Part 13 yes> is not specified then-<invoked Java> shall not be specified.
Inser]

3) this SR | If <Part 13 conformance> specifiégisql j rt 2002, then <SQL edition> shall spegcify

<199P9>.

4) | Insef this SR | Specification of <Part 13 reutines no> implies that conformance to Feature Jp21,
extgrnal Java routines”, is not claimed.

5) [Insef this SR | Specification of <Part 13 routines yes> implies that conformance to Feature 621,
external Java routines”, is claimed.

N

6) [Inset this SR | Specification of <Part 13 types no> implies that conformance to Feature J62
external Java types”,(is)not claimed.

7) [Inserf this SR | Specification of <Part 13 types yes> implies that conformance to Feature J632,
external Javatypes”, is claimed.

8) [Insetf this SR_["Specification of <Part 13 JAR privileges no> implies that conformance to Fealture
J561} “JAR privileges”, is not claimed.

9) | Insert this SR | Specification of <Part 13 JAR privileges yes> implies that conformance to Feature
J561, “JAR privileges”, is claimed.

10) Specification of <Part 13 serializable no> implies that conformance to Feature
J541, “Serializable”, is not claimed.

11) Specification of <Part 13 serializable yes> implies that conformance to Feature
J541, “Serializable”, is claimed.

© ISO/IEC 2002 - All rights reserved Definitions, notations, and conventions 15

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

16 SQL Routines and Types Using Java (SQL/JRT)

Insert this SR | Specification of <routines commands no> implies that conformance to Feature
J511, “Commands”, is not claimed for Feature J621, “external Java routines”.

Specification of <routines commands yes> implies that conformance to Feature
J511, “Commands”, is claimed for Feature J621, “external Java routines”.

Specification of <types commands no> implies that conformance to Feature J511,
“Commands”, is not claimed for Feature J622, “external Java types”.

Specification of <types commands yes> implies that conformance to Feature J511,

“Commands” _is claimed for Feature [J622 “external .Java types”

Inser} this SR | Specification of <JAR privileges commands no> implies that conformanceé.to"Fea-
ture Y511, “Commands”, is not claimed for Feature J561, “JAR privileges”.

Inser} this SR | Specification of <JAR privileges commands yes> implies that conformance tqg
Featyire J511, “Commands”, is claimed for Feature J561, “JAR privileges”.

Inserf this SR | Specification of <routines deployment no> implies that conformance to Feature
J531} “Deployment”, is not claimed for Feature J621, “external Java routines”.

Inser} this SR | Specification of <routines deployment yes> implies that conformance to Feature
J531} “Deployment”, is claimed for Feature J621, “external Java routines”.

Inser} this SR | Specification of <types deployment no> implies-that conformance to Feature J531,
“Deployment”, is not claimed for Feature J622, “external\Java types”.

Inserf this SR | Specification of <types deployment yes> implies that conformance to Feature J531,
‘Deployment”, is claimed for Feature J622, “external Java types”.

Inser} this SR | Specification of <JAR privileges:deployment no> implies that conformance td
Featfire J531, “Deployment”, is not claimed*for Feature J561, “JAR privileges”.

Inser} this SR | Specification of <JAR privileges deployment yes> implies that conformance tp
Featyire J531, “Deployment”, is claimed for Feature J561, “JAR privileges”.

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

4 Concepts

4.1 The Java programming language

The Java programming language is a class-based, object-oriented language. This part of ISO/IEC

9075 usds the Tollowing Java concepts and terminology.

A class ip the basic construct of Java programs, in that all executable Java code is contained
a Java class definition. A class is declared by a class declaration that specifies a possibly emp
set consikting of zero or more fields, zero or more methods, zero or more nested clasgses, zero
more intprfaces, zero or more instance initializers, zero or more static initializers¢,and zero or
construcgors.

The sco

a variable that is declared static is the class, and the variable is called a'¢class variable. The s

of a variable is a class, an instance of the class, or a method of the-class. The scope

n

ty

T
more

of
cope

of each dther variable declared in the class is instances of the class, and.Such a variable is callled

an insta
The scop
declared

A class i
instance
the class

With thd
one othe)
java. |l an
that it ej

Class B

that B ig
if Bis a
C and C
instance

A method
method,;
the meth
method 1i
instance
method ¢

ce variable. Class variables and instance variables of a class.are called fields of that

in that method, and the variable is called a local variable.

nstance consists of an instance of each instance vdariable declared in the class and ea
variable declared in the superclasses of the class. Class instances are strongly typed
name. The operations available on a class instance are those defined for its class.

exception of the class j ava. | ang. Obj ect each class is declared to extend (at most)
 class; a class not explicitly declared torextend another class implicitly extends

g. oj ect. The declared class is a difect subclass of the class that it extends; the cla
rtends is the direct superclass of the‘declared class.

s a subclass of class A if B is a\direct subclass of A, or if there exists some class C sy
a direct subclass of C and C'is a subclass of A. Likewise, class B is a superclass of cl3
direct superclass of A, orifithere exists some class C such that B is a direct superclas

of class B may be used wherever an instance of a superclass of B is permitted.

/ is an executableroutine. A method can be declared static, in which case it is called al
ptherwise, it ig called an instance method. A class method can be referenced by qualif]
od name with'either the class name or the name of an instance of the class. An inst4
s refereficed by qualifying the method name with a Java expression that results in a
of theselass or, in the case of a constructor, with “new’. The method body of an instarn
an reference its class variables, instance variables, and local variables.

e of a variable declared in a method is the block or JavaMor statement in which it i

rlass.

]

h
by

BS

ch
1ss A
s of

is a superclass of A. A subclass has all of the fields and methods of its superclasses and an

class
ying
nce

n

lce

Th J Ll v . a L 41 | i L 4] 41] 1 41 1 L
e avamerntoa otsrnuture Ul a 1ITUIIUU CULISISLS Ul LT HITUIIUU 11alllT alil LT ITUllloTl Ul Pal dll

and their data types.

eters

A package consists of zero or more classes, zero or more interfaces, and zero or more subpackages
(a subpackage is a package within a package); each package provides its own name space and
classes within a package are able to refer to other classes in the same package, including classes
not referenceable from outside the package. Every class belongs to exactly one package, either an
explicitly specified named package or the anonymous default package. A class can specify Java

i mport statements to refer to other named packages whose classes can then be referenced within

the class

© ISO/IEC 2002 — All rights reserved

without package qualification.

Concepts 17

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.1 The Java programming language

A class, field, or methods can be declared as public, private, or protected. A public variable or
method can be accessed by any method. A private variable or method can only be referenced by
methods in the same class. A protected variable or method can only be referenced by methods of the
same class or subclasses thereof. A method that is not declared as public, private, or protected can
only be called by methods declared by classes in the same package.

An interface is a Java construct consisting of a set of method signatures. An interface can be
implemented by zero or more classes, a class can be declared to implement zero or more interfaces,
and a class is required to have methods with the signatures specified by all of its declared interfaces.

The Jav4 Serializable interface, j ava. 1 0. Seri al i zabl e, as described in Java 2 Plaiform, Stan-
dard Edition, v1.2.2, API Specification, defines a transformation between a Java instance@nd| a
java.io.|Qut put Streamor java.io. | nput Stream as defined by the j ava. i 0. Qut put St ream angl
j ava.io.|l nput St reamsections of Java 2 Platform, Standard Edition, v1.2.2, API Specification,
respectiviely, writing a persistent representation of an instance of a Java object and ‘reading a
persisten]t representation of an instance of a Java object. This transformation retains sufficient
informatjon to identify the most specific class of the instance and to reconstrug¢tithe instance.

The Javd SQLData interface, j ava. sql . SQLDat a, as described in Java 2 Rlatform, Standard Hdi-
tion, v1.2.2, API Specification, defines a transformation between a Javasinstance and an SQL,
user-defined data type.

The source for a Java class is normally stored in a Java file with'the file-type “java”, e.g., ny-
cl ass. j qva. Java is normally compiled to a byte coded instruction set that is portable to any
platform|supporting Java. A file containing such byte code iS‘ormally stored in a class file with the
file-type [‘class”, e.g., nycl ass. cl ass.

A set of ¢lass files can be assembled into a Java archive-file, or JAR (usually with a file extensjon of
“jar”. A[JAR is a zip formatted file containing a set, of Java class files. JARs are the normal vehicle
for distriputing Java programs.

4.2 SQL-invoked routines

| Insert affer 1st paragraph | An SQL-invoked routine can be an SQL routine or an external routing. An
SQL routine is an SQL-invoked routine whose <language clause> specifies SQL. The <routine body>
of an SQIL routine is an <SQL procedure statement>; the <SQL procedure statement> forming the

<routine[body> can be any SQL-statement, including an <SQL control statement>, but excludihg an
<SQL schema statement>{ <SQL connection statement>, or <SQL transaction statement>.

[Insert affer 1st paragrapht. | An external routine is one whose <language clause> does not specify $QL.
The <roytine body>)of an external routine is an <external body reference> whose <external rofitine
name> identifies(ajprogram written in some standard programming language other than SQL.

| Insert affer 1sf paragraph | External routines appear in two seemingly similar, but fundamentally dif-
fering, fqring, where the key differentiator is whether or not the external routine’s routine descriptor

> a) il 1 1 £ 41 laVah S 1 | o - i - I XAl 41 1 A | £ 41 Q
SpeCIﬁeS ulau I DUUYy Ul LT O L ~HIVORTU TUULLLIT IS WIILLCIL 111 JdVvVa. VVIICIL U1 DUUY UL UIT O L'
invoked routine is written in Java, the external routine is an external Java routine; some differences
from other external routines include:

— For any other external routine, the executable form (such as a dynamic link library or some
run-time interpreted form) of that routine exists externally to the SQL-environment’s catalogs;
for an external Java routine, the executable form is provided by a specified subject Java routine
that exists in the SQL-environment’s catalogs in an installed JAR.

18 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.2 SQL-invoked routines

— Because an installed JAR is not required to be completely self-contained (i.e., to have no refer-
ences to Java classes outside of itself), a mechanism is provided to allow a subject Java class to
reference classes defined by class files contained in its installed JAR or in other installed JARs.
See Subclause 8.2, “<SQL Java path>".

NOTE 1 — Once an external Java routine has been created, its use in SQL statements executed by the
containing SQL-environment is similar to that of other external routines.

[Replace the lead-in paragrph of the 10th paragraph | A static SQL-invoked method, whether or not it is
an external Java routine, satisfies the following conditions:

| Delete pre—3thene—Htrparagraphs—

[Replace|the 16th paragraph | SQL-invoked routines are invoked differently depending on their\form.
SQL-invoked procedures are invoked by <call statement>s. SQL-invoked regular functions arg
invoked py <routine invocation>s. Instance SQL-invoked methods are invoked by <method inf
vocation}s, while SQL-invoked constructor methods are invoked by <new invocation>s and stdtic
SQL-invpked methods are invoked by <static method invocation>s. An invocatiofi of an SQL-inyoked
routine dgpecifies the <routine name> of the SQL-invoked routine and suppliesia sequence of argu-
ment values corresponding to the <SQL parameter declaration>s of the SQL-invoked routine. |A
subject rputine of an invocation is an SQL-invoked routine that may be invoked by a <routine jnvo-
cation>. [After the selection of the subject routine of a <routine invocation>, the SQL arguments are
evaluatefl and the SQL-invoked routine that will be executed is selected. If the subject routinelis an
instance|SQL-invoked method that is not an external Java routine) then the SQL-invoked routine
that is executed is selected from the set of overriding methods 6f)the subject routine. (The terth “set
of overrifling methods” is defined in the General Rules of Subclause 10.4, "<routine invocation}", in
ISO/IEC(|9075-2.) The overriding method that is selected(is‘the overriding method with a subject
parametér the type designator of whose declared type:precedes that of the declared type of thie
subject garameter of every other overriding method i-the type precedence list of the most specific
type of the value of the SQL argument that corresponds to the subject parameter. (See the Geheral
Rules of [Subclause 10.4, "<routine invocation>'", in ISO/IEC 9075-2.) If the instance SQL-invoked
method is an external Java routine, the term;“set of overriding methods” is not applicable; for |such
methods| the capabilities provided by overriding methods duplicate Java’s own mechanisms and the
subject rputine executed is the one that #ould be invoked when no overriding methods are spegified.
If the supject routine is not an SQL-invoked method, then the SQL-invoked routine executed ig that
subject rputine. After the selection:of the SQL-invoked routine for execution, the values of the[SQL
argumenfts are assigned to the corresponding SQL parameters of the SQL-invoked routine and its
<routine|body> is executed. If the SQL-invoked routine is an SQL routine, then the <routine Qody>
is an <SQL procedure stateméent> that is executed according to the General Rules of Subclause] 13.5,
"<SQL procedure statenient>, in ISO/IEC 9075-2. If the SQL-invoked routine is an external rofitine,
then the|<routine baody> identifies a program written in some standard programming language
other thgn SQL that-s executed according to the rules of that programming language.

[Replace[the 18th-paragraph | If the SQL-invoked routine is an external routine, then an effectivé
SQL parpmeter list is constructed before the execution of the <routine body>. The effective SQL
paramet¢rJist has different entries depending on the parameter passing style of the SQL-invaked
routine. The value of each enfry in the effective SQL parameter list 1s sef according to the General
Rules of Subclause 8.3, “<routine invocation>". When the SQL-invoked routine is not an external
Java routine, the values in the effective SQL parameter list are passed to the program identified
by the <routine body> according to the rules of Subclause 13.6, "Data type correspondences", in
ISO/TEC 9075-2; when the SQL-invoked routine is an external Java routine, values in the effective
SQL parameter list are passed to the program identified by <routine body> according to the rules of
Subclause 4.5, “Parameter mapping”. After the execution of that program, if the parameter passing
style of the SQL-invoked routine is SQL, then the SQL-implementation obtains the values for
output parameters (if any), the value (if any) returned from the program, the value of the exception

© ISO/IEC 2002 - All rights reserved Concepts 19

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.2 SQL-invoked routines

data item, and the value of the message text (if any) from the values assigned by the program

to the effective SQL parameter list. If the parameter passing style of the SQL-invoked routine is
JAVA, then such values are obtained from the values assigned by the program to the effective SQL
parameter list and the uncaught Java exception (if any). If the parameter passing style of the SQL-
invoked routine is GENERAL, then such values are obtained in an implementation-defined manner.

4.3 Java class name resolution

Typical JVMS provide a class name resolulion, or search path, mechanism based on an environmen-
tal variaple called CLASSPATH. When a JVM encounters a previously unseen reference tqoalc]ass,

taining the Java applications, rather than as an environmental variable of the currept
session (puch as, for example, CURRENT _PATH for dynamic statemrents). Therefore, if, while|an
external [Java routine is being executed, a previously unseen class reference is encountered, that
class is fijrst searched for in the JAR containing the definitiom,of-the currently executing class,|and,
if it is nqt found, the class will be sought in the manner specified by the SQL-Java path associated
with that JAR (if any).

An SQL-Java path specifies how a JVM resolves a class name when a class within a JAR references
a class that is not a system class or not in the sanie,JAR. SQLJ. ALTER JAVA PATH is used to agso-
ciated an} SQL-Java path with a JAR. An SQL-Java path is a list of (referenced item, referented
JAR) pairs. A referenced item can be either alelass, a package, or * to specify the entire JAR.
The SQIj-Java path list is searched in the order the pairs are specified. For each (referenced ifem,
referencg¢d JAR) pair (RI, R.J):

— If Rl|is the class name, then the ¢lass must be defined in R.J. If it is not, an exception condition
is raised.

— If RI|is the package of the'class being resolved, then the class must be defined in RJ. If it i not,
an exception conditiod i$ raised.

— If RIl|is ' and the\elass is defined in R<J, then that resolution is used; otherwise, subsequé¢nt
pairg are tested

4.4 SIQL result sets

Cursors, or SQL result sets, appear to Java applications in two forms; the first, as an object of

a class that implements the interface j ava. sql . Resul t Set as defined by JDBC in JDBC API
Tutorial and Reference, Second Edition: Universal Data Access for the Java 2 Platform, re-
ferred to as a JDBC ResultSet; the second, as an object of a class that implements the interface
sqglj.runtime. ResultSetlterator as defined by ISO/IEC 9075-10, referred to as an SQLJ Iterator.

20 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.4 SQL result sets

In ISO/IEC 9075-2, SQL-invoked procedures are declared to be able to return zero or more dynamic
result sets, referred to as result set cursors. To be a returned result set cursor, a cursor’s declaration
must specify WITH RETURN, and the cursor must be open at the point that the SQL-invoked
procedure exits. While external Java routines that are SQL-invoked procedures can likewise be
declared to return zero or more dynamic result sets, in some other respects, this part of ISO/IEC
9075’s treatment of result set cursors differs from that of ISO/IEC 9075-2.

In a Java application, all JDBC ResultSets and SQLJ Iterators are implicitly result set cursors,
that is, their underlying cursor declarations implicitly specify WITH RETURN. So, in this part of
ISO/TEC 9075, to actually be a returned result set cursor it is not sufﬁment that the correspondlng
A S kod ¢ dure
heter
of the supject Java routine that represents an output parameter. As discussed in Subclause' 4|5,
“Parameter mapping”, and Subclause 8.3, “<routine invocation>", output parameters are repré-
sented tq a subject Java routine as the first element of a one dimensional array of aJava datal type
that can|be mapped to an SQL data type. For dynamic result sets, the array must-be of a clas$ that
implements the interface j ava. sql . Resul t Set or the interface sql j.runtime. Result SetIterafor,
the JDBC ResultSet or SQLJ Iterator must have been explicitly assigned to the-first element of that
array, arld that JDBC ResultSet or SQLJ Iterator must not have been closed.

It is impprtant to note that this difference in how a result set cursor becomes a returned resulft set
cursor is|invisible to the calling application. As described in Subclause’ 8.3, “<routine invocatiqn>”,
the callihg application will be returned zero or more dynamic result’sets in the order in which
the cursqrs were opened, just as in ISO/IEC 9075-2; the order of the parameters in the subject|Java

routine does not impact the order in which the calling application accesses the returned result gets.
4.5 Barameter mapping

Let ST be some SQL data type and let J7T be some Java data type.

ST and T are simply mappable if and onlyaf'ST and JT are specified respectively in the firdt
and second columns of some row of the JDBC data type mapping table, Table 47.1, entitled “JDBC
Types mapped to Java Types”, in JDBGAPI Tutorial and Reference, Second Edition: Universal| Data
Access fof the Java 2 Platform. The Java data type J7T is the corresponding Java data type of §T.

ST and T are object mappable if and only if ST and JT are specified respectively in the first pnd
second cplumns of some row of the JDBC object type mapping table, Table 47.3, entitled “Mapping
from JDBC Types to Java-Qbject Types”, in JDBC API Tutorial and Reference, Second Edition:
Universal Data Access for the Java 2 Platform, or if the descriptor of ST specifies that it is af
external [Java data type.and the descriptor specifies J7T' as the <Java class name> in the <jar and
class natpe>.

ST and T are output mappable if and only if JT is a one dimensional array type with an element
data typ¢ JTZ2 (that is, JT is “JT2[]”) and ST is either simply mappable to J72 or object mapgable
to JT2.

An SQL array type with an element data type ST and J7T are array mappable if and only if JT is
a one dimensional array type with an element data type J72 and ST is either simply mappable to
JT2 or object mappable to JT2.

ST and JT are mappable if and only if ST and JT are simply mappable, object mappable, output
mappable, or array mappable.

A Java data type is mappable if and only if it is mappable to some SQL data type.

© ISO/IEC 2002 - All rights reserved Concepts 21

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.5 Parameter mapping

A Java class is result set oriented if and only if it is either:
— A class that implements the Java interface j ava. sql . Resul t Set .

— A class that implements the Java interface sql j.runtime. Result Setlterator.

NOTE 2 — These classes are generated by iterator declarations (#sql iterat or) as specified in ISO/IEC
9075-10.

A Java data type is result set mappable if and only if it is a one-dimensional array type with an
element type that is a result set oriented class.

A Java rhethod with M parameters is mappable (to SQL) if and only if, for some N, 0 (zero) < [V <
M, the dpta types of the first V parameters are mappable, the last M—N parameters are résulf set
mappablg, and the result type is either simply mappable, object mappable, or voi d.

A Java method is visible in SQL if and only if it is public and mappable. In addition, to be visible, a
Java method must be static if used as the external Java routine of an SQL-invokéd/procedure pr an
SQL-invpked regular function.

A Java class is visible in SQL if and only if it is public and mappable.

The book JDBC API Tutorial and Reference, Second Edition: Universal.Data Access for the Jdva
contains JDBC’s SQL to Java data type mappings defined in the JDBC type mapping
tables. If ST is an external Java data type that appears in the INFORMATION_SCHEMA . USER_
_TYPES view, then JDBC’s data type mapping tables dre effectively extended. A row (ST,
JT) is copsidered to be an additional row in Table 47.3, Mapping from JDBC Types to Java Ofject
Types, and a row (JT, ST) is considered to be an additional row in Table 47.4, Mapping from Java
Object Types to JDBC Types.

4.6 Unhandled Java exceptions

Java exceptions that are thrown during execution of a Java method in SQL can be caught, o1
handled,| within Java; if this is done, then-those exceptions do not affect SQL processing. All
Java excpptions that are uncaught when-a Java method called from SQL completes appear in [the
SQL-envjronment as SQL exception conditions.

o

The mesgage text may be specified in the Java exception specified in the Java t hr ow statemer
If the Jaja exception is an instance of j ava. sql . SQLExcept i on, or a subtype of that type, then it
may alsd specify an SQLSTATE value. If that exception specifies an SQLSTATE value, the finst

two charjcters of that SQESTATE shall be ’38’. If that exception does not specify an SQLSTATE
value, thlen the default SQL exception condition for an uncaught Java exception is raised. Se
Subclaude 15.1, “Class and subclass values for uncaught Java exceptions”.

When a Java method executes an SQL statement, any exception condition raised in the SQL sfate-

ment willl be graised in the Java method as a Java exception that is specifically the j ava. sql . SQLExcepti on
subclass [of\the Java class j ava. | ang. Excepti on. For portability, a Java method called from SQL,

that itse i i
statement, should re-throw that SQLException.

22 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.7 Data types

4,7 Data types

| Replace 16th paragraph | Each host language has its own data types, which are separate and distinct

from SQL data types, even though similar names may be used to describe the data types. Mappings
of SQL data types to data types in host languages are described in Subclause 11.49, "<SQL-invoked
routine>", in ISO/IEC 9075-2, in Clause 16, "Embedded SQL", in ISO/IEC 9075-5, and in Sub-
clause 8.1, "<embedded SQL host program>", in ISO/IEC 9075-10. Not every SQL data type has a
corresponding data type in every host language.

4.8 U

[ser-defined types

[Insert aff

er 1st paragraph | User-defined types appear in two seemingly similar, but funddnvental

differing
user-defi
specified

forms in which the key differentiator is whether or not the create type statement for

y
the

hed type specifies an external language of “JAVA”. When an external language of JAVA is
the user-defined type is an external Java data type and the create type ‘'statement defines

a mappifg of the user-defined type’s attributes and methods directly to the public attributes and

methods
data typ

— For 4
class
in a
in Fq
meth
style

— For 4
attril
a usq
MET]
user-
Javal

— For 4
tatio
USIN
exterl]
or wl
decld
ABL
the 1
j ava

of a subject Java class. This is different from user-defined types that are not external
bs. The differences include:

each method of a user-defined type that is not an external Java data type can be wr}
rtran). Such user-defined types cannot have methods written in Java. By contrast, 4

of JAVA, and be defined in the associated Java‘class or one of its superclasses.

very other user-defined type, there is no(explicit association between a user-defined t;
butes and any external representation ‘of their content. In addition, the mapping betw
r-defined type’s methods and extermal methods is made over time by subsequent CRE
[HOD statements. By contrast, foriexternal Java data types, the association between
defined type’s attributes and methods and the public attributes and methods of a sub
class is specified by the create type statement.

xternal Java data types;-the mechanism used to convert the SQL-environment’s repre
h of an instance of atuser-defined type into an instance of a Java class is specified in
(G <interface specification> clause. Such conversions are performed, for example, whe
nal Java data type is specified as a (subject) parameter in a method or function invoc
hen a Java ebject returned from a method or function invocation is stored in a colum
red to be an-external Java data type. <interface specification> can be either SERIAL

solation level of SERIALIZABLE), or SQLDATA, specifying the JDBC-defined interfaq
sQF, SQLDat a. See Subclause 9.3, “<user-defined type definition>".

Java

very other user-defined type, there is no requirement for-an/association with an underlying

tten

lifferent language (for example, one method could bé written in SQL and another wriften

11

ods of an external Java data type must be writtén in Java, (implicitly) have a paramg¢ter

rpe’s
een
ATE
the

ect

sen-
the

n an
htion,
n

[Z-

., specifying the Java-defined interface j ava. i 0. Seri al i zabl e (not to be confused with

e

— For every other user-defined type, there is no explicit support of static attributes. For external
Java data types, the <user-defined type definition> is allowed to include <static field method
spec>s that define observer methods against specified static attributes of the subject Java class.

The scope and persistence of any modifications to static attributes made during the execution of
a Java method is implementation-dependent.

© ISO/IEC 2002 — All rights reserved

Concepts 23

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

— For every other user-defined type, the implementation of every method that isn’t an SQL
routine exists externally to the SQL-environment. For external Java data types, the imple-
mentation of the methods is provided by a specified subject Java class that exists within the
SQL-environment in an installed JAR.

— External Java data types may only be structured types, not distinct types.

— Support for the specification of overriding methods is not provided for methods that are external
Java routines.

NOTE 3 — Once an external Java data type has been created, its use in SQL statements executed by the
containing SQL-implementation is similar to that of other user-defined types.

| Replace th paragraph | A user-defined type is described by a user-defined type descriptor.. A usgr-
defined tlype descriptor includes:

— The hame of the user-defined type (<user-defined type name>). This is the type designator of
that ftype, used in type precedence lists (see Subclause 9.5, "Type precedence\list determinjia-
tion"} in ISO/IEC 9075-2).

— An ifdication of whether the user-defined type is ordered.
— The ¢rdering form for the user-defined type (EQUALS, FULL, or-NONE).
— The ¢rdering category for the user-defined type (RELATIVE; \COMPARABLE, MAP, or STATE).

— A <specific routine designator> identifying the ordering function, depending on the ordering
category.

— If th¢ user-defined type is a direct subtype of another user-defined type, then the name of that
user-defined type.

— An ifdication of whether the user-defined type is instantiable or not instantiable.
— An ifdication of whether the user-defined type is final or not final.

— The transform descriptor of the ser-defined type.

— If th¢ user-defined type is a structured type, then:

o ether the referencing type of the structured type has a user-defined representation] a
derived representation, or a system-defined representation.

e If user-defined representation is specified, then the type descriptor of the representati¢n
type of thereferencing type of the structured type; otherwise, if derived representation] is

»

NO 4/~ “user-defined representation”, “deri tion
of a reference—type—aredefinedinSubelatse

— An indication of whether the user-defined type is an external Java data type.

| Insert following the 8th paragraph | If the user-defined type is an external Java data type, then the
user-defined type descriptor also includes:

— The <jar and class name> of the user-defined type.

— The <interface specification> of SERIALIZABLE or SQLDATA.

24 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

— The attribute descriptor of every originally-defined attribute and every inherited attribute of the

user-defined type.

— If <method specification list> is specified, then, for each <method specification> contained in

<method specification list>, a method spec descriptor that includes:
e The <method name>.
e The <specific method name>.

e The <SQL parameter declaration list>.

he <returns data type>, and indication of SELF AS RESULT.

he <result cast from type>, if any.

specified, its signature.
indication of whether STATIC or CONSTRUCTOR is specified.

If STATIC is specified, then an indication of whether this is a-static field method.

e If this is a static field method, then the <Java field name>\of the static field and the <

cJlass name> of the class that declares that static field.

n indication of whether the method is deterministic)

ossibly contains SQL, or does not possibly contain SQL.

lue, in which case the value of theanethod is the null value.

If the uspr-defined type is not an external Java data type, then the user-defined type descripto

includes

— An ifpdication of whether the user-defined type is a structured type or a distinct type.

— If th¢ representation is a-predefined data type, then the descriptor of that type; otherwise,
attribute descriptor ofievery originally-defined attribute and every inherited attribute of tl

user{defined type.

— If th¢ <method §pecification list> is specified, then, for each <method specification> contain

<method specification list>, a method specification descriptor that includes:

hé <method name>.

he package, class, and name of the Java routine corresponding to this method and, if

n indication of whether the method possibly writes SQL data, possibly reads SQL dal

n indication of whether the method should not be invoked if any argument is the null

Java

ta,

r also

the
he

ed in

e The <specific method name>.

e The <SQL parameter declaration list> augmented to include the implicit first parameter

with parameter name SELF.
e The <language name>.
e [If the <language name> is not SQL, then the <parameter style>.

e The <returns data type>.

© ISO/IEC 2002 - All rights reserved Concepts 25

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

e The <result cast from type>, if any.

e An indication as to whether the <method specification> is an <original method specification>
or an <overriding method specification>.

e If the <method specification> is an <original method specification>, then an indication of
whether STATIC or CONSTRUCTOR is specified.

e An indication whether the method is deterministic.

e An indication whether the method possibly writes SQL data, possibly reads SQL data
possibly contains SQL, or does not possibly contain SQL.

¢ An indication whether the method should not be invoked if any argument is the~null vilue,
h which case the value of the method is the null value.

[

NOTE 5[The characteristics of an <overriding method specification> other than the <method name>,[<SQL
parametel declaration list>, and <returns data type> are the same as the characteristics for the correspgnding
<original method specification>.

4.8.1 User-defined type comparison and assignment

| Replace pth paragraph | Let comparison function of a user-defined type T, be the ordering function
included|in the user-defined type descriptor of the comparison type of T, if any.

| Replace pth paragraph | Two values V1 and V2 whose most, specific types are user-defined types [I']
and T2 4re comparable if and only if 71 and 72 are in.the same subtype family and each have
some corhparison type CT1 and CT2, respectively. CITIyand CT2 constrain the comparison forms
and comparison categories of 71 and T2 to be the same and to be the same as those of all thdir
supertypes. If the comparison category is COMPARABLE, then no comparison functions shal
be speciffed for T'1 and 72. If the comparison eategory is either STATE or RELATIVE, then the
comparidon functions of 77 and T2 are constrained to be equivalent. If the comparison categoty is
MAP, th¢y are not constrained to be equivalent.

4.8.2 Accessing static fields

The fields of a Java class can‘he defined to be either static or non-static. Static fields of a Javal class
can addifionally be specified to be final, which makes them read-only. In Java, non-final fields are
allowed to be updated.

SQL’s <yser-defined)type definition> does not include a facility for specifying attributes to be
STATIC.|This is,(in‘part, because of the difficulty in specifying the scope, persistence, and trans-
actional properties of static attributes in a database environment. An external Java data typ¢’s
<user-defined.type definition> does, however, provide a mechanism for read-only access to the [val-
ues of Jgva static fields. The <static field method spec> clause defines a method name for a me¢thod
with no parameters; its <external variable name clause> specifies the name of a static field of the
subject Java class or a superclass of the subject Java class. A static field method is invoked in

the normal manner for STATIC methods and returns the value of the specified Java static field.
Whether final or non-final, SQL provides no mechanism for updating the values of Java static fields.

26 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

4.8.3 Converting objects between SQL and Java

While application programmers or end users manipulating Java objects in the database through
SQL statements need not be aware of the specific mechanism used to achieve that conversion,

the developer of the Java class itself needs to prepare for it in the form of implementing special
Java interfaces (i.e., java. i 0. Seri al i zabl e or j ava. sql . SQLDat a). <user-defined type definition>
introduces a clause for specifying the interface for converting object state information between the
SQL database and Java in the scope of SQL statements. As mentioned above, a conversion from
SQL to Java can potentially take place when an object that has been persistently stored in the
SQL database is accessed from inside an SQI statement to retrieve attribute (or field) values, or to
invoke a|method on the object, or when the object is used as an input argument in the invoeation of
a method. A conversion in the opposite direction, from Java to SQL, may be required when a newly
created dr modified object, or an object that is the return value of a method invocation,meeds to be
persistenjtly stored in the database.

This Int¢rnational Standard supports these options to specify object state converSion in the <egkter-
nal Javal|type clause>:

— If th¢ <user-defined type definition> specifies an <interface specification» of SERIALIZABLE,
then|the Java interface j ava. i 0. Seri al i zabl e is used for object state/conversion.

— If th¢ <user-defined type definition> specifies an <interface specification> of SQLDATA, thqn the
Javalinterface j ava. sql . SQLDat a defined in JDBC 2.0 is used_for object state conversion.

— If th¢ <user-defined type definition> does not specify am%interface specification>, then it 1s
impl¢mentation-defined whether the Java interface javali o. Seri al i zabl e or the Java int¢rface
j aval sql . SQLDat a will be used for object state conversion.

4.8.3.1 | SERIALIZABLE

If the <ifpterface specification> of a <user-defined type definition> specifies SERIALIZABLE, then
object stite communication is based on the Java interface j ava. i o. Seri al i zabl e. The Java class
referencdd in the <external Java class clause> of the <user-defined type definition> must specjfy

“i npl engnt s j ava. i o. Seri al i zabl:'eZyand must provide a niladic constructor.

In this cpse, the SQL object state-that is stored persistently and made available to methods of| the
SQL type¢ is defined entirely by the Java serialized object state. The attributes defined for the|SQL
type mugt correspond to public fields of the corresponding Java class, which must be listed in [the
<externdll Java attribute_dlause> of each attribute. Consequently, the SQL attributes define adcess
to those portions of the‘object state that are intended to become visible inside SQL statements{ but
might ndt comprisécthe complete state of the object (which may include additional fields in the|Java
class).

4.8.3.2 LSQLDATA

If the <interface specification> of a <user-defined type definition> specifies SQLDATA, then object
state communication is based on the Java interface j ava. sql . SQLDat a defined in JDBC 2.0. The
Java class referenced in the <external Java class clause> of the <user-defined type definition> must
specify “i npl ement s j ava. sql . SQLDat a” and must provide a niladic constructor.

© ISO/IEC 2002 - All rights reserved Concepts 27

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

In this case, only the attributes defined in the statement comprise the complete state of the SQL
object type. Additional public or private attributes defined in the Java class do not become part
of the object state defined by this part of ISO/IEC 9075. The Java object representation may be
entirely different from the SQL object attributes, if desired. For example, an SQL Point type may
define a geometric point in terms of cartesian coordinates, while the corresponding Java class
defines it using polar coordinates. The only requirement to be met by the implementor of the Java
class is that the implementations of the j ava. sql . SQLDat a methods readSQ. and writ eSQ. read
and write the attributes in the same order in which they are defined in the <user-defined type
definition>.

To lmpr Zo I‘\nrfahﬂify’ it is Pnecﬂﬂp to also cpnm'f'y <eoxternal Java attribute clause>s for QQT
attributds, even if an <interface specification> of SQLDATA is specified. However, the <extérral
Java atttibute clause>s are ignored in this case, because they are not needed for implenrenting
attributd access in SQL or for converting objects between SQL and Java.

4.8.3.3 | Developing for portability

The following guidelines provide maximum portability of Java classes acrgss different implemen-
tations of this part of ISO/IEC 9075 that may not support both the SERIALIZABLE and the
SQLDATIA options:

— The Java class used for implementing the SQL type should implement both j ava. i o. Seri ali zabl e
and jlava. sql . SQLDat a.

— The Java class should define the complete object stateythat needs to become persistent or Ras to
be pileserved across invocations as public Java fields.

— The EXTERNAL NAMEs of the SQL attributes-should be specified.

The <intprface using clause> should be omitted in the <user-defined type definition>, so that in
implemehtation that does not support both.iatérfaces can default to the interface that it suppolrts.

4.9 Built-in procedures

This part of ISO/IEC 9075 differs-slightly from other parts of ISO/IEC 9075 in its treatment ¢f
the schema object introduced\to install the external Java routines and external Java data typgs
in an SQL-environment —¢ that is, in its treatment of JARs. Rather than define new SQL-sch¢ma
statemenjts that (for example) add or drop JARs using optional clauses to cause execution of tIeir
containefl deployment.déscriptors, this International Standard introduces a set of four built-i

procedures and a.1niew schema in which those procedures are defined.

The new|schema>— named SQLJ — is, like the schema named INFORMATION_SCHEMA, defined
to exist in alkcatalogs of an SQL system that implements this part of ISO/IEC 9075, and to coptain
all of thd built-in procedures defined in this part of ISO/IEC 9075.

Built-in procedures defined in this part of ISO/IEC 9075 are:

— SQ.J. I NSTALL_JAR — to load a set of Java classes in an SQL system.
— SQ.J. REPLACE_JAR — to supersede a set of Java classes in an SQL system.
— SQ.J. REMOVE_JAR — to delete a previously installed set of Java classes.

— SQLJ. ALTER JAVA PATH — to specify a path for name resolution within Java classes.

28 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.10 Privileges

4.10 Privileges

| Replace

1st paragraph | A privilege authorizes a given category of <action> to be performed on a

specified

base table, view, column, domain, character set, collation, transliteration, user-defined

type, trigger, SQL-invoked routine, or JAR by a specified <authorization identifier>.

| Replace 2nd paragraph, 1st bullet |

— The identification of the base table, view, column, domain, character set, collation, translitera-

tion,

user-defined type, table/method pair, trigger, SQL-invoked routine module, or JAR that the

descy

iptor describes.

[Replace

Bth paragraph | A privilege descriptor with an <action> of USAGE is called a usage privilege

descriptd
collation

r and identifies the existence of a privilege on the domain, user-defined type{ieharacter set,
transliteration, or JAR identified by the privilege descriptor.

[Insert aff

er 8th paragraph | The privileges for facilities defined in this part of ISQAEC 9075 are g

n

follows:

— The |
proce
NOT

— Only]
owng

— Invo
Java

— Invo
privi
It is
“defiy
user

4.11

A JAR is
ment des
external

JARs arg
SQLJ. | N

brivileges required to invoke the SQLJ. | NSTALL_JAR, SQ.J. REPLAGE: JAR, and SQLJ. REMPVE_JAR
dures are implementation-defined.

[. 6 — This is similar to the implementation-defined privileges«réquired for creating a schema

the owner of the JAR is permitted to invoke the SQJ.'ALTER JAVA PATH procedure and the
r must also have the USAGE privilege on each JAR\referenced in the path argument.

ations of <SQL-invoked routine> and <drop routine statement> to define and drop external
routines are governed by the normal Access‘Rules for SQL-schema statements.

ations of Java methods referenced by SQL names are governed by the normal EXECUTE
ege on SQL routine names.

implementation-defined whether a\Java method called by an SQL name executes with
ner’s rights” or “invoker’s rights?— that is, whether it executes with the user-name of the
who performed the <SQL-invoked routine> or the user-name of the current user.

JARSs

a zip-formatted-file containing a set of Java cl ass and ser files and optionally a deploy-
criptor file; \Installed JARs provide the implementation of external Java routines ang
Java data types to an SQL-environment.

created outside the SQL-environment. They are copied into the SQL-environment by the
bTALL”JAR procedure. No subsequent SQL statement or procedure modifies an installgd

JAR in a
to alter i

N\ othor than to remeve om-the SOL -envirenmen oronlace . entirely, or

ts SQL-Java path. In particular, no SQL operation adds classes to a JAR, removes classes

from a JAR, or replaces classes in a JAR. The reason for this “no modification” principle for installed
JAR is that JARs are often signed, and often contain manifest data that might be invalidated by
modification of JARs by the SQL-environment.

Each installed JAR is represented by a JAR descriptor. A JAR descriptor contains:

— The catalog name, schema name, and JAR identifier of the JAR.

© ISO/IEC 2002 - All rights reserved Concepts 29

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.11 JARs

— The SQL-Java path of the JAR.

4.11.1 Deployment descriptor files

When a JAR is installed, one or more <SQL-invoked routine>s that define external Java routines
must be executed before the static methods of its contained Java classes can be used as SQL-
invoked routines, and one or more <user-defined type definition>s must be executed before its
contained classes can be used as user-defined types. In addition, <grant privilege statement>s
may be required to define privileges for newly created SQL-invoked routines and user-defined
types. Lpter—whenradAR-tsremoved;—corresponding—~<drop—routine—statement>s;—~<drop-data—type

statement>s, and <revoke statement>s must be executed.

If a JAR|is to be installed in several SQL implementations, the <SQL-invoked routine»s,<us¢r-
defined tlype definition>s, <user-defined ordering definition>s, <grant privilege statement>s, <Irop
routine dtatement>s, <drop data type statement>s, <drop user-defined ordering statement>s, gnd
<revoke gtatement>s will often be the same for each implementation. To assist’thé automation
of repeatled installations, deployment descriptor files contain the variants of SQL-schema statg-
ments d¢fined in this part of ISO/IEC 9075. These statements are grouped into multi-statemgnt
install a¢tions and remove actions respectively executed by SQLJ. | NSTALL/JAR and SQLJ. REMOVE_JAR
procedures when deployment is requested. In addition, an implementation-defined implementor
block is provided to allow specification of custom install and remove.actions. Since the SQL-schema
statemenjts refer to their containing JAR in the <SQL-invoked routine>s and <user-defined type
definitiop>s, within a deployment descriptor file, the JAR namé. it hi sj ar” is used as a place hplder
JAR nanpe for the containing JAR.

This parf of ISO/IEC 9075 provides a new mechanism.to‘execute its variants of SQL-schema
statemenjts, namely by requesting deployment during ‘invocation of SQLJ. | NSTALL_JAR and

SQLJ. REVOVE_JAR procedures. A conforming SQL-implementation is required to support either
deploymé¢nt descriptor based execution of its SQIfschema statements (Feature J531, “Deploymlent”)
or anothpr standard statement execution mechanism such as direct invocation or embedded SQL

(Feature|d511, “Commands”); a conforming.SQL-implementation is not required to support both
mechani$ms.

30 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

5 Lexical elements

5.1 <token> and <separator>

Function

ISO/IEC 9075-13:2002 (E)

Specify lpxical units (tokens and separators) that participate in SQL language.

Formalt

<non-regerved word> ::=
'l Al alternatives fromlSQ | EC9075-2

|| COVPARABLE
|| | NTERFACE

|| JAVA

SQLDATA

<reservgd word> ::=
' Al alternatives fromlSQO | EC9075-2

| 3AR
Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformrance Rules

No additional Conformance Rules.

© ISO/IEC 2002 — All rights reserved

Lexical elements 31

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
5.2 Names and identifiers

5.2 Names and identifiers

Function
Specify names.

Format

<jar nare> ::=
[| <schema nane> <period>] <jar id>

<jar idy ::= <identifier>

<Java cllass name> ::=
[| <packages> <period>] <class identifier>

<jar and class nane> ::=
< ar id> <col on> <Java cl ass nane>

<qualifiled Java field name> ::=
[| <Java cl ass nane> <period>] <Java field nane>

<packaggs> ::=
Jpackage identifier> [<period> <package ideftifier>1]...

<package identifier> ::= <Java identifier>
<cl ass ildentifier> ::= <Java identifier>
<Java filel d name> ::= <Java identifier>
<Java nmgt hod nanme> ::= <Java i dentifier>
<Java identifier> ::= 1! Seethe Syntax Rul es

Syntax Rules

1) [Insef this SR | <Java identifier> shall be a valid identifier according to the rules of Java paysing
and Jexical analysis.

NOTE 7 — The)tules of Java parsing and lexical analysis are specified in The Java Language Spedifica-
tion, Becond-Fdition.

2) | Inset this/SR | The character set supported, and the maximum lengths of the <package ide1|1-
tifier>, <class identifier>, <Java field name>, and <Java method name> are implementation-
defined.

3) [Insert after SR14) | Two <jar name>s are equivalent if and only if they have equivalent <jar id>s
and equivalent implicit or explicit <schema name>s.

32 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
5.2 Names and identifiers

Access Rules

No additional Access Rules.

General Rules

1) A <jar name> identifies a JAR.

2) A <jar id> represents an unqualified JAR name.
3) [Inseff this GR JA <Java class name> identifies a Tully qualified Java class.

4) [Inset this GR | A <packages> identifies a fully qualified Java package.

5) [Inset this GR | A <package identifier> represents an unqualified Java package name!
6) [Inset this GR | A <class identifier> represents an unqualified Java class namé!

7) [Inset this GR | A <Java field name> represents the name of a field withjn aJava class.

8) [Inset this GR | A <Java method name> represents the name of a method within a Java clasg.

Conformance Rules

Z

o aflditional Conformance Rules.

© ISO/IEC 2002 — All rights reserved Lexical elements 33

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

34 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

6 Scalar expressions

6.1 <method invocation>

Function

Reference an SQL-invoked method of a user-defined type value.

Formalt

No addi tj onal Format itens.

Syntax Rules

1) [Inseft after SR2) | If UDT is an external Java data type, then <method invocation> shall immedi-
ately| contain <direct invocation>.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

No aflditional Conformance Rules.

© ISO/IEC 2002 — All rights reserved Scalar expressions 35

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
6.2 <new specification>

6.2 <new specification>

Function
Invoke a method on a newly-constructed value of a structured type.

Format

No addi ti onal Format itens.

Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

1) [Inseft after CR1) | Without Feature J571, “NEW operator”, the schema identified by the implicit or
explifit <schema name> of <routine name> RN immediately contained in <routine invocatjon>
immediately contained in <new specification> shall not contain a user-defined type whose fiser-
definkd type name is RN that is an external Java data type. If Feature J571, “NEW operaftor”,
is not supported, then the mechanism,used to invoke a constructor of an external Java datq type
is imjplementation-defined.

36 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

7 Pr

ISO/IEC 9075-13:2002

edicates

7.1 <comparison predicate>

Function

Specify 4 comparison of two row values.

Formalt

No addi tj onal Format itens.

Syntax Rules

NOTIE 8 — [Replace Note 126 | The comparison form and comparison-cateégories included in the us¢r-
defingd type descriptors of both UDTIand UDT2 are constrained to he’the same — they must be the
same|throughout a type family. If the comparison category is CQMPARABLE, then no comparison|
functjons shall be specified for 77 and 72; if the comparison category is either STATE or RELATIV
the comparison functions of UDT1 and UDTZ2 are constrained to be equivalent; if the comparikon
categpry is MAP, they are not constrained to be equivalent:

then

NOTIE 9 — [Replace Note 127 | If the comparison foff is FULL, then the comparison category is c
strainjed to be COMPARABLE, RELATIVE, or MAP; if the comparison form is EQUALS, then the
compfrison category is also permitted to be STATE.

Accesq Rules

No aflditional Access Rules.

General Rules

1) | Ingert after GR 1)bjiiijand its subrules | If the comparison category of UDT, is COMPARABLIJ

then

a)

b)

c)

© ISO/IEC 2002 — All rights reserved

The subject SQL data type must be an external Java data type. Let JC be the subject
class of'‘that external Java data type.

(E)

E:

n-

Java

JC

NOPE 10 — Syntax Rules in Subclause 9.10, “<user-defined ordering definition>”, require that

iv\v\]r\mr\v\+ tha JTaova tndanfonn 1 avag | ane Camnar ol o Mo ddaefoonn | ava | ana Coanmnar ahl
o avVar €Tty g— oo Pt =< BEe—T oot g oo oot

e

HpremehRtT—+te Hieei & T CFT

c

requires an implementing Java class to have a method named conpar eTo, whose result data type is

Java int.

Let XJV be the value of X in the associated JVM. Let YJV be the value of Y in that as
ated JVM.

X=Y

soci-

Predicates 37

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
7.1 <comparison predicate>

has the same result as if the JVM executed the Java boolean expression
XJV. compar eTo(YJV) ==

d) X<vY
has the same result as if the JVM executed the Java boolean expression

XJV. compareTo(YJV) <0

e) X<>Y

¢)]
HH
&
P
o

M _oxeerted-theJaxza boolean-oxprescsion
! tea—te-oavV-a-Beereahi-expression

XJV. compareTo(YJV) =0

) X>Y

=

as the same result as if the JVM executed the Java boolean expression

XJV. conmpareTo(YJV) >0

=

g A<=Y
Has the same result as if the JVM executed the Java boolean expression

XJV. compareTo(YJV) <=0

h)

>

>=Y
Has the same result as if the JVM executed the Jaya’boolean expression

XJV. compareTo(YJV) >=0

Conformance Rules

No aflditional Conformance Rules.

38 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

8 Additional common elements

8.1 <dJava parameter declaration list>

Function

Specify the Java types of parameters for a Java method.

Form

<Java pgraneter declaration list> ::=
q eft paren> [<Java paraneters>] <right paren>

<Java pgranmeters> ::=
<Java data type> [{ <comma> <Java data type> }...]

<Java dgta type> ::=1!! See the Syntax Rul es

Syntax Rules

1) A <Jpva data type> is a Java data type that is mappable or result set mappable, as specified in
Subclause 4.5, “Parameter mapping”. The <Java, data type> names are case sensitive, and|shall
be fullly qualified with their package names, if any.

Accesq Rules

Nond.

General Rules

Nond.

Conformance Rules

Nond.

© ISO/IEC 2002 — All rights reserved Additional common elements 39

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.2 <SQL Java path>

8.2 <SQL Java path>

Function
Control the resolution of Java classes across installed JARs.

Format

<SQL Java path> ::= [<path elenment>...]

<path ellement> ::=
q eft paren> <referenced cl ass> <conma> <resol ution jar> <right paren>

<referenfced class> ::=
[<packages> <period>] <asterisk>
[<packages> <period>] <class identifier>

<resol utfion jar> ::= <jar nanme>

Syntax Rules

Nond.

Accesq Rules

Nond.

General Rules

1) When a Java class CJ in a JAR J is executed in an SQL-implementation, let P be the <SQL
Java|path> associated with J by ancinvocation of the SQLJ. ALTER JAVA PATH procedure.

2) Everf static or dynamic reference in CoJ to a class with the name CN that is not a system flass
and is not contained in ¢/ is resolved as follows.

For gach <path element>PFE (if any) in P, in the order in which they were specified:

a) Ilet RC and RJ be the <referenced class> and <resolution jar>, respectively, contained|in
RE. Let JR be-the JAR referenced by R.J.
b) If RJ issnot the name of an installed JAR, then an exception condition is raised: Jauvd

cecution — invalid JAR name in path.

[OTE 11 — This exception can only occur if the implementation-defined action taken for an

9 AL TECO T ANIA DATLL Htle i - 1 . h DI 1 . K h | .
JOALTEIR,_ JAVA _TFATITUALL tilal [alstUu dll TACTPUIULL TTSUILS 11 1TaVillg 111vdadllu 5jdl 11alllt~>5 n

the SQL-J ava path.

=2 o =

¢) If RC is equivalent to CN, then:
i) If CN is the name of some class C in JR, then CN resolves to class C.

ii) If CN is not the name of a class in JR, then an exception condition is raised: Java
execution — unresolved class name.

40 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.2 <SQL Java path>

d) If RC simply contains <asterisk>and simply contains <packages>, then let PKG be the
specified <packages> and let CI be the <class identifier> of CN. If the <Java class name> of
CN is PKG.CI, then:

i) If CN is the name of a class C in JR, then CN resolves to class C.

ii) If CN is not the name of a class in JR, then an exception condition is raised: Java
execution — unresolved class name.

e) If RC simply contains <asterisk> and does not simply contain <packages>, then:

1) If CN is the name of a class C in JR, then CN resolves to class C.

i) If CN is not the name of a class in RJ, then CN is not resolved by the <path,elemdgnt>
being considered and the next <path element> in P is considered.

3) If CK is not resolved after all <path element>s in P have been considered, tHen an exception
condition is raised: Java execution — unresolved class name.

Conformance Rules

1) Withput Feature J601, “SQL-Java paths”, conforming SQL language shall not contain an 4SQL
Java|path>.

© ISO/IEC 2002 — All rights reserved Additional common elements 41

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

8.3 <routine invocation>

Function
Invoke an SQL-invoked routine.

Format

No addi ti onal Format itens.

Syntax Rules

1) [Inseft before SR9) | If SR is an external Java routine, then:

a) No <SQL argument> immediately contained in <SQL argument list> shallVimmediately
cpntain <generalized expression>.

b) If validation of the <Java parameter declaration list> has been implementation-defined|to be
erformed by <routine invocation>, then the Syntax Rules of Subclause 8.5, “Java routine
ignature determination”, are applied with <routine invocation>, a method specificatio

ndex of 0 (zero), and subject routine SR.

kil Ms @ Bl e
=}

Accesq Rules

No aflditional Access Rules.

General Rules

1) [Inseft after GR3)a) | If R is an external Java routine, then let CPV; be an implementation-defined
non-hull value of declared type T;.

2) | Inseft before GR5) | If R is an extermal Java routine that is not a static field method, then le{ P be
the subject Java method of R.

NOTIE 12 — The subject Java ‘method of an external Java routine is defined in Subclause 8.5, “Jala
routie signature determindtion”.

3) | Replace the first paragraph’of GR5) | If R is an external routine that is not an external Java
routipe, then:

4) [Rdplace the firsbparagraph of GR6)c)i) | If R is not a static field method, then:

5) [Inseft beforg'GR9)d) | If R specifies PARAMETER STYLE JAVA, then for i ranging from 1 (ome) to
PN, let the effective SQL parameter list ESPL of R be the list of values CPV; in order.

6) | Replace the first paragraph of GRI)0ii)1) | If R is not an external Java routine and R is not an
array-returning external function, then P is executed with a list of EN parameters PD; whose
parameter names are PN; and whose values are set as follows:

7) | Insert before GROiii)2) | If R is an external Java routine, then P is executed in a manner deter-
mined as follows and with a list of parameters PD; whose values are set as follows:

a) Let SRD be routine descriptor of R.

42 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

b) If SRD indicates that R is an SQL-invoked method, then let SRUDT be the user-defined
type whose descriptor contains SR’s corresponding method specification descriptor MSD and
let JCLSN be the subject Java class of SRUDT.

c¢) Case:

1) If SRD indicates that R is an SQL-invoked method and MSD indicates that R is a static

field method, then:

1) Let JSF be the subject static field of R.
1.3 e—subject-staticfeold’ of an-SQl-invoked-method-is—definedin-Subelay se 8.5,
“Java routine signature determination”.

NO

3) Case:

Case:

a)

b)

a)

2) Let ERT be the effective returns data type of R.

NOTE 14 — “effective returns data type” is defined in the Syntax Rules of.Subclause [10.4,
"<routine invocation>", in ISO/IEC 9075-2.

A) If ERT is a user-defined type, then

1) If UIS is SERIALIZABLE, then:

2) If UIS is SQLDATA, then:

I) Let SJCE be the most specific Java class of the)value of JSF, and let STU
be the user-defined type whose subject Java class is SJCE and whose ufser-
defined type is ERT or is a subclass of ERT.

II) Let UIS be the <interface specification> specified by the user-defined type
descriptor of STU.

The subject dava class SJCE’s wri t eQbj ect () method is executpd to
convert the Java value of JSF to the SQL value SSFV of user-d¢fined
type STU.

Thentethod of execution of the subject Java class’s implementation
of'writeQbj ect () is implementation-defined.

NOTE 15 — If UIS is SERIALIZABLE, then, as described in Subclauge 9.3,
“<user-defined type definition>”, the descriptor’s subject Java class im|-
plements the Java interface j ava.i 0. Seri al i zabl e and defines thqt
interface’s wri t eCbj ect () method as described by the Java 2 Platfolm,
Standard Edition, v1.2.2, API Specification.

The subject Java class SJCE’s method writeSQ.() is executed fo

b)

© ISO/IEC 2002 — All rights reserved

convert the Java value of JSF to the SQL value SSFV of user-defined
type STU.

The method of execution of the subject Java class’s implementation
of witeSQL() is implementation-defined.

NOTE 16 — If UIS is SQLDATA, then, as described in Subclause 9.3,
“<user-defined type definition>”, the descriptor’s subject Java class imple-
ments the Java interface j ava. sql . SQLDat a and defines that interface’s
writeSQL() method as described by the Java 2 Platform, Standard Edi-
tion, v1.2.2, API Specification.

Additional common elements 43

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

B) Otherwise, the value of SSFV is set to the value of JSF.

4) Let the result of the <routine invocation> be the result of assigning SSFV to a target
of declared type ERT according to the rules of Subclause 9.2, "Store assignment", in
ISO/IEC 9075-2. No further General Rules of this Subclause are applied.

ii) Otherwise:

1) Let JPDL be an ordered list of the data types of the Java parameters declared for P
in the order they appear in P’s declaration.
NOTE 17 — If anv Java parametoris-declaredto beof an arravclass—then JPDL roflects
J r J b

that information.

2) If SRD indicates that R is an SQL-invoked method and MSD indicates that R |is
an instance method or a constructor method, then prefix JPDL with the subje
parameter as follows.

o+

Case:

A) If JPDL contains one or more Java data types, then prefix JPDL with JCLPN.

B) Otherwise, replace JPDL with JCLSN.
3) Let JP; be the i-th data type in JPDL.

4) For i ranging from 1 (one) to EN, if JP; is of\dn array class, then let JP; be the
component type of JP;.

NOTE 18 — The component type of a Javatarray is defined in The Java Language Spgcifi-
cation, Second Edition.

5) For i ranging from 1 (one) to ENsif ESP; is the SQL null value and if JP; is apy
of bool ean, byte, short, int, lLohg, fl oat, or doubl e, then an exception conditi¢n is
raised: external routine invoeation exception — null value not allowed.

6) For iranging from 1 (orie)'to EN,

Case:

A) If the value’of ESP; is a user-defined type, then let the most specific type of|[ESP;
be U, 1et3UIS be the <interface specification> specified by the user-defined {ype
descripter of U, and let SJCU be the subject Java class of U.

Case:
I) If UIS is SERIALIZABLE, then:

1) The subject Java class SJCU’s method r eadbj ect () is executed t
convert the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class’s implementation of
readbj ect () is implementation-defined.

NOTE 19 — If UIS is SERIALIZABLE, then, as described in Subclause 9.3, “<user-

defined type definition>”, the subject Java class of U implements the Java interface

java.io. Serializabl e and defines that interface’s r eadObj ect () method as
described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

44 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

II) If UIS is SQLDATA, then:

1) The subject Java class SJCU’s method readSQL() is executed to convert
the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class’s implementation of
readSQ.() is implementation-defined.
NOTE 20 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-

defined type definition>”, the subject Java class of U implements the Java interface

j ava. sql . SQLDat a and defines that interface’s readSQ.() method as described by
the Jauva 2 p]nffnrm Standard prh‘h’nn’ ul2 ‘)’ ADPL onnfﬁnnf{nn

B) Otherwise, the value of PD;, of the Java data type JP;, is set to the value pf
ESP;.

7) For i ranging from 1 (one) to EN, if P; is an output SQL parameter or~both an input
SQL parameter and an output SQL parameter, then:

A) Let PAD; be a Java array of length 1 (one) and data typedJP; initialized aj
specified in The Java Language Specification, Second/Edition.

NOTE 21 — PAD; is a Java object effectively created by\éxecution of the Java expres-
sion new JP;[1].

B) If P; is both an input SQL parameter and anjoutput SQL parameter, then
PAD;[0] is set to PD;.

C) PD; is replaced by PAD,;.
8) Let JPEN be the number of Java data.types in JPDL.

9) IfJPEN is greater than EN, then-prepare the Java parameters for the DYNAMIC
RESULT SET parameters as follows.

For i ranging from EN+1 to/PEN:

A) Let PAD; be a Java-array of length 1 (one) and data type JP; initialized aj
specified in The-Java Language Specification, Second Edition.

NOTE 22 —-PAD; is a Java object effectively created by execution of the Java expres-
sion new <«/Py[1].

B) The tyalue of PD; is set to the value of PAD,;.

10) LetJCLSN, JMN, and ERT be respectively the subject Java class name, the sybject
Java method name, and the effective returns data type of R. The subject Javal
method of the subject Java class is invoked as follows.

Case:

A) If R is an SQL-invoked procedure, then:

I) IfJPEN is greater than 0 (zero), then the following Java statement is effec-
tively executed:

JCLSN. JMWN (PDy, ..., PDypEN) ;

© ISO/IEC 2002 — All rights reserved Additional common elements 45

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

II) If JPEN equals 0 (zero), then the following Java statement is effectively
executed:

JCLSN.JMN () ;

B) If R is an SQL-invoked method whose routine descriptor specifies STATIC or R
is an SQL-invoked regular function, then:

I) If ERT is a user-defined type, then let SJCE and SJCEN be the subject Java
class and the subject Java class name of ERT, respectively.

T If ERT is ot a user-defined type, then 1et SJCEINV be the Java returns gata
type of the subject Java method.

III) If JPEN is greater than O (zero), then the following Java statement is dffec-
tively executed:

SJCENtenmpU = JCLSN. IMN(PDy, ..., PDJpPEN) ;

IV) If JPEN equals O (zero), then the following Java statement is effectively
executed:

SJCENtenmpU=JCLSN. IMN() ;
C) IfR is an SQL-invoked constructor method, then:

I) IfJPEN is greater than 1 (one), then the following Java statement is effec-
tively executed:

JCLSN PD; = newJCLSN (RDy»". .., PDypEN)

II) If JPEN equals 1 (one), thef’the following Java statement is effectively
executed:

JCLSN PD; = newJELSN () ;
D) Otherwise:

I) If ERT is,a“user-defined type, then let SJCE and SJCEN be the subject| Java
class and the subject Java class name of ERT, respectively.

II) If ERT is not a user-defined type, then let SJCEN be the Java returns fata
type of the subject Java method.

WD)NIf JPEN is greater than 1 (one), then the following Java statement is effec-
tively executed:

SICENtenpU=PD; . JW(PDy, ..., PDjpEN) ;

BO_If JDEN caiale 1 (ona) than +ha folloung JTava cdatoraant 1o offaataualyy
TV — o oy eqH eSOt the e oo vVAR S o avaStateine Rt IS eeetver)

executed:

SICENtenpU=PD; . JMWN() ;
NOTE 23 — The Java method effectively executed by either the Java statement
SICENtenpU=PD; . JW(PD;, ..., PDjpgn) ; or the Java statement SICEN
tenpU=PD; . JW () ; is determined based on the value of PD; according to
Java’s rules for overriding by instance methods, as specified in The Java Language
Specification, Second Edition.

46 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

8)

9)

10)

11)

12)

© ISO/IEC 2002 — All rights reserved

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

[Insert before GR9)NiiN4) | If R is an external Java routine, then the scope and persistence of

any modifications of class variables made before the completion of any execution of P is
implementation-dependent.

[Replace GR9)Nii)7) | If the language specifies ADA (respectively C, COBOL, FORTRAN, JAVA,

MUMPS, PASCAL, PLI) and P is not a standard-conforming Ada program (respectively C,
COBOL, Fortran, Java, MUMPS, Pascal, PL/I program), then the results of any execution of P
are implementation-dependent.

[Insert after GR9)Nii)7) | If R is an external Java routine and the execution of P completes with an

bkt T +3

unca
“Clas
Subc

I 4+l 4 pu B Tra—aiaad —t - P 1 o
peht-Java-exeeptionFthenanexecption—eonditionis-raised-as-speetfiedinSubelause
s and subclass values for uncaught Java exceptions”, and no further General Rules of
Jause are applied.

[R4

place the first paragraph of GR9)g)i) | If R is not an external Java routine, then fori varyi

from

1 (one) to EN, the value of ESP; is set to the value of PD;.

[Insd

let E]
folloy

a) (

]

t after GR9)h))3) | If R is an external Java routine that is not a type-preserving function
RT be the effective returns data type of R. The returned value of P, tempU, is process
vs:

ase:

) If ERT is a user-defined type, then:

1) Let SJCE be the most specific Java class of .the value of tempU, and let STU b
user-defined type whose subject Java class(is SJCE and whose user-defined tyy
ERT or is a subclass of ERT.

2) Let UIS be the <interface specification> specified by the user-defined type desci
of STU.

3) Case:
A) If UIS is SERIALIZABLE, then:

I) The subject,Java class SJCE’s method writ eQbj ect () is executed to co
the Java value of tempU to the SQL value SSFV of user-defined type S’

II) The method of execution of the subject Java class’s implementation of
wri/t eQbj ect () is implementation-defined.

NOTE 24 — If UIS is SERIALIZABLE, then, as described in Subclause 9.3, “<us

defined type definition>", the descriptor’s subject Java class implements the Java i

face j ava.i 0. Seri al i zabl e and defines that interface’s wri t eQbj ect () metho

described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

15.1,
this

then
bd as

b the
e is

"iptor

nhvert
I'U.

)r-
hter-
l as

B\ £ 171 1o SQLDAA‘TAA" fl\an:

T

I) The subject Java class SJCE’s method writeSQ.() is executed to convert the

Java value of tempU to the SQL value SSFV of user-defined type STU.

II) The method of execution of the subject Java class’s implementation of
witeSQ() is implementation-defined.

NOTE 25 — If UIS is SQLDATA, then as described in Subclause 9.3, “<user-defined
type definition>”, the descriptor’s subject Java class implements the Java interface

Additional common elements 47

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

ii

j ava. sql . SQLDat a and defines that interface’s wri t eSQL() method as described
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

) Otherwise, the value of SSFV is set to the value of tempU.

b) Let RV be SSFV.

by

13) [Insert after GR9)h))3) | If R is an external Java routine that is a type-preserving function, then

let ERT be the effective returns data type of R. The returned value of P, PD1, is processed as
follows:

a) I

n_Q

b)

i

c) 1

et SJCL be the most specific Java class of the value of PD{, and let STU be the use
efined type whose subject Java class is SJCE and whose user-defined type is ERT or
ubclass of ERT.

et UIS be the <interface specification> specified by the user-defined type descriptor of

ase:

) If UIS is SERIALIZABLE, then:

1) The subject Java class SJCE’s method wri t eQbj ect()_is executed to convert tl

Java value of PD; to the SQL value SSFV of user-defined type STU.

2) The method of execution of the subject Java class’s implementation of wri t eQbj ¢

is implementation-defined.
NOTE 26 — If UIS is SERIALIZABLE, then as.described in Subclause 9.3, “<user-defined|
definition>”, the descriptor’s subject Java classumiplements the Java interface j ava. i 0. Ser
and defines that interface’s wri t eQbj ect (), method as described by the Java 2 Platform,
Standard Edition, v1.2.2, API Specification:

If UIS is SQLDATA, then:

1) The subject Java class STJCE’s method writeSQL() is executed to convert the J

value of PD; to the SQL value SSFV of user-defined type STU.

2) The method of execution of the subject Java class’s implementation of wri t eSQL

implementatien-defined.
NOTE 27 — IfA/S"is SQLDATA, then as described in Subclause 9.3, “<user-defined type
nition>”, the descriptor’s subject Java class implements the Java interface j ava. sql . SQLQ
and defines‘that interface’s wri t eSQL() method as described by the Java 2 Platform, Star
Edition,®1:2.2, API Specification).

et RVibe SSFV.

14) [Inse

tafter GR))ii) | If R specifies PARAMETER STYLE JAVA, then each parameter that is ¢

is a

STU.

ne

bct ()

type
ializable

ava

() is

Hefi-
lat a
dard

bither

an o

n M aVahd + 1 +1 - M aVathd n h | 4 M aVat s +
LpUl oYL pParameilcr O DOLIL 4dIl HHIPUL Sl PAardlieter dild dll OULPUl S\L: Pardliieter

processed as follows:

a) Let P; be the i-th SQL parameter of R and let T; be the declared type of P;.

b) EPV; is set to the value of PD;[0].

48 SQL Routines and Types Using Java (SQL/JRT)

18

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

Case:
i) If T; is a user-defined type, then:

1) Let SJCE be the most specific Java class of the value of EPV;, and let STU be the
user-defined type whose subject Java class is SJCE and whose user-defined type is
T; or is a subclass of Tj.

2) Let UIS be the <interface specification> specified by the user-defined type descriptor
of STU.

Case:
A) If UIS is SERIALIZABLE, then:

I) The subject Java class SJCE’s method writ eQbj ect () is exeeuted to convert
the Java value of EPV; to the SQL value CPV; of the user<defined type STU.

II) The method of execution of the subject Java class’s implementation of
writeObj ect () is implementation-defined.

NOTE 28 — If UIS is SERIALIZABLE, then as described<in Subclause 9.3, “<usdr-

defined type definition>”, the descriptor’s subject Java lass implements the Java ipter-

face j ava. i 0. Seri al i zabl e and defines that interfa¢e’s wri t eCbj ect () method as
described by the Java 2 Platform, Standard Edition,~»v1.2.2, API Specification.

B) If UIS is SQLDATA, then:

I) The subject Java class SJCE’s method writeSQ.() is executed to convert the
Java value of EPV; to the SQL.value CPV; of user-defined type STU.

II) The method of execution,sf\the subject Java class’s implementation of
witeSQ() is implementation-defined.

NOTE 29 — If UIS is SQIIDATA, then as described in Subclause 9.3, “<user-defirjed

type definition>”, the descriptor’s subject Java class implements the Java interfacg

java. sql . SQLDat a and defines that interface’s wit eSQ.() method as described by

the Java 2 Platformy:-Standard Edition, v1.2.2, API Specification.

i) Otherwise, CPV; is set'to EPV;.

15) [Replace GR11)b) | If R is~not an external Java routine, then let OPN be the actual number pf
result set cursors de€lared in the body of the subject routine that remain open when contrgl is
retunned to INV,

16) [Inseft aiter GRINb) | If R is an external Java routine, then let RSN be a set containing the first
elempnt ofveach of the JPEN—EN arrays generated above for result set mappable parameters,
let RIS be.the elements of RSN that are not equal to the Java null value, and let OPN be the
number of elements in RS.

17) [Insert before GR11)d) | If R is an external Java routine, then:

a) If the JDBC connection object that created any element of RS is closed, then the effect is
implementation-defined.

b) If any element of RS is not an object returned by a connection to the current SQL system
and SQL session, then the effect is implementation-defined.

© ISO/IEC 2002 — All rights reserved Additional common elements 49

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

18) [Replace GR11)d) | If R is not an external Java routine, then let FRC be the ordered set of result

set cursors that remain open when PR returns to INV. Let FRC;, 1 (one) < i < RTN, be the i-th
cursor in FRC, let FRCN; be the <cursor name> that identifies FRC;, and let RS; be the result
set of FRC;.

19) [Insert after GR11)d) | If R is an external Java routine, then let FRC be a copy of the elements of

RS that remain open in the order that they were opened in SQL. Let FRC;, 1 (one) < i < RTN,
be the i-th cursor in FRC, let FRCN; be the <cursor name> that identifies FRC;, and let RCS;
be the result set of FRC;.

20) [Replpee

= oo

warn

ing — dynamic result sets returned.

21) | Inse

and

lose the statement object that created RS;.

22) | Inse

coun

s as defined in JDBC is implementation-defined.

Conformance Rules

1) [Inse

<refe

rence expression> or a <right arrow>.

t after GR11)h) | If R is an external Java routine, then for each result set RS; in RS, close RS;

It before GR12)h) | If R is an external Java routine, then whether the call/of-P returns update

this CR | Without Feature J611, “References”, conforming SQL-/language shall not contpin a

50 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.4 <language clause>

8.4 <language clause>

Function
Specify a standard programming language.

Format

<l anguage nane> ::=
!l All alternatives froml SO |EC9075-2
|| JAVA

Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.
General Rules
1) [Replpce GR 1) | With the exception of the language JAVAy whose standard is specified in THe
Java| Language Specification, Second Edition, the standard programming language specified

by tHe <language clause> is defined in the International Standard identified by the <langyage

namg¢> keyword. Table 17, "Standard programiding languages", in ISO/IEC 9075-2 specifies the
relatjonship.

Conformance Rules

No aflditional Conformance Rules;

© ISO/IEC 2002 — All rights reserved Additional common elements 51

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

8.5 Javaroutine signature determination

Function

Specify rules for how a Java method’s signature is determined if it is not explicitly specified, and
how it is validated, based either on information specified when creating an external Java routine or
external Java data type, or on contents of descriptors available when invoking an SQL routine.

Syntax Rules

1) Let NTXT, 1, and SK respectively be the syntactic element, the method specilication indey, and
the gubject routine (if any) specified in an application of this Subclause.

2) Inforimation needed by later rules of this Subclause is gathered based on the contextvin which
this Bubclause is executed, as follows.

Case
a) If CNTXT specifies <SQL-invoked routine>, then:

1) Let JN, JCLSN, JMN, and JPDL respectively be the <jar name>, <Java class nanje>,
<Java method name>, and <Java parameter declaration list> contained in <external
Java reference string>.

i) Let SPDL be <SQL parameter declaration list>.
iif) If <SQL-invoked routine> contains <schema procedure>, then:

1) If DYNAMIC RESULT SETS N is spécified for some N greater than 0 (zero), then
let DRSN be N.

2) Otherwise let DRSN be 0 (zero);
b) If CNTXT specifies <user-defined-type definition>, then:

1) Let UDTD be the <user-defined type definition>, let UDTB be the <user-defined tyjpe
body> immediately contained in UDTD, and let UDTN be the <schema-resolved uder-
defined type name> immediately contained in UDTB.

i) Let JN and JCLSN respectively be the <jar name> and <Java class name> contained in
<external Java type clause> contained in UDTB.

iif) For the purposes of parameter mapping as defined in Subclause 4.5, “Parameter map-
ping” the remaining rules in this Subclause are performed as if the descriptor for the
uger-defined type defined by UDTD was already available in the SQL-session. That
descriptor describes the type as having the name UDTN, being an external Java dpta
type and having the <jar and class name> specified in [/DTD

iv) Let MS; be the i-th <method specification> in the <method specification list> contained
by UDTB.

v) Let SRT be the SQL <data type> specified in the RETURNS clause of MS;.
vi) Let DRSN be 0 (zero).

52 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

vii) If MS; immediately contains <static field method spec>, then:
1) Let QJFN be the <qualified Java field name> of MS;.
2) Let FI be the <Java identifier> contained in <Java field name> contained in QJFN.

3) If QJFN specifies a <Java class name>, then let SFC be that class name; otherwise,
let SFC be JCLSN.

4) Let SPDL be the <SQL parameter declaration list>

)
viil) If MS; does not immediately contain <static field method spec>, then:

1) Let JMN and JPDL respectively be the <Java method name> and <Java parameter
declaration list> contained in <Java method and parameter declarations> contgdined
in MS;.

2) Let SPDL be the augmented SQL parameter declaration list NPL; of MS;.
¢) (therwise, descriptors are available.

1) Let SRD be the routine descriptor of SR.

il) If SRD indicates that the SQL-invoked routine is/an-SQL-invoked method, then:

1) Let SRUDT be the user-defined type whos§e descriptor contains SR’s corresponding
method specification descriptor MSD, and let SRUDTD be the user-defined tyge
descriptor of SRUDT.

2) Let JN and JCLSN respectively be the <jar name> and <Java class name> contpined
by SRUDTD’s <jar and class name>.

3) Let SRT be the SQL <returns data type> specified in MSD.

4) Let DRSN be 0 (zero).

5) If MSD indicates ‘that it is a static field method, then:
A) Let FIbethe <Java identifier> contained in the <Java field name> of MSD
B) Let.SFC be the <Java class name> of MSD.

C)~\Let SPDL be the <SQL parameter declaration list>
()
6) If MSD indicates that it is not a static field method, then:

A) Let JMN and JPDL respectively be the Java method name composed of the
package, class, and name of the Java routine contained in MSD and the Java
parameter declaration list contained in the signature contained in MSD.

B) Let SPDL be the augmented SQL parameter declaration list of MSD.

© ISO/IEC 2002 — All rights reserved Additional common elements 53

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

iii) If SRD indicates that the SQL-invoked routine is an SQL-invoked procedure or an
SQL-invoked regular function, then:

1) Let JN, JCLSN, JMN, and JPDL respectively be the <jar name>, <Java class
name>, <Java method name>, and <Java parameter declaration list> contained in
<external Java reference string> contained in the <external routine name> of SRD.

2) Let SPDL be a SQL parameter declaration list composed of the SQL-invoked rou-
tine’s SQL parameters contained in SRD, specified with the descriptors list of the

<SQL parameter name>, if specified, the <data type>, the ordinal position, and an
indication n{»’“y'lnnﬂnnv- Hnn SOOI _arara tor o axn 1ot QO ooz atar o oaadoag

indieation-of \e-SQL-parameteris-an-input-SQL-parameter-an-output SQL

parameter, or both an input SQL parameter and an output SQL parameter,

3) If the SQL-invoked routine is an SQL-invoked procedure, then let DRSN be the
maximum number of dynamic result sets as indicated by SRD; otherwise, let DRSN
be 0 (zero).

4) If the SQL-invoked routine is an SQL-invoked regular function;.then let SRT b the
SQL <returns data type> specified in MSD; otherwise, let SRT"be “voi d”.

3) Case

a) If JMN is “mai n” and CNTXT does not specify <user-defined/type definition> or contain
dmethod invocation>, then:

1) If CNTXT specifies <SQL-invoked routine>, thén)it shall contain <schema procedufe>
and shall not contain <dynamic result set characteristic>.

i) If CNTXT contains <routine invocation> then it shall contain <call statement>.

=

iif) If a Java parameter declaration list, JPDL is specified, then it shall be the following

b

(java.lang. String[])

i) If a Java parameter declaration list is not specified, then let JPDL be the following:
(java. l ang. String[(])

) SPDL shall specify either:

1) A single parameter that is an SQL ARRAY of CHARACTER or an ARRAY of
CHARACTER VARYING. At runtime, this parameter is passed as a Java arrajy
of j avait’ang. String.

NOTE 30 — This <SQL parameter declaration> can only be specified if the SQL syst¢m
supports Feature S201, “SQL routines on arrays”.

2)~ Zero or more parameters, each of which is CHARACTER or CHARACTER VARY-

INLC A4 +]a 4+ | T L£ 2 1 faY S
LINU, AU lullblulc, UIITOT lJalClllleU].D alrtT lJClDDUu da Jddavd al].a.)’ vl Javd. T alty. ot Tl ng

(with possibly zero elements).

vi) Let JCS be the set of visible Java methods of class JCLSN in JAR JN whose method
names are “mai n” and whose Java parameter data types list is JPDL.

NOTE 31 — “visible” is defined in Subclause 4.5, “Parameter mapping”.

54 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

b) Otherwise:

i) Let SPN and JPN be, respectively, the number of <SQL parameter declaration>s in
SPDL and the number of <Java data type>s in JPDL.

ii) If JPDL specifies a <Java parameter declaration list>, then:

1) Ifi is greater than 0 (zero) and MS; specifies INSTANCE or CONSTRUCTOR or
if SRD indicates the SQL-invoked routine is an SQL-invoked method and MSD
indicates it is an instance method or a constructor, then prefix the Java parameter
declaration list JPDL with the necessary subject parameter as follows

Case:

A) If JPDL contains one or more <Java data type>s, then prefix the listlof <Java
data type>s immediately contained in <Java parameters> immediately conthined
in JPDL with

JCLSN,

B) Otherwise, replace JPDL with the <Java parameter declaration list>

(JCLSN)

2) For each <SQL parameter declaration> SP in SPDL, let ST be the <data typex of
SP and let JT be the corresponding <Java data type> in JPDL.

A) If SP specifies IN, or does not specify ansexplicit <parameter mode>, then:

=

I) If SP is not an SQL array, then)J7T and ST shall be simply mappable ¢
object mappable.

II) If SPis an SQL array, then J7 and ST shall be array mappable.

B) If SP specifies OUT or INOUT, then J7T and ST shall be output mappable.

NOTE 32 — “simply mappable”, “object mappable”, and “array mappable” are defined|in
Subclause 4.5, “Parameter mapping”.

3) Case:

A) If DRSN.is greater than 0 (zero), then JPN shall be greater than SPN, and| each
<Java data type> in JPDL whose ordinal position is greater than SPN shall be
result set mappable.

B) \Otherwise JPN shall be equivalent to SPN.

iif) If & Java parameter declaration list is not specified, then determine the first SPN]
members of the Java parameter declaration list JPDL from SPDL as follows:

1) For each parameter SP of SPDL whose <parameter mode> is IN, or that does not
specify an explicit <parameter mode>, if SP is not an SQL array, then let the cor-
responding Java parameter data type of SP be the corresponding Java data type of
the <parameter type> of SP; if SP is an SQL array, then let J7T be the correspond-
ing Java data type of the <parameter type> of SP, and let the corresponding Java
parameter data type of SP be an array of J7), that is, be JT[] .

NOTE 33 — The “corresponding Java parameter data type” of SP is defined in Sub-
clause 4.5, “Parameter mapping”.

© ISO/IEC 2002 — All rights reserved Additional common elements 55

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

2) For each parameter SP of SPDL whose <parameter mode> is INOUT or OUT, let
JT be the corresponding Java data type of the <parameter type> of SP, and let the
corresponding Java parameter data type of SP be an array of J7T, that is, be JT[].

3) The <Java parameters> of JPDL is a list of the corresponding Java parameter data
types of SPDL.
NOTE 34 — JPDL does not specify parameter names. That is, the parameter names of the
Java method do not have to match the SQL parameter names.

iv) The subject Java field of <static field method spec>s or the set of candidate visible Java

+lo ol dat M | £o11
IIITUIIUUS AI'T UTUUCTIIIITIITUU AS 1IUVIIUVWO.

Case:

1) If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the-SQL-inyoked
routine is an SQL-invoked procedure or an SQL-invoked regular function, then

A) If DRSN is greater than 0 (zero), then:

I) Let SPN and JPN be, respectively, the number of <SQL parameter declara-
tion>s in SPDL and the number of <Java data type>s in JPDL.

II) If SPN is equivalent to JPN, then JPDL was-originally not specified; let JCS
be the set of visible Java methods of class«JCLSN in JAR JN whose mdthod
names are JMN, whose first SPN parameter data types are those of JHDL,
and whose last K parameter data types, for some positive K, are result|set
mappable.

IIT) If SPN is less than JPN, thentJPDL was originally specified; let JCS b¢ the
set of visible Java methods.ef class JCLSN in JAR JN whose method npmes
are JMN, whose Java parameter data types list is JPDL.

B) If DRSN is 0 (zero), thendet JCS be the set of visible Java methods of clags
JCLSN in JAR JN whose method names are JMN, whose Java parameter flata
types list is JPDL.

2) If CNTXT specifiés,<user-defined type definition> or if SRD indicates that the
SQL-invoked routine is an SQL-invoked method then:

A) Ifiis greater than O (zero) and MS; contains <static field method spec>, oy if
MSD.indicates that it is a static field method, then:

I)-" FI shall be the name of a field of SFC. Let JSF be that field.
II) JSF shall be a public static field.

II1) Let JFT be the Java data type of JJSF.

IV) SRT and JFT shall be simply mappable or object mappable.

NOTE 35 — “simply mappable” and “object mappable” are defined in Subclause 4.5,
“Parameter mapping”.

V) JSF is the subject static field of the SQL-invoked method defined by MS;.

NOTE 36 — The subject Java class may contain fields and methods (public and
private) for which no corresponding attribute or method is specified.

56 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

B) Ifiis greater than 0 (zero) and MS,; does not immediately contain <static field
method spec>, or if MSD indicates that it is not a static field method, then:

I) Case:

1) Ifiis greater than 0 (zero) and MS; specifies INSTANCE or CONSTRUC-

TOR, or if MSD indicates it is an instance method or a constructor, then
JPDL contains the augmented Java parameter declaration list for this

method. Remove the subject parameter from the Java parameter decla-
ration list JPDL to create the unaugmented Java parameter declaration

4) The

Case

=

a)

e

I

I11)

V)

Lict TTA IDDIL ac follasac-
Let LIAJPDT as follows:
Case:

a) If JPDL contains two or more <Java data type>s, thenseopy all «
to UAJPDL, omitting the first <Java data type> JCLSN, and if
associated “, ”.

b) Otherwise, set UAJPDL to the <Java parameten declaration list]
()
2) Otherwise copy JPDL to UAJPDL.

Using Java overloading resolution, specified by The Java Language Spé
fication, Second Edition, let JCS be the set of visible Java methods of ¢
JCLSN in JAR JN or the supertypés of that class whose method names
JMN and whose Java parameter data types list is UAJPDL.

NOTE 37 — “visible” is defined‘in)Subclause 4.5, “Parameter mapping”.

If i is greater than 0 (zere).and MS; specifies STATIC, or MSD indicates
STATIC was specified, then remove from JCS any Java method that is
static. Otherwise, remove from JCS any static Java method.

If i is greater than 0 (zero) and MS; specifies CONSTRUCTOR, or MS]

/PDL

V

lass
are

that
not

D

indicates that\CONSTRUCTOR was specified, then remove from JCS any

Java method that is not a constructor. Otherwise, remove from JCS ar
Java method that is a constructor.

bubject Java methiod is determined as follows:

[CNTXT-specifies <SQL-invoked routine> or if SRD indicates that the SQL-invoked rd
b an SQL=invoked procedure or an SQL-invoked regular function, then:

). SJCS shall contain exactly one Java method. Let JM be that Java method. The SQ

Ly

utine

L-

4 1 | 4 + it ad +tla JTAL
IIIVUNLCTU TUUULLIT 1S assullailCTUu Wiull JIvl.

ii) JM is the subject Java method of the SQL-invoked routine.

b) If CNTXT specifies <user-defined type definition> or if SRD indicates that the SQL-invoked
routine is an SQL-invoked method then, if i is greater than 0 (zero) and MS; does not

© ISO/IEC 2002 — All rights reserved

Additional common elements 57

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

immediately contain <static field method spec>, or if MSD indicates that it is not a static
field method then:

i) JCS shall contain exactly one Java method. Let JM be that Java method. The <Java
method name> is referred to as the corresponding Java method name of <method name>.
i) JM is the subject Java method of the SQL-invoked method.

5) The result data type of the SQL-invoked routine is validated as follows:

Case|

a) If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the SQL-invoked'rqutine
i$ an SQL-invoked procedure or an SQL-invoked regular function, then let JRT be the [Java
rpturns data type of JM.

1) IfJM is an SQL-invoked procedure, then JRT shall be voi d.

i) If JM is an SQL-invoked regular function, then JRT and SRT ghall be simply mappable
or object mappable.

b) If CNTXT specifies <user-defined type definition> or if SRD)-indicates that the SQL-invioked
putine is an SQL-invoked method then, if i is greater than™0 (zero) and MS; does not
mmediately contain <static field method spec>, or if MSD indicates that it is not a stqtic

eld method, then let JRT be the Java returns data-type of JM. If SELF AS RESULT {s not

pecified then JRT and SRT shall be simply mappable or object mappable.

[OTE 38 — “simply mappable” and “object mappable” are defined in Subclause 4.5, “Parameter
happing”.

S M2 n = = N -

¢) (therwise, let JRT be the Java data type of the subject static field. JRT and SRT shall be

imply mappable or object mappable.

0"

58 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

9 Schema definition and manipulation

9.1 <table definition>

Function

Define a|persistent base table, a created local temporary table, or a global temporary table.

Formalt

No addi tj onal Format itens.

Syntax Rules

1) [Inseft after SR 10)a) | ST shall not be an external Java data type whose descriptor specifies pn
<intgrface specification> of SERIALIZABLE.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

No aflditional Conformance Rules.

© ISO/IEC 2002 - All rights reserved Schema definition and manipulation 59

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.2 <view definition>

9.2 <view definition>

Function

Define a

viewed table.

Format

No addi t

ional Format itens.

Syntax

t Rules

1) [Ins¢

<intd

Access

No a

rface specification> of SERIALIZABLE.

Rules

Hditional Access Rules.

General Rules

No a

dditional General Rules.

Conformance Rules

No ai

dditional Conformance Rules.

It after SR 21)c) | ST shall not be an external Java data type whose descriptor spécifies an

60 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

9.3 <user-defined type definition>

Function
Define a user-defined type.
Format

<user-defined type body> ::=
<user-defined type nane>

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

<subtype cl ause>]

<external Java type clause>]
AS <representation>]
<instantiabl e clause>]
finality>

<reference type specification>]
<ref cast option>]

<cast option>]

<met hod specification list>]

—r—r——

<externgl Java type clause> ::=
dext ernal Java cl ass cl ause>
ANGUAGE JAVA

i nterface using cl ause>

AN

<interfgce using clause> ::=
[l USI NG <interface specification>]

<interfgce specification> ::=
SQLDATA

|| SERI ALl ZABLE

<net hod speci fication> ::=

'l Al alternatives froml SO | EC9075-2
<static field nethod spec>

characteristic> ::=
' Al alternatives framl SO | EC 9075- 2
<external Java net hod’ cl ause>

<met hod

<static|field nmethod spec> ::=

st ati ¢ net hed “returns cl ause>
SPECI FI C-<speci fic nmethod nanme> |
ext er nal-xari abl e nane cl ause>

A— A (N

<static|nethod returns cl ause> ::=
HETURNS <data type>

TATI C METHOD gnet’hod nane> <l eft paren> <right paren>

<external variable nane clause> ::=

EXTERNAL VARI ABLE NAME <character string literal >

<external Java class clause> ::=

<external Java nethod clause> ::=

<Java net hod and parameter declarations> ::=

EXTERNAL NAME <character string literal >

EXTERNAL NAME <character string literal >

<Java nethod nanme> [<Java paraneter declaration list>]

© ISO/IEC 2002 — All rights reserved

Schema definition and manipulation 61

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

Syntax Rules

1) [Insert after SR 3) | If <external Java type clause> is specified, then UDT is an external Java data
type.

2) | Replace SR 6)k))) | The <supertype name> immediately contained in the <subtype clause> shall
identify the descriptor of some structured type SST. UDT is a direct subtype of SST, and SST is
a direct supertype of UDT. If UDT is an external Java data type, then SST shall be an external
Java data type, and the subject Java class of UDT shall be a direct subclass of the subject Java
class of SST. If UDT is not an external Java data type, then SST shall not be an external Java
data|type.

3) | Inseft before SR 7) | If <external Java type clause> is specified, then:

a) Iiet VJC be the value of the <character string literal> immediately contained, in <external
ava class clause>; VJC shall conform to the Format and Syntax Rules of-<jar and clgss
ame>. The Java class identified by <Java class name> in the JAR identified by <jar ifl> in
heir immediately containing <jar and class name> is UDT’s subject Java class.
[OTE 39 — The subject Java class of UDT can be the subject Java class-of other external Javi data
pes. Each such external Java data type is distinct from other such ‘data types.

TG =2 38 c =

b)

)

'DT’s subject Java class shall be a publ i c class and shall implement the Java interface
jlava.io. Seri al i zabl e or the Java interface j ava. sql . SQLDat a or both.

=

c)

[an <interface using clause> is not explicitly specified, then an implementation-defingd
interface specification> is implicit.

A

d) If SERIALIZABLE is specified, then the subjeet Java class shall implement the Java
hterface j ava.io. Serial i zabl e. The method j ava.io. Serializable. witeQObject()
b effectively used to convert a Java object to an SQL representation, and the method
ava. i 0. Seri al i zabl e. readbj ect ()-is effectively used to convert an SQL representgtion

b a Java object.

o e ey

fF SQLDATA is specified, then the subject Java class shall implement the Java inter-
fice j ava. sql . SQLDat a as.déefined in JDBC. The method j ava. sql . SQLDat a. wri t eSQL(|)
b effectively used to convert a Java object to an SQL representation, and the method
ava. sql . SQLDat a. readSQ.() is effectively used to convert an SQL representation to a Java
bject.

e)

Rl el Wl e

Q

f) doverriding methed specification> shall not be specified.
g) A <representation> that is a <predefined type> shall not be specified.

h)

@)

ELE"AS LOCATOR shall not be specified.

i) locator indication> shall not bhe qppm'ﬁpd

4) [Insert before SR 7) | If <external Java type clause> is not specified, then:

a) <method specification> shall not specify <static field method spec>.
b) <method characteristic> shall not specify <external Java method clause>.

¢) The <language clause> immediately contained in <method characteristic> shall not specify
JAVA.

62 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

5)

6)

7)
8)
9)

10)

11)

12)

13)

14)

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

[Insert after SR 7)a) | If UDT is an external Java data type, then it is implementation-defined
whether validation of the explicit or implicit <Java parameter declaration list> is performed by
<user-defined type definition> or when the corresponding SQL-invoked method is invoked.

[Insert after SR 7)b)iv.1)5) in the TC | If UDT is an external Java data type, then the <Java iden-
tifier> immediately contained in <Java method name> of MS; shall be equivalent to the <Java
identifier> immediately contained in the <class identifier> immediately contained in <jar and
class name> of UDT.

[Insert after SR 7)b)x)4)B) | UDT shall not be an external Java data type.

[Insdrt after SR 7)b)xi)3) | UDT shall not be an external Java data type.

[Insdit after SR 7)b)xiv) | If MiS; specifies <static field method spec>, then:

a) MS; specifies a static field method.

b) Det VSF be the value of the <character string literal> simply contain€d\in <static field
method spec>; VSF shall conform to the Format and Syntax Rules of*<qualified Java fleld
rlame>.
NOTE 40 — <static field method spec> defines a static method of the w§er-defined type that rdturns
the value of the Java static field specified by the <qualified Java field name>. This is a shorthpnd
that provides read-only SQL access to static fields of the subject\Java class or a superclass of the
spibject Java class.

| Replace SR 7)b)xv)1) | The <method characteristics> of MS; shall contain at most one <langfiage
claude>, at most one <parameter style clause>, at mo$t one <deterministic characteristic>|,
at mpst one <SQL-data access indication>, and at @nost one <null-call clause>. If UDT is an
external Java data type then, with the exception of the implicit <original method specificatfion>s
genetated for the observer and mutator functions of each attribute, the <method characterigtics>
of M5; shall not contain the <method characteristic>s <language clause> or <parameter style
claude> and shall contain exactly one <eXternal Java method clause>. For an external Jaya
dataltype, both <language clause> and~<parameter style clause> implicitly specify JAVA.

| Insqrt after SR 7)b)xv)1) | If UDT ig\an external Java data type, then let VMP be the value of the
<chafacter string literal> imnieédiately contained in <external Java method clause>; VMP ghall
confgrm to the Format and Syntax Rules of <Java method and parameter declarations>.

[Replace SR 7)b)xv)2) | IfF-UDT is not an external Java data type and <language clause> is npt
speciffied, then LANGUAGE SQL is implicit.

| Refflace SR 7)b)xv)6)B)l) | If <parameter style> is not specified and UDT is not an external Java
data[type, theny PARAMETER STYLE SQL is implicit.

[Insdrt after SR 7)b)xvi) | If UDT is an external Java data type and validation of the <Java pafam-
eter fleclaration list> has been implementation-defined to be performed by <user-defined type

definition>, Then the Synfax Rules of Subclause 8.5, “Java roufine signature defermination” are
applied with <user-defined type definition>, method specification index i, and no subject routine.

Access Rules

No additional Access Rules.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 63

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

General Rules

1) | Replace GR 5)g)vi) | The explicit or implicit <parameter style> if the <language name> is SQL or
JAVA.

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined type definition> in a <descriptor file>.

2) Inserithis CR | Without Feature TF;11 “Commands” nnn'an'm1n(r 1mn]nmnnf9hnnc of this par of
MR | i

ISO/IEC 9075 shall not specify a <user-defined type deﬁn1t10n> that specifies LAN GUAGE LJAVA
outside of a <descriptor file>.

3) [Insett this CR | Without Feature J591, “Overloading”, the <method name> of a <method spedifica-
tionX shall not be equivalent to the <method name> of any other <method specification> inp the
samq <user-defined type definition>.

4) [Inset this CR | Without Feature J641, “Static fields”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <static field method spec>.

5) [Inset this CR | Without Feature J541, “SERIALIZABLE”, a conforming <user-defined type defini-
tion> shall not specify SERIALIZABLE.

6) [Inset this CR | Without Feature J551, “SQLDATA”, a conférming <user-defined type definitipn>
shalllnot specify SQLDATA.

7) | Insetf this CR | A conforming implementation of this\part of ISO/IEC 9075 shall support at lpast
one ¢f Feature J541, “SERIALIZABLE”, and Feature J551, “SQLDATA”.

8) [Inset this CR | Without Feature J622, “external Java types”, conforming implementations of|this
part fof ISO/IEC 9075 shall not specify a-<user-defined type definition> that specifies LAN
GUAGE JAVA.

64 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

9.4 <attribute definition>

Function

Define an attribute of a structured type.

Format

<attribute definition> ::=

<

attribute nane>

<

— — ——

<ext erna
B

Syntax

dat a type>

<reference scope check>]
<attribute default>]

<col l ate cl ause>]

<external Java attribute clause>]

| Java attribute clause> ::=
IXTERNAL NAME <character string literal >

t Rules

1) [Inse

t after SR 1) | If the <attribute definition> is contained inca“<user-defined type definitio

that
<atty

is not an external Java data type or is contained in, afn)<alter type statement>, then
ibute definition> shall not specify an <external Java<attribute clause>.

2) [Inse

t after SR 1) | If the <attribute definition> is contained in a <user-defined type definitio

that
then

specifies an external Java data type whose «interface specification> is SERTALIZABL
<attribute definition> shall specify an <external Java attribute clause>.

3) [Inse

t after SR 1) | If an <external Java attribute clause> is specified, then let VFN be the v

of th
confq
VFN

b <character string literal> immediately contained in <attribute definition>; VFN sha
rm to the Format and Syntax Rules of <Java field name>. The <Java field name> val
is referred to as the corresponding Java field name of the <attribute name>.

4) [Inse

t after SR 1) | If <attribute-definition> is contained in a <user-defined type definition> t

specifies an external Java data type, then <reference scope check>, <attribute default>, and

<coll

hte clause> shall net\be specified.

5) [Inse

t after SR 1) | If £attribute definition> is contained in a <user-defined type definition> t}

speciffies an external Java data type, and if the <data type> specified in the <attribute def

tion>

Access

is a strudttired type ST, then ST shall be an external Java data type.

Rules

hlue
11
ue of

hat

hat
ni-

No additional Access Rules.

General Rules

1) [Insert after GR3)g) | If the <attribute definition> contains an <external Java attribute clause>,

then

the corresponding Java field name of the <attribute name>.

2) An SQL-invoked method OF is created whose signature and result data type are
as given in the descriptor of the original method specification of the observer function of A. Let

V be

© ISO/IEC 2002 — All rights reserved

a value in UDT.

Schema definition and manipulation 65

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

Case

a) If Vis the SQL null value, then the invocation V. AN() of OF returns the result of:
CAST (NULL AS DT)

b) If UDT is not an external Java data type whose descriptor’s <interface specification> speci-
fies SERIALIZABLE, then V. AN() returns the value of A in V.

¢) If UDT is an external Java data type whose descriptor’s <interface specification> specifies
SERIALIZABLE, then the r eadObj ect () method of the subject Java class SJCE of V is
dffectively used to obtain a Java object irom tihe vatue of vV, the Java field that corresponds to
the attribute specified in <Java field name> contained by <attribute definition> is accepsed.
Tlet JV and JCLS be respectively that Java value and its most specific Java class:
(

ase:
1) If DT is a user-defined type, then:

1) Let STU be the user-defined type whose subject Java class-isJCLS and whos¢
user-defined type is DT or is a subclass of DT.

2) Let UIS be the <interface specification> specified by.the user-defined type descriptor
of STU.

3) Case:
A) If UIS is SERIALIZABLE, then:

I) The subject Java class JCLS’ssw'i t eCbj ect () method is executed to convert
the Java value JV to the SQL value SV of user-defined type STU.

II) The method of execution of the subject Java class’s implementation of
writeQbj ect () is implementation-defined.

NOTE 41 — If UIS is(SERIALIZABLE, then, as described in Subclause 9.3, “<us¢r-

defined type definition>", the descriptor’s subject Java class implements the Java ipter-

face j ava. i 0. Serf al i zabl e and defines that interface’s wri t eCbj ect () method as
described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

B) If UIS is:SQLDATA, then:

I) The subject Java class JCLS’s wri t eSQL() method is executed to convert the
Java value JV to the SQL value SV of user-defined type STU.

IT) The method of execution of the subject Java class’s implementation of
witeSQ () is implementation-defined.
NOTE 42 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-defihed

java. sql . SQLDat a and defines that interface’s wit eSQ.() method as described by
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.
C) Otherwise, the value of SV is set to the value of JV.

4) V. AN() returns the value of SV.

66 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

3) An SQL-invoked method MF is created whose signature and result data type are
as given in the descriptor of the original method specification of the mutator function of A. Let
V be a value in UDT and let AV be a value in DT.

Case:

a) IfVis the SQL null value, then the invocation V. AN(AV) of MF raises an exception condition:
data exception — null instance used in mutator function.

b) If UDT is not an external Java data type whose descriptor’s <interface specification> speci-
fies SERIALIZABLE, then the invocation V. AN(AV) returns V2 such that V2. AN() = AV and
for every other observer function ANX of UDT, V2. ANX() = V. ANX().

¢) If UDT is an external Java data type whose descriptor’s <interface specification>'\specifies
ERIALIZABLE, then the readObj ect () method of the subject Java class SJCE of V |is
ffectively used to obtain a Java object from the value of V. Let MST, JCLS; and Jtemp be

bspectively the most specific type of AV, the subject Java class of MST, and the Java dgbject

btained from r eadObj ect ().

S = O pn =

1) Case:
1) If MST is a user-defined type, then:

A) Let UIS be the <interface specification> specified by the user-defined type fle-
scriptor of MST.

B) Case:
I) If UIS is SERIALIZABLE, then:

1) The subject Java clasg(JCLS’s r eadObj ect () method is executed tq
convert the value of AV to a Java object JV.

2) The method of execution of the subject Java class’s implementation|of
readbj ect (x)~is implementation-defined.
NOTE 43 —, f,UIS is SERIALIZABLE, then, as described in Subclause 9.3, “kuser-
defined type definition>”, the subject Java class of U implements the Java intdrface
java.io. Serializabl e and defines that interface’s r eadObj ect () method ps
described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

II) If WIS is SQLDATA, then:

1) The subject Java class JCLS’s readSQ.() method is executed to convert
the value of AV to a Java object JV.

2) The method of execution of the subject Java class’s implementation|of

readSQ.() is implementation-defined.
NOTE 44 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-
defined type definition>", the subject Java class of U implements the Java interface
j ava. sql . SQLDat a and defines that interface’s r eadSQL() method as described by
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

2) Otherwise, the value of JV is set to the value of AV.

ii) The Java field of Jtemp that corresponds to the attribute specified in <Java field name>
contained by <attribute definition> is assigned the value JV.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 67

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

iii) The subject Java class SJCE of V’s wri t eQoj ect () method is effectively used to obtain
a SQL value V2 from the Java value Jtemp.

iv) The invocation V. AN(AV) returns V2.

Conformance Rules

No additional Conformance Rules.

68 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

9.5 <alter type statement>

Function

Change the definition of a user-defined type.

Format

No addi t

ional Format itens.

ISO/IEC 9075-13:2002 (E)
9.5 <alter type statement>

Syntax

t Rules

1) [Inse

Access

No ai

Rules

lditional Access Rules.

General Rules

No ai

lditional General Rules.

Conformance Rules

No ai

t after SR 1) | D shall not be an external Java data type.

Hditional Conformance Rules.

© ISO/IEC 2002 — All rights reserved

Schema definition and manipulation 69

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.6 <drop data type statement>

9.6 <drop data type statement>

Function
Destroy a user-defined type.
Format

No addi ti onal Format itens.

Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

1) [Inser this CR | Without Feature J531, “Deploymeént”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop type*statement> in a <descriptor file>.

2) [Inset this CR | Without Feature J511, “Conimands”, conforming implementations of this pait
of ISPD/TEC 9075 shall not specify a <drop type statement> that drops an external Java type
outside of a <descriptor file>.

3) [Insetf this CR | Without Feature'J622, “external Java types”, conforming implementations of|this
part jof ISO/IEC 9075 shall.not specify a <drop data type statement> that drops an externfal
Java|type.

70 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

9.7 <SQL-invoked routine>

Function

Define an SQL-invoked routine.

Format

<paraneter style> ::=

<ext er ng

Syntax

D

2)

3)

4)

5)

6)

7)

8)

© ISO/IEC 2002 — All rights reserved

Il Al alternatives fromlSQO |EC9075-2

<

JAVA

| Java reference string> ::=
j ar and cl ass nane> <period> <Java net hod nane>
[<Java paraneter declaration list>]

r Rules

[Inse

t after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA, then no <SQL par]

ter d|

pclaration> specified in <SQL-invoked function> shall specify RESULT.

[Inse

t after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA, then neither the <

turng
contd
indic

clause> contained in <SQL-invoked function> nor any’<SQL parameter declarations
ined in an <SQL-invoked function> or <SQL-invoKed procedure> shall contain <locat]
ation>.

[Inse

t after SR 3) | The maximum value of <inaximum dynamic result sets> is implementati

definked.

[Repl

hce SR 4)a) | Let UDTN be the, <user-defined type name> immediately contained in <m

speciffication designator>. Let UDT be the user-defined type identified by UDTN. UDT sha

be ai

) external Java type.

[Repl

ace SR 5)a) | <routine characteristics> shall contain at most one <language clause>, at

most

and
<par

Repl
an S

charIcteristic>, at, most one <SQL-data access indication>, at most one <null-call clause>
t most onexdynamic result sets characteristic>. If LANGUAGE JAVA is specified, then

one <parameter (style clause>, at most one <specific name>, at most one <determinis

hmeter style clause> shall specify <parameter style> JAVA.

bce SR 5))) | An <SQL-invoked routine> that specifies or implies LANGUAGE SQL is c4

ame-

re-

t after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA, then <transform group
speciffication> shall not be specified.

pn-

bthod
11 not

tic

lled
d an

exter:

L routine; an <SQL-invoked routine> that does not specify LANGUAGE SQL is calld

b ot qaaarf oo AN

A

v U . H CA U CA U e 2 € v

routine.

Java

| Insert after SR 5)i) | If R is an external Java routine, then the <external routine name> immedi-

ately contained in <external body reference> shall specify a <character string literal>. Let V be
the value of that <character string literal>. V shall conform to the Format and Syntax Rules of
an <external Java reference string>.

NOTE 45 — R is defined by ISO/IEC 9075-2 to be the SQL-invoked routine specified by <SQL-invoked
routine>.

Schema definition and manipulation 71

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

9) [Insert after SR 5)i) | If R is an external Java routine, then the <Java method name> is the name
of one or more Java methods in the class specified by <Java class name> in the JAR specified by
<jar name>. The combination of <Java class name> and <Java method name> represent a fully
qualified Java class name and method name. The method name can reference a method of the
class, or a method of a superclass of the class.

10) [Replace the first paragraph of SR 5)t)ii) | If R is not an external Java routine, then

Case:

11) | Replace the first paragraph of SR 19)e) | If PARAMETER STYLE GENERAL or PARAMETER
STYLE JAVA is specified, then let the effective SQL parameter list be a list of PN parametlers
such|that, for i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry is)d¢fined
as follows.

12) [Replce SR 19)g) | If <language clause> does not specify JAVA, then every <data'type> in
effective SQL parameter list entry shall specify a data type listed in the SQL‘data type collumn
for which the corresponding row in the host data type column is not ‘Nonel,

13) [Inseft before SR 20) |

NOTE 46 — The rules for parameter type correspondence when LANGUAGE JAVA is specified are|given
in Supclause 4.5, “Parameter mapping”.

14) [Inseft before SR 20) |If R is an external Java routine, then itis implementation-defined whether
validation of the explicit or implicit <Java parameter de¢laration list> is performed by <SQL-
invoked routine> or when its SQL-invoked routine is invoked.

15) [Inseft before SR 20) | If R is an external Java routine, and validation of the <Java paramet¢r
declgration list> has been implementation-defined to be performed by <SQL-invoked routije>,
then|the Syntax Rules of Subclause 8.5, “Javaroutine signature determination”, are applipd
with [the <SQL-invoked routine>, a method specification index of 0 (zero), and no subject ropitine.

Accesd Rules

1) [Inseft after AR 1) | If R is an exterral Java routine, then the applicable privileges for A shall
include USAGE privilege on ‘the JAR referenced in the <external Java reference string>.

NOTIE 47 — The referenceS\to R and A are defined in the Syntax Rules of Subclause 11.49, "<SQL
invokied routine>", in ISOAEC 9075-2.

General Rules

1) [Replce GR 3)m)] If the SQL-invoked routine is an external routine, then the routine descriptor
includes anindication of whether the parameter passing style is PARAMETER STYLE JAVA,
PARAMETER STYLE SQL, or PARAMETER STYLE GENERAL.

2) | Replace the introductory text of GR 6)a)i) | If R is not an external Java routine and the <SQL data
access indication> in the descriptor of R is MODIFIES SQL DATA, READS SQL DATA, or
CONTAINS SQL, then:

72 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

Conformance Rules

1)

2)

3)

4)

5)

6)

© ISO/IEC 2002 — All rights reserved

Without Feature J531, “Deployment”, conforming implementations of this part of

ISO/IEC 9075 shall not specify an <SQL-invoked routine> in a <descriptor file>.

Without Feature J511, “Commands”, conforming implementations of this par
ISO/IEC 9075 shall not specify a <user-defined type definition> that specifies LANGUAGE
outside of a <descriptor file>.

t of
JAVA

Without Feature J581, “Output parameters”, in a conforming implementation of

T or

thlS nart of ISQ/AEC Qﬂ'7§) /QQT invoked routine> shall not Qpnnif37 (pn-rqmnfn-r mode> 01
INOUT.

Inserf this CR | Without Feature J631, “Java signatures”, a <Java parameter declaratipn lisf
shalll be equivalent to the default Java method signature as determined in Subclause 8.5, ¢
routine signature determination”.

Inserf this CR | The SQL data types recognized by JDBC are a superset of-thoese defined by
ISO/IEC 9075-2. Without Feature J521, “JDBC data types”, a <Java data’type> shall hav
a corfresponding SQL data type.

Inserf this CR | Without Feature J621, “external Java routines”, gonforming implementation
of this part of ISO/IEC 9075 shall not specify an <SQL-invokéd-routine> that specifies LA
GUAGE JAVA.

>
Java

N -

Schema definition and manipulation 73

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.8 <alter routine statement>

9.8 <alter routine statement>

Function
Alter a characteristic of an SQL-invoked routine.

Format

No addi ti onal Format itens.

Syntax Rules

1) [Inseft after SR 1) | SR shall not be an external Java routine.
NOTIE 48 — SR is defined to be the SQL-invoked routine identified by the <alter rodtifie statemen}>.

Accesd Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Confoyrmance Rules

No aflditional Conformance Rules.

74 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.9 <drop routine statement>

9.9 <drop routine statement>

Function
Destroy an SQL-invoked routine.

Format

No addi ti onal Format itens.

Syntax Rules

1) [Inseft after SR 7) | If SR is an external Java routine and <drop routine statement 1 contained
in a gdescriptor file>, then <drop routine statement> shall specify a <routinestype> of PROCE-
DURE or of FUNCTION.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

1) [Inset this CR | Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop, teutine statement> in a <descriptor file>.

2) [Inset this CR | Without Feature J511,“Commands”, conforming implementations of this parf of
ISO/IEC 9075 shall not specify a.<drop routine statement> that drops an external Java rofitine
outside of a <descriptor file>.

3) | Insetf this CR | Without Feature J621, “external Java routines”, conforming implementationg of
this part of ISO/IEC 90%5\shall not specify an <drop routine statement> that drops an ext¢rnal
Java|routine.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 75

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.10 <user-defined ordering definition>

9.10 <user-defined ordering definition>

Function

Define a user-defined ordering for a user-defined type.
Format

<ordering category> ::=

!l All alternatives froml SO |EC9075-2
|| <conpar abl e cat egory>

<conpar gbl e category> ::=
RELATI VE W TH COVPARABLE | NTERFACE

Syntax Rules

1) [Replpce SR 4) | If <comparable category>, <relative category>, or <state.category> is specifipd,
then|UDT shall be a maximal supertype.

2) | Inseft before SR 6) | If <comparable category> is specified, then DT shall be an external Jgva
data|type. Let JC be the subject Java class of that external Java data type. JC shall implgment
the Java interface j ava. | ang. Conpar abl e.

3) | REplace the introductory paragraph of SR 6)b) | If <comparable category> is not specified, then

Accesq Rules

No aflditional Access Rules.

a) If <relative category> is specified, then the ordering category in the user-defined type
descriptor of UDT is.set to RELATIVE.

b) if <map category>)is specified, then the ordering category in the user-defined type descriptor
of UDT is set.to. MAP.

¢) If <compéarable category> is specified, then the ordering category in the user-defined type
descriptor of UDT is set to COMPARABLE.

d) (therwise, the ordering category in the user-defined type descriptor of UDT is set to

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined ordering definition> in a <descriptor file>.

2) Without Feature J622, “external Java types”, conforming implementations of this
part of ISO/IEC 9075 shall not specify a <user-defined ordering definition> that defines an
ordering for an external Java type.

76 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.10 <user-defined ordering definition>

3) Without Feature J511, “Commands”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined ordering definition> that defines an ordering for
an external Java type outside of a <deployment file>.

© ISO/IEC 2002 - All rights reserved Schema definition and manipulation 77

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.11 <drop user-defined ordering statement>

9.11 <drop user-defined ordering statement>

Function
Destroy a user-defined ordering method.

Format

No addi ti onal Format itens.

Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

1) [Inser this CR | Without Feature J531, “Deploymeént”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop user*defined ordering statement> in a <descriptor file>.

2) | Insert this CR | Without Feature J622, “extérnal Java types”, conforming implementations of|this
part jof ISO/TEC 9075 shall not specify @ <drop user-defined ordering statement> that drops an
ordetting for an external Java type.

3) [Inset this CR | Without FeatureJ511, “Commands”, conforming implementations of this pait
of ISPD/TEC 9075 shall not spetify a <drop user-defined ordering statement> that defines an
ordetting for an external.Java type outside of a <deployment file>.

78 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

10 Access control

10.1 <grant privilege statement>

Function

Define privileges.

Formalt

No addi tj onal Format |tens.

Syntax Rules

No aflditional Syntax Rules.

Accesq Rules

No aflditional Access Rules.

General Rules

No aflditional General Rules.

Conformance Rules

1) [Inset this CR | Without Feature .J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specifya <grant privilege statement> in a <descriptor file>.

2) [Inset this CR | Without Feature J511, “Commands”, conforming implementations of this parf of
ISO/IEC 9075 shall ndt specify a <grant privilege statement> that grants USAGE privilegg on a
JAR joutside of a <desériptor file>.

© ISO/IEC 2002 — All rights reserved Access control 79

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.2 <privileges>

10.2 <privileges>

Functi

on

Specify privileges.

Format

<obj ect

nane> :: =
Il Al alternatives fromlSQO |EC9075-2

Syntax
1) [Repl

namgd
shall

Access

No a|

General Rules

No a

Conformance Rules

1) [Inse

an <

JAR <j ar nane>

t Rules

hce SR 3) | If <object name> specifies a <domain name>, <collation name®j-<character get
>, <transliteration name>, <user-defined type name>, or <jar names; then <privilegds>
specify USAGE. Otherwise, USAGE shall not be specified.

Rules

Hditional Access Rules.

lditional General Rules.

this CR | Without Feature J561, “Jat-privileges”, an <action> shall not specify USAGH on
bject name> that immediately eontains a <jar name>.

80 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.3 <revoke statement>

10.3 <revoke statement>

Functi

on

Destroy privileges and role authorizations.

Forma

No addi t

t

ional Format |tens.

Syntax

t Rules

1) [Rep

ace SR 10)a)ii)4) | P and D are both usage privilege descriptors. The action and the iden

domas
the 4
or JA

iin, character set, collation, transliteration, user-defined type, or JAR of P.are the san
ction and the identified domain, character set, collation, transliteration,\user-defined
LR of D, respectively.

2) [Inse

It after SR 29)b) | DT is an external Java data type and the revoké deéstruction action wg

resu
is co

tained in the <jar and class name> of the descriptor of DT

3) [Inse

t after SR 34) | Let JR be any JAR descriptor included, i S1. JR is said to be impacted

the 1
USA
SQL-

evoke destruction action would result in A1 no longer having in its applicable privileg

Java path of JR.

4) [Inse

t after SR 35)0) | If RD is an external Java routine, USAGE on the JAR whose <jar nan

contd
desect

5) [Repl
tors,
const
impa

forsalken column descriptors, forsaken domain descriptors, or abandoned routine descriptor]

Access

No a

General Rules

ined in <external Java reference string=\contained in the <external routine name> of
iptor of RD.

hce SR 37) | If RESTRICT is specified, then there shall be no abandoned privilege descy
abandoned views, abandoned table constraints, abandoned assertions, abandoned don
raints, lost domains, lost celimns, lost schemas, impacted domains, impacted column
cted collations, impacted character sets, impacted JARs, abandoned user-defined type

Rules

Hditional A¢cess Rules.

GE privilege on a JAR whose name is contained/inva <resolution jar> contained in the

tified

le as
Lype,

uld

in AI no longer having in its applicable privileges USAGE on the JAR whose <jar naime>

if
res

le> 1S
the

ip-
hain
S’

S,

S.

1) [Inse

tafter GR 17) | If the object identified by <object name> of the <revoke statement> speg

ifies

<jar name>, let J be the JAR identified by that <jar name>. For every impacted JAR descriptor
JR and for each <path element> PE contained in the SQL-Java path of JR whose immediately
contained <resolution jar> is J, the SQL-Java path of the JAR descriptor JR is modified such

that

© ISO/IEC 2002 — All rights reserved

it does not contain PE.

Access control 81

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.3 <revoke statement>

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <revoke statement> in a <descriptor file>.

2) Without Feature J511, “Commands”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <revoke statement> that revokes USAGE privilege on a JAR
outside of a <descriptor file>.

82 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

11 Built-in procedures

11.1 SQLJ.INSTALL_JAR procedure

Function
Install a|set of Java classes into the current SQL catalog and schema.
Signature
SQLJ. | N$TALL_JAR (
url I'N CHARACTER VARYI NG L),
jar IN CHARACTER VARYI NG(L),
deplfoy I'N | NTEGER)
Where L|is an implementation-defined integer value.
Access Rules
1) The privileges required to invoke the SQLJ. I NSTALL_JAR procedure are implementation-defi

General Rules

1) The
sche
exce

2) The
URL
confq

BQLJ. | NSTALL_JAR procedure is subject to implementation-defined rules for executing
a statements within SQL-transactions. If an invocation of SQLJ. | NSTALL_JAR raises
tion condition, then the effect on the install actions is implementation-defined.

Falues of the url parameter that are valid are implementation-defined, and may incly
5 whose format is implementation-defined. If the value of the url parameter does no
rm to implementation-defined restrictions and does not identify a valid JAR, then an

exception condition is raised: Java:DDL — invalid URL.

3) Let o
T

If T
cond

4) Let e
TJ.

5) If the

—in

[be the value of the j ar pardmeter. Let T/ be the value of
RIM(BOTH' ' FROMJ)

does not conform~te'the Format and Syntax Rules of <jar name>, then an exception
tion is raised: Java DDL — invalid JAR name.

[N be the explicitly or implicitly qualified <jar id> specified in the <jar name> specifie

bre,is an installed JAR whose name is JN, then an exception condition is raised: Javq|
palid JAR name.

ned.

5QL-
an

1de
L

DDL

6) The JAR is installed and associated with the name JN. All contents of the JAR are installed,
including both visible and non-visible Java classes, and other items contained in the JAR. This
JAR becomes the associated JAR of each new class. The non-visible Java classes and other
items can be referenced by other Java methods.

7) A privilege descriptor is created that defines the USAGE privilege on the JAR identified by the
j ar parameter to the <authorization identifier> that owns the schema identified by the implicit
or explicit <schema name> of the j ar parameter. The grantor for the privilege descriptor is set
to the special grantor value “_ SYSTEM?”. The privilege is grantable.

© ISO/IEC 2002 — All rights reserved

Built-in procedures 83

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.1 SQLJ.INSTALL_JAR procedure

8) If the value of the depl oy parameter is not zero, and if the JAR contains one or more deploy-
ment descriptor files, then the install actions implied by those instances are performed in the
order in which the deployment descriptor files appear in the manifest.

NOTE 49 — Deployment descriptor files and their install actions are specified in Subclause 4.11.1,
“Deployment descriptor files”.

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of ISO/IEC 9075
shall not specify non-zero values of the depl oy parameter.

84 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.2 SQLJ.REPLACE_JAR procedure

11.2 SQLJ.REPLACE_JAR procedure

Function

Replace an installed JAR.

Signature

SQLJ. REPLACE_JAR (
url IN CHARACTER VARYI NG (L),
jar IN CHARACTER VARYI NG (L))

Where: L is an implementation-defined integer value.

Access Rules
1) The privileges required to invoke the SQLJ. REPLACE_JAR procedure are implementation-defined.

2) The ¢urrent user shall be the owner of the JAR specified by the value of the j\ar parametet.

General Rules

1) The BQLJ. REPLACE_JAR procedure is subject to implementation-defined rules for executing
SQL{schema statements within SQL-transactions.

2) The yalues of the url parameter that are valid are implementation-defined, and may include
URLE whose format is implementation-defined. If the yalue of url identifies a valid JAR, then
refer|to the classes in that JAR as the new classes. Hthe value of the url parameter does|not
idenfify a valid JAR, then an exception condition is\raised: Java DDL — invalid URL.

3) Let J be the value of the j ar parameter. Let Tt be the value of
TRIM(BOTH’ ' FROMJ)

If T does not conform to the format of\<jar name>, then an exception condition is raised: |Java
DDL|— invalid JAR name.

4) Let JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
Td.

5) If th¢re is an installed JAR with <jar name> JN, then refer to that JAR as the old JAR. Refer
to the classes in the 0ld JAR as the old classes. If there is not an installed JAR with <jar name>
JN, then an exception condition is raised: Java DDL — attempt to replace uninstalled JAR.
Equifalence of JAR names is determined by the rules for equivalence of identifiers as spedified
in Subclause/5:.2, "<token> and <separator>", in ISO/IEC 9075-2.

6) Let the matehing old classes be the old classes whose fully qualified class names are the names
of nefw’elasses and let the matching new classes be the new classes whose fully qualified class
namesare the mamnres of otd classes— et theurmmuatcired oid ciusses be the old classes tirat are
not matching old classes and let the unmaitched new classes be the new classes that are not
matching new classes.

7) Let the dependent SQL routines of a JAR be the routines whose descriptor’s <external routine
name> specifies an <external Java reference string> whose immediately contained <jar name>
is equivalent to the JAR name of that JAR.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 85

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.2 SQLJ.REPLACE_JAR procedure

8) If any dependent SQL routine of the old JAR references a method in an unmatched old class,
then an exception condition is raised: Java DDL — invalid class deletion.
NOTE 50 — This rule prohibits deleting classes that are referenced by external Java routines. This

prohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Java
classes.

9) For each dependent SQL routine of the old JAR that references a method in a matching old
class, let CS be the <SQL-invoked routine> that created the SQL routine. If CS is not a valid
<SQL-invoked routine> for the corresponding new routine, then an exception condition is raised:
Java DDL — invalid replacement.

10) Let the dependent SQL types of a JAR file be the external Java data types that have as’ tHeir
subjdct Java class a Java class contained in that JAR.

NOTIE 51 — “subject Java class” is defined in Subclause 9.3, “<user-defined type definition>"

11) If thé¢re are any dependent SQL types of the specified JAR file that are unmatehed old clagses,
then|an exception condition is raised: Java DDL — invalid class deletion.

NOTIE 52 — This rule prohibits deleting classes that are referenced by external“Java data types. This
prohipition does not, however, prevent deletion of classes that are referenced only indirectly by other Java
classgs.

12) For dach dependent SQL type, let CT be the <user-defined typeldefinition> that created thg SQL
type.| If CT is not a valid <user-defined type definition> for the'corresponding new class, then
an exception condition is raised: Java DDL — invalid replaecement.

13) The ¢ld JAR and all visible and non-visible old classeS ¢ontained in it are deleted.

14) The hew JAR and all visible and non-visible new:elasses are installed and associated with|the
speciffied <jar name>. That JAR becomes the associated JAR of each new class. All contenfts of
the new JAR are installed, including both visible and non-visible Java classes, and other ifems
contdined in the JAR. The non-visible Java‘classes and other items can be referenced by other
Java|methods.

15) The ¢ffect of SQLJ. REPLACE_JAR on currently executing SQL statements that use an SQL rdqutine
or structured type whose impleméntation has been replaced is implementation-dependent.

Conformance Rules

Nond.

86 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.3 SQLJ.REMOVE_JAR procedure

11.3 SQLJ.REMOVE_JAR procedure

Function

Remove an installed JAR and its classes.

Signature

SQLJ. REMOVE_JAR (
jar I'N CHARACTER VARYI NG (L),
undepl oy I'N | NTEGER)

Where: L is an implementation-defined integer value.

Accesd Rules

1)
2)

General Rules

1)

2)

3)

4)

5)

6)

7)

The privileges required to invoke the SQLJ. REMOVE_JAR procedure are implementation-defined.

The ¢urrent user shall be the owner of the JAR specified by the value of the,jjar parametef.

The BQLJ. REMOVE_JAR procedure is subject to implementation-defined rules for executing SQL-
schema statements within SQL-transactions. If an invocation.6f)SQ.J. REMOVE_JAR raises 4n
exception condition, then the effect on the remove actions is implementation-defined.

Let ¢ be the value of the j ar parameter. Let TJ be thevalue of
TR M(BOTH’ * FROMJ)

If T does not conform to the format of <jar name>, then an exception condition is raised: [Java
DDL|— invalid JAR name.

Let JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
TdJ.

If th¢re is an installed JAR with, <jar name> JN, then refer to that JAR as the old JAR. Refer

to the classes in the old JAR ag the old classes. If there is not an installed JAR with <jar name>
JN, then an exception condifion is raised: Java DDL — attempt to remove uninstalled JAR.
Equiyalence of <jar name>$ is determined by the rules for equivalence of identifiers as spegified
in Sybclause 5.2, "<token>'and <separator>", in ISO/IEC 9075-2.

If the value of the undepl oy parameter is not 0 (zero), and if the JAR contains one or mote
deplqyment deseriptor files, then the remove actions implied by those instances are performed
in the reverse-of the order in which the deployment descriptor files appear in the manifest

NO 53 =-DPeployment descriptor files and their remove actions are specified in Subclause 4.11.],
“Deployment descriptor files”.

NO 94 — These actions are performed prior to examining the condition specified in the following step.

Let the dependent SQL routines of a JAR be the routines whose descriptor’s <external routine
name> specifies an <external Java reference string> whose immediately contained <jar name>
is equivalent to the name of that JAR.

If there are any dependent SQL routines of the specified JAR, then an exception condition is
raised: Java DDL — invalid class deletion.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 87

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.3 SQLJ.REMOVE_JAR procedure

NOTE 55 — This rule prohibits deleting classes that are referenced by external Java routines. This
prohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Java
classes.

8) Let the dependent SQL types of a JAR be the external Java data types that have as their subject
Java class a Java class contained in that JAR.

NOTE 56 — “Subject Java class” is defined in Subclause 9.3, “<user-defined type definition>".

9) If there are any dependent SQL types of the specified JAR, then an exception condition is raised:
Java DDL — invalid class deletion.

NOTE-SF—ThisTuteprohibitsdeteting chasses—thatare Teferenced by extermat-Javadatatypes— T his
prohipition does not, however, prevent deletion of classes that are referenced only indirectly by ethet Java
classgs.

10) The $pecified JAR and all visible and non-visible classes contained in it are deleted
11) The USAGE privilege on the specified JAR is revoked from all users that haye-it.

12) The ¢ffect of SQLI. REMOVE_JAR on currently executing SQL statements,that use an SQL rofitine
or structured type whose implementation has been removed is implementation-dependent.

Conformance Rules

1) Withput Feature J531, “Deployment”, conforming implementations of this part of ISO/IEC [9075
shalllnot specify non-zero values of the undepl oy parameter.

88 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.4 SQLJ.ALTER_JAVA_PATH procedure

11.4 SQLJ.ALTER_JAVA_PATH procedure

Function
Alter the SQL-Java path of a JAR.
Signature
SQLJ. ALTER JAVA PATH (
jar IN CHARACTER VARYI NG (L),
pat h IN CHARACTER VARYI NG (L))

Where: L is an implementation-defined integer value.

Accesd Rules

=]
1

1) The privileges required to invoke the SQLJ. ALTER JAVA PATH procedure are implementatio
defined.

2) The ¢urrent user must be the owner of the JAR specified by the value of the j ar parameter.

3) The ¢urrent user must have the USAGE privilege on each JAR referénced in the pat h parame-
ter.

General Rules

1) The BQLJ. ALTER JAVA PATH procedure is subject to implementation-defined rules for executing
SQL{schema statements within SQL-transactions.

2) Let o be the value of the j ar parameter. Let T</ he’the value of
TR M(BOTH’ * FROMJ)

If TeJ| does not conform to the format of <jar'name>, then an exception condition is raised: [Java
DDL|— invalid JAR name.

3) Let N be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
TdJ.

4) When the SQLJ. ALTER JAVA PATH procedure is called, the current catalog and schema at the
time|of the call are the «default for each omitted <catalog name> and <schema name> in the
<resglution jar>s of the pat h parameter. Those defaults apply to any subsequent use of the pat h
parameter as specified below.

5) If the¢ value ofthe pat h parameter does not conform to the format for <SQL Java path>, then an
exception condition is raised: Java DDL — invalid path name.

NOTE 58 - "The pat h parameter can be an empty or all-blank string.

6)

replacing the current path (if any) associated with that JAR.

7) If an invocation of the SQLJ. ALTER JAVA PATH procedure raises an exception condition, then
effect on the path associated with the JAR is implementation-defined.

8) The effect of SQLJ. ALTER JAVA PATH on SQL statements that have already been prepared or are
currently executing is implementation-dependent.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 89

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.4 SQLJ. ALTER_JAVA_PATH procedure

Conformance Rules

1) Without Feature J601, “SQL-Java paths”, conforming implementations of this part of ISO/IEC
9075 shall not contain invocations of the SQLJ. ALTER_JAVA_ PATH procedure.

90 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

12 Java topics

12.1 dJava facilities supported by this part of ISO/IEC 9075

12.1.1

Package java.sql

SQL syst
JDBC df
systems

In an SQ
default ¢
following

— The
— The

— The futhorization ID of the default connection is the currentyauthorization ID.

— The
Other dg

12.1.2

SQL syst
use by th

ems that implement this part of ISO/IEC 9075 support the package j ava. sql , which
iver, and all classes required by that package. The other Java packages supplied by §
that implement this part of ISO/IEC 9075 are implementation-defined.

L system that implements this part of ISO/IEC 9075, the package j ava.;sgl supports
bnnection. The default connection for a Java method invoked as an SQI TFoutine has
characteristics:

lefault connection is pre-allocated to provide efficient access to the database.

lefault connection is included in the current session and transaction.

JDBC AUTOCOMMIT setting of the default connection is false.

ta source URLs that are supported by j ava. sqh>are implementation-defined.

System properties

ems that implement this part of ISO/IEC 9075 support the following system propertig
le get Property method of j ava(hang. Syst em

Table 2—System properties

s the

QL

the

the

s for

Key

Description of associated value

sqlj.d

sqlj.r

the String "j dbc: def aul t : connect i on"!

unt i ne The class name of a runtime context class?

ef aul t connecti dn If a Java method is executing in an SQL-implementation, thef

10therw

2This cl
class wh

ise, the nullvalue.

ss is(a subclass of the class sql j . runti me. Runti neCont ext . The get Def aul t Cont ext () method of th
pséaame is returned returns the default connection described in Subclause 12.1.1, “Package java.sql”.

© ISO/IEC 2002 — All rights reserved

Java topics 91

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
12.2 Deployment descriptor files

12.2 Deployment descriptor files

Function

Supply information for actions to be taken by the SQLJ. | NSTALL_JAR and SQLJ. REMOVE_JAR proce-
dures.

Model
A deployment descriptor file is a text file contained in a JAR, which is specified with the following

ot faor +1 JTAR.

3 +tha oo +E
propertypr-the-manttest-tor-the JAR:

Nane: fill e_nane
SQLJDeplfoynment Descri ptor: TRUE

Properties

The text|contained in a deployment descriptor file must have the following form:

<descripgtor file> ::=
9QLActions <left bracket> <right bracket> <equal sign>
{ [<doubl e quote> <action group> <doubl e quot e>
[<comma> <doubl e quot e> <action group> <doubl e/quote>]] }

<action|group> ::=
<install actions>
|| <renmove actions>

<installl actions> ::=

BEG N | NSTALL [<conmmand> <semi col on>], .~*END | NSTALL
<renove |actions> ::=

BEG N REMOVE [<conmand> <semi col on>.]... END REMOVE
<conmmang> :: =

<SQ. st atenent>
<i npl enent or bl ock>

<SQL stagtenent> ::= 1! See Desciription

<i npl emgnt or bl ock> :: =
BEG N <i nmpl emrentor\nane> <SQL token>... END <inpl enentor nane>

<i npl emgnt or name> &, = <identifier>

<SQ toKHen> :: ¥ K+ See Description

Description
1) <descriptor file> shall contain at most one <install actions> and at most one <remove actions>.

2) The <command>s specified in the <install actions> (if any) and <remove actions> (if any) specify
the install actions and remove actions of the deployment descriptor file, respectively.

92 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

3)

4)

5)

6)

7)

8)

9)

ISO/IEC 9075-13:2002 (E)
12.2 Deployment descriptor files

An <SQL statement> specified in an <install actions> shall be either:

a)

b)

c)

An <SQL-invoked routine> whose <language clause> specifies JAVA. The procedures and
functions created by those statements are called the deployed routines of the deployment
descriptor file.

A <grant privilege statement> that specifies the EXECUTE privilege for a deployed routine.

A <user-defined type definition> that specifies an <external Java type clause>. The types

created by those statements are called the deploved tvnes of the deplovment deseriptor

le.

d) A <grant privilege statement> that specifies the USAGE privilege for a deployed type:
e) A <user-defined ordering definition> that specifies ordering for a deployed type.

When a deployment descriptor file is executed by a call of the SQLJ. I NSTALL ‘3AR procedur]
if th¢ <jar name> of any <external routine name> or an <SQL-invoked rotatine> in an <in

stall |actions> is the <jar name> “t hi sj ar”, then “t hi sj ar” is effectively replaced with the |

parameter of the SQLJ. | NSTALL_JAR procedure for purposes of that execuition.
An <SQL statement> specified in a <remove actions> shall be either:

a) A <drop routine statement> for a deployed routine.

b)
c)

A <revoke statement> for the EXECUTE privilege on‘a deployed routine.
A <drop data type statement> for a deployed type.

d) A <revoke statement> for the USAGE privilege on a deployed type.

e) A

| <drop user-defined ordering statement>"that specifies ordering for a deployed type.

An <fimplementor block> specifies implémentation-specific install actions (remove actions) Y
speciffied in an <install actions> (<regmove actions>).

An <4SQL token> is an SQL lexical unit specified by the term “<token>” in Subclause 5.2,
"<toRen> and <separator>", in) ISO/IEC 9075-2. That is, the comments, quotes, and doubl
quotg¢s in an <implementer block> follow SQL token conventions.

An dimplementor name> is an implementation-defined SQL identifier. The <implementor]
namé¢>s specified following the BEGIN and END keywords shall be equivalent.

Whether an <implementor block> with a given <implementor name> contained in an <inst
tionsp (<remove actions>) is interpreted as an install action (remove action) is implement
defined, That is, an implementation may or may not perform install or remove actions spe

g

ar

when

ww
T

11 ac-
ion-
rified

by sqmé&.other implementation.

NOTE 59 — The deployment descriptor file format corresponds to the more general notion of a properties
file supporting indexed properties. Therefore, the deployment descriptor file can be used by the SQL-
implementation to instantiate a Java Bean having an indexed property, SQLActi ons. You can then
customize the resulting Java Bean instance with ordinary Java Bean tools. For example, you can change

the SQL procedures or permissions by changing the routine descriptors stored in the SQLActi ons

property. The SQL system can then use the customized Java Bean instance to generate a modified

version of the deployment descriptor file to use in a revised version of the JAR.

© ISO/IEC 2002 — Al rights reserved Java topics 93

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

94 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

13 Information Schema

13.1 JAR JAR USAGE view

Function

Identify pach JAR owned by a given user or role on which JARs defined in this catalog are depen-
dent.

Definition

CREATE VI EW JAR JAR USAGE AS
SELFCT SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAVE
FROY! (DEFI'NI TI ON_SCHEMA. JAR JAR USAGE JJU
JON
DEFI NI TI ON_SCHEMA. JARS J
USING (JAR CATALOG, JAR SCHEMA, JAR NAME))
JPIN
DEFI NI TI ON_SCHEMA. SCHEMATA S
all ((JJU. PATH JAR CATALOG, JJU. PATH JAR SCHEMA)
= (S.CATALOG NAME, S.SCHEMA NAMVE))
VHERE (SCHEMA OMER = CURRENT USER
R
SCHEMA OARER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))

AND
JAR CATALOG =
(SELECT CATALOG NAVE

FROM | NFORVATI ON_SCHEMA CATALOG NAME) ;

GRANT SELECT ON TABLE JAR_JAR USAGE
TO FPUBLI C W TH GRANT COPTI ON,

Conformance Rules

1) Withput Feature J652, “SQL/JRT Usage tables”, conforming SQL language shall not refergnce
INFORMATION_SCHEMA.JAR_JAR_USAGE.

© ISO/IEC 2002 — All rights reserved Information Schema 95

https://iecnorm.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.2 JARS view

13.2 JARS view

Function
Identify the installed JARs defined in this catalog that are accessible to the current user.

Definition

CREATE VI EW JARS AS
SELECT JAR CATALOG, JAR SCHEMA, JAR NANVE
FROM DEFI NI TI ON_SCHEMA. JARS
WHERE (JAR CATALOG, JAR SCHEME, JAR NAVE, " JAR) TN
(SELECT OBJECT CATALOG, OBJECT SCHEMA, OBJECT NAM