

Reference number
ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012

INTERNATIONAL
STANDARD

ISO/IEC
29192-3

First edition
2012-10-01

Information technology — Security
techniques — Lightweight
cryptography —

Part 3:
Stream ciphers

Technologies de l'information — Techniques de sécurité —
Cryptographie pour environnements contraints —

Partie 3: Chiffrements à flot

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction ... v

1 Scope .. 1

2 Normative reference .. 1

3 Terms and definitions ... 1

4 Symbols and operational terms ... 3

5 General models for stream ciphers ... 4
5.1 General ... 4
5.2 Synchronous Keystream generators .. 4
5.3 Output functions .. 4

6 Dedicated keystream generators ... 5
6.1 Enocoro-128v2 keystream generator .. 5
6.2 Enocoro-80 keystream generator .. 10
6.3 Trivium keystream generator ... 13

Annex A (normative) Object Identifiers .. 16

Annex B (informative) Test vectors ... 17

Annex C (informative) Guidance on implementation and use .. 24

Annex D (informative) Feature Table .. 26

Annex E (informative) Computation over a finite field .. 27

Bibliography .. 28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

iv © ISO/IEC 2012 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

ISO/IEC 29192-3 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 27, IT Security techniques.

ISO/IEC 29192 consists of the following parts, under the general title Information technology — Security
techniques — Lightweight cryptography:

 Part 1: General

 Part 2: Block ciphers

 Part 3: Stream ciphers

 Part 4: Mechanisms using asymmetric techniques

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved v

Introduction

This part of ISO/IEC 29192 specifies keystream generators for lightweight stream ciphers tailored for
implementation in constrained environments. ISO/IEC 29192-1 specifies the requirements for lightweight
cryptography. A stream cipher is an encryption mechanism that uses a keystream generator to generate a
keystream to encrypt a plaintext in bitwise or block-wise manner.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured ISO and IEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holders of these patent rights are registered with ISO and IEC. Information may be
obtained from:

René-MichaelCordes/ErnstSchobesberger/M&C ConsultInvest&TradeGmbH
LogoDynamic Unit GmbH
Prinz Eugen Strasse 52/9,
A-1040 Vienna
Austria

Hitachi Ltd.
IP Licensing Department
Intellectual Property Group
Marunouchi Center Building
6-1, Marunouchi 1-chome,
Chiyoda-ku,
Tokyo, 100-8220
Japan

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all
such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents relevant to
their standards. Users are encouraged to consult the databases for the most up to date information
concerning patents.

 IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

www.iso.org/patents
http://patents.iec.ch/
https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

INTERNATIONAL STANDARD ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 1

Information technology — Security techniques — Lightweight
cryptography —

Part 3:
Stream ciphers

1 Scope

This part of ISO/IEC 29192 specifies two dedicated keystream generators for lightweight stream ciphers:

 Enocoro: a lightweight keystream generator with a key size of 80 or 128 bits;

 Trivium: a lightweight keystream generator with a key size of 80 bits.

2 Normative reference

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 29192-1, Information technology — Security techniques — Lightweight cryptography — Part 1:
General

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 29192-1 and the following
apply.

3.1
big-endian
method of storage of multi-byte numbers with the most significant bytes at the lowest memory addresses

[ISO/IEC 18033-4:2011]

3.2
ciphertext
data which has been transformed to hide its information content

[ISO/IEC 18033-1:2005]

3.3
decryption
reversal of a corresponding encipherment

[ISO/IEC 18033-1:2005]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

2 © ISO/IEC 2012 – All rights reserved

3.4
encryption
(reversible) transformation of data by a cryptographic algorithm to produce ciphertext, i.e. to hide the
information content of the data

[ISO/IEC 18033-1:2005]

3.5
initialization value
value used in defining the starting point of an encryption process

[ISO/IEC 18033-4:2011]

3.6
key
sequence of symbols that controls the operation of a cryptographic transformation (e.g. encipherment,
decipherment)

[ISO/IEC 18033-1:2005]

3.7
keystream function
function that takes as input, the current state of the keystream generator and (optionally) part of the previously
generated ciphertext, and gives as output the next part of the keystream

[ISO/IEC 18033-4:2011]

3.8
keystream generator
state-based process (i.e., a finite state machine) that takes as input, a key, an initialization vector, and if
necessary the ciphertext, and gives as output a keystream (i.e., a sequence of bits or blocks of bits) of
arbitrary length

[ISO/IEC 18033-4:2011]

3.9
next-state function
function that takes as input, the current state of the keystream generator and (optionally) part of the previously
generated ciphertext, and gives as output a new state for the keystream generator

[ISO/IEC 18033-4:2011]

3.10
plaintext
unenciphered information

[ISO/IEC 18033-1:2005]

3.11
secret key
key used with symmetric cryptographic techniques by a specified set of entities

[ISO/IEC 18033-1:2005]

3.12
state
internal state of a keystream generator

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 3

4 Symbols and operational terms

0x Prefix for hexadecimal values.

0(n) n-bit variable where 0 is assigned to every bit.

AND Bitwise logical AND operation.

ai Variable forming part of the internal state of a keystream generator.

bi Variable forming part of the internal state of a keystream generator.

Ci Ciphertext block.

F[x] The polynomial ring over the finite field F.

GF(2n) Finite field of 2n elements.

Init Function which generates the initial internal state of a keystream generator.

IV Initialization vector.

K Key.

Next Next-state function of a keystream generator.

n Block length.

OR Bitwise logical OR operation.

Out Output function combining keystream and plaintext in order to generate ciphertext.

P Plaintext.

Pi Plaintext block.

Strm Keystream function of a keystream generator.

Si Internal state of a keystream generator.

Z Keystream.

Zi Keystream block.

x The smallest integer greater than or equal to the real number x.

¬x Bitwise complement operation.

 Polynomial multiplication.

|| Bit concatenation.

+m Integer addition modulo 2m.

 Bitwise XOR (eXclusive OR) operation.

<<n t t-bit left shift in an n-bit register.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

4 © ISO/IEC 2012 – All rights reserved

>>n t t-bit right shift in an n-bit register.

<<<n t t-bit left circular rotation in an n-bit register.

>>>n t t-bit right circular rotation in an n-bit register.

 Multiplication operation for elements in the finite field GF(2n).
NOTE An example of operation of multiplication of elements in the finite field GF(2n) is given in Annex E.

5 General models for stream ciphers

5.1 General

This clause describes general models for stream ciphers [ISO/IEC 18033-4:2011].

5.2 Synchronous Keystream generators

A synchronous keystream generator is a finite-state machine. It is defined by:

1. An initialization function, Init, which takes as input a key K and an initialization vector IV, and outputs an
initial state S0 for the keystream generator. The initialization vector should be chosen so that no two
messages are ever encrypted using the same key and the same IV.

2. A next-state function, Next, which takes as input the current state of the keystream generator Si, and
outputs the next state of the keystream generator Si+1.

3. A keystream function, Strm, which takes as input a state of the keystream generator Si, and outputs a
keystream block Zi.

When the synchronous keystream generator is first initialized, it will enter an initial state S0 defined by

S0 = Init(IV, K).

On demand the synchronous keystream generator will for i=0,1,...:

1. Output a keystream block Zi = Strm(Si, K).

2. Update the state of the machine Si+1 = Next(Si, K).

Therefore to define a synchronous keystream generator it is only necessary to specify the functions Init, Next
and Strm, including the lengths and alphabets of the key, the initialization vector, the state, and the output
block.

5.3 Output functions

5.3.1 General model of output function

This subclause specifies a stream cipher output function, i.e. a technique to be used in a stream cipher to
combine a keystream with plaintext to derive ciphertext.

An output function for a synchronous or a self-synchronizing stream cipher is an invertible function Out that
combines a plaintext block Pi, a keystream block Zi to give a ciphertext block Ci (i ≥ 0). A general model for a
stream cipher output function is now defined.

Encryption of a plaintext block Pi by a keystream block Zi is given by:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 5

Ci = Out(Pi, Zi),

and decryption of a ciphertext block Ci by a keystream block Zi is given by:

Pi = Out -1(Ci, Zi).

The output function shall be such that, for any keystream block Zi, and plaintext block Pi, we have

Pi = Out -1(Out (Pi, Zi), Zi).

5.3.2 Binary-additive output function

A binary-additive stream cipher is a stream cipher in which the keystream, plaintext, and ciphertext blocks are
binary digits, and the operation to combine plaintext with keystream is bitwise XOR. Let n be the bit length of
Pi. This function is specified by

Out(Pi, Zi) = Pi  Zi.

The operation Out-1 is specified by

Out–1(Ci, Zi) = Ci  Zi.

6 Dedicated keystream generators

6.1 Enocoro-128v2 keystream generator

6.1.1 Introduction to Enocoro-128v2

Enocoro-128v2 is a keystream generator which uses a 128-bit secret key K, a 64-bit initialization vector IV, and
a state variable Si (i ≥ 0) consisting of 34 bytes, and outputs a keystream block Zi of one byte at every iteration
of the function Strm.

NOTE This keystream generator was originally proposed in [5].

The state variable Si is sub-divided into a 2-byte variable:

a(i) = (a0
(i), a1

(i)),

where aj
(i) is a byte (for j = 0, 1), and a 32-byte variable:

b(i) = (b0
(i), b1

(i), …, b31
(i)),

where bj
(i) is a byte (for j = 0, 1, …, 31).

The Init function, defined in detail in 6.1.2, takes as input the 128-bit key K and the 64-bit initializing vector IV,
and produces the initial value of the state variable S0 = (a(0), b(0)).

The Next function, defined in detail in 6.1.3, takes as input the 34-byte state variable Si = (a(i), b(i)) and
produces as output the next value of the state variable Si+1 = (a(i+1), b(i+1)).

The Strm function, defined in detail in 6.1.4, takes as input the 34-byte state variable Si = (a(i), b(i)) and
produces as output the keystream block Zi.

Enocoro-128v2 uses operations over the finite field GF(28). In the polynomial representation, GF(28) is realized
as GF(2)[x] /ψ8432(x), where ψ8432(x) is an irreducible polynomial of degree 8 defined over GF(2). The
Enocoro-128v2 keystream generator uses the following irreducible polynomial:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

6 © ISO/IEC 2012 – All rights reserved

ψ8432(x) = x8 + x4 + x3 + x2 + 1.

6.1.2 Initialization function Init

The initialization of Enocoro-128v2 is divided into six steps. During the initialization of Enocoro-128v2, the
state is updated as sketched in Figure 1.

The initialization function Init is as follows:

Input: 128-bit key K, 64-bit initialization vector IV.

Output: Initial value of the state variable S0 = (a(0), b(0)).

a) Use the key K to set part of the state variable bj
(–96) as follows:

 Set (K0||K1||...||K15) = K, where Kj is 8 bits for j=0,1,2,...,15.

 For j=0,1,2,...,15, set bj
 (–96) = Kj.

b) Use the initialization vector IV to set part of the state variable bj
(–96) as follows:

 Set (I0||I1||...||I7) = IV, where Ij is 8 bits for j=0,1,2,...,7.

 For j=0,1,2,...,7, set bj+16
 (–96) = Ij.

c) Use the constants C0, C1 ,…,C9 to set part of the state variable aj
(–96) and bj

(–96) as follows:

 Set b24
(−96) = C0 = 0x66,

 Set b25
(−96) = C1 = 0xe9,

 Set b26
(−96) = C2 = 0x4b,

 Set b27
(−96) = C3 = 0xd4,

 Set b28
(−96) = C4 = 0xef,

 Set b29
(−96) = C5 = 0x8a,

 Set b30
(−96) = C6 = 0x2c,

 Set b31
(−96) = C7 = 0x3b,

 Set a0
(−96) = C8 = 0x88,

 Set a1
(−96) = C9 = 0x4c.

d) Set an 8-bit counter ctr = 1.

e) Perform the following steps for i=-96,-95,...,-1:

 b 31
(i) = b 31

(i)  ctr,

 ctr = 0x02 ctr,

 Set Si +1 =Next(Si).

f) Output S0.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 7

Figure 1 — State update during the initialization of Enocoro-128v2

6.1.3 Next-state function Next

The next-state function of Enocoro-128v2 is defined using the functions ρ and λ defined in 6.1.5 and 6.1.6
respectively. The next-state function Next of Enocoro-128v2 is as follows:

Input: State variable Si = (a(i), b(i)).

Ouput: Next value of the state variable Si+1 = (a(i+1), b(i+1)).

 Set a(i+1) = ρ(a(i), b(i)).

 Set b(i+1) = λ(b(i), a0
(i)).

 Set Si+1 = (a(i+1), b(i+1)).

 Output Si+1.

6.1.4 Keystream function Strm

The keystream function Strm is as follows:

Input: State variable Si.

Output: Keystream block Zi.

 Set Zi = a1
(i).

 Output Zi.

The state is updated and the keystream is generated as sketched in Figure 2.

b0 b2 … b6 b7 … … b15 b16 …… b30 b31 a0 a1

S8

S8

S8

S8

a0 a1b0 b3 b8b7 … … b17b16… b30 b31

ctr

ctr b29

b29… …

2

…… …

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

8 © ISO/IEC 2012 – All rights reserved

Figure 2 — State update during the keystream generation of Enocoro-128v2

6.1.5 Function ρ

The function ρ is composed of XORs, a non-linear transformation using the function S8, and a linear
transformation using the matrix L8432. The function ρ is as follows:

Input: State variable Si = (a(i), b(i)).

Output: The next value of the state variable a(i+1).

 Set u0 = a 0
(i)  s8[b2

(i)].

 Set u1 = a 1
(i)  s8[b7

(i)].

 Set (v0, v1) = L8432(u0, u1),

 Set a 0
(i+1) = v0  s8[b16

(i)],

 Set a 1
(i+1) = v1  s8[b29

(i)].

 Output a(i+1).

6.1.6 Function λ

The function λ is as follows:

Input: State variable Si = (a(i), b(i)).

Output: The next value of the state variable b(i+1).

 Set bj
(i+1) = bj−1

(i), for j ≠0, 3, 8, 17,

 Set b0
(i+1) = b31

(i)  a 0
(i),

 Set b3
(i +1) = b2

 (i)  b 6
 (i),

 Set b8
(i +1) = b7

 (i)  b 15
 (i),

 Set b17
(i +1) = b16

 (i)  b 28
 (i),

 Output b(i+1).

b0 b2 … b6 b7 … … b15 b16 …… b30 b31 a0 a1

s8

s8

s8

s8

a0 a1 b0 b3 b8 b7 … … b17 b16 … b30 b31b29

b29… …

Z

…… …

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 9

6.1.7 Function L8432

The function L 8432 is the internal function of the ρ function. Denote the input and the output to the L8432 function
by U and V respectively. The function L 8432 is as follows:

Input: 16-bit string U.

Output: 16-bit string V.

 Set (u0, u1) = U, where ui is an 8-bit string and an element of GF(28).

 Set

.
0201

11
),(

1

0
108432

1

0


























u

u

x
uuL

v

v

 Set V = v0 || v1.

 Output V.

6.1.8 Function S8

Function S8 uses operations over the finite field GF(24). In the polynomial representation, GF(24) is realized as
GF(2)[x] /φ41(x), where φ41(x) is an irreducible polynomial of degree 4 defined over GF(2). The Enocoro-
128v2 keystream generator uses the following irreducible polynomial:

φ41(x) = x4 + x + 1,

The function S8 is a permutation which maps 8-bit inputs to 8-bit outputs. It has an SPS (Substitution,
permutation, substitution) structure and it consists of 4 small Sboxes s4 which map 4-bit inputs to 4-bit outputs
and a linear transformation l defined by a 2-by-2 matrix over GF(24). The linear transformation l is defined as

)2(,,
140

401
),(4GFyx

y

x

x

x
yxl 


















 Denote the input and the output to the S8 function by X and Z respectively. The function S8 is as follows:

Input: 8-bit string X.

Output: 8-bit string Z.

 Set (x0, x1) = X, where xi is a 4-bit string and an element of GF(24).

 Set

    
    ,5040

,040

140441

140440

xxsxsxsy

xaxsxxssy




where 0x4, 0x5, 0xa are the hexadecimal expressions of elements of GF(24), and s4 is defined as

s4[16] = {1, 3, 9, 10, 5, 14, 7, 2, 13, 0, 12, 15, 4, 8, 6, 11}.

 Set Z = (y0 || y1) <<<8 1.

 Output Z.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

10 © ISO/IEC 2012 – All rights reserved

s4

s4

l

s4

s4

<<<81

0xa

0x5s8

Figure 3 — Sbox S8

Function S8 is defined using a substitution table as follows:

S8 [256] = {

99, 82, 26, 223, 138, 246, 174, 85, 137, 231, 208, 45, 189, 1, 36, 120,
27, 217, 227, 84, 200, 164, 236, 126, 171, 0, 156, 46, 145, 103, 55, 83,
78, 107, 108, 17, 178, 192, 130, 253, 57, 69, 254, 155, 52, 215, 167, 8,
184, 154, 51, 198, 76, 29, 105, 161, 110, 62, 197, 10, 87, 244, 241, 131,
245, 71, 31, 122, 165, 41, 60, 66, 214, 115, 141, 240, 142, 24, 170, 193,
32, 191, 230, 147, 81, 14, 247, 152, 221, 186, 106, 5, 72, 35, 109, 212,
30, 96, 117, 67, 151, 42, 49, 219, 132, 25, 175, 188, 204, 243, 232, 70,
136, 172, 139, 228, 123, 213, 88, 54, 2, 177, 7, 114, 225, 220, 95, 47,
93, 229, 209, 12, 38, 153, 181, 111, 224, 74, 59, 222, 162, 104, 146, 23,
202, 238, 169, 182, 3, 94, 211, 37, 251, 157, 97, 89, 6, 144, 116, 44,
39, 149, 160, 185, 124, 237, 4, 210, 80, 226, 73, 119, 203, 58, 15, 158,
112, 22, 92, 239, 33, 179, 159, 13, 166, 201, 34, 148, 250, 75, 216, 101,
133, 61, 150, 40, 20, 91, 102, 234, 127, 206, 249, 64, 19, 173, 195, 176,
242, 194, 56, 128, 207, 113, 11, 135, 77, 53, 86, 233, 100, 190, 28, 187,
183, 48, 196, 43, 255, 98, 65, 168, 21, 140, 18, 199, 121, 143, 90, 252,
205, 9, 79, 125, 248, 134, 218, 16, 50, 118, 180, 163, 63, 68, 129, 235

};

6.2 Enocoro-80 keystream generator

6.2.1 Introduction to Enocoro-80

Enocoro-80 is a keystream generator which uses an 80-bit secret key K, a 64-bit initialization vector IV, and a
state variable Si (i ≥ 0) consisting of 22 bytes, and outputs a keystream block Zi at every iteration of the
function Strm.

NOTE This keystream generator was originally proposed in [6].

The state variable Si is sub-divided into a 2-byte variable:

a(i) = (a0
(i), a1

(i)),

where aj
(i) is a byte (for j = 0, 1), and a 20-byte variable:

b(i) = (b0
(i), b1

(i), …, b19
(i)),

where bj
(i) is a byte (for j = 0, 1, …, 19).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 11

The Init function, defined in detail in 6.2.2, takes as input the 80-bit key K and the 64-bit initializing vector IV,
and produces the initial value of the state variable S0 = (a(0), b(0)).

The Next function, defined in detail in 6.2.3, takes as input the 22-byte state variable Si = (a(i), b(i)) and
produces as output the next value of the state variable Si+1 = (a(i+1), b(i+1)).

The Strm function, defined in detail in 6.3.5, takes as input the 22-byte state variable Si = (a(i), b(i)) and
produces as output the keystream block Zi.

Function L8431 uses operations over the finite field GF(28). In the polynomial representation, GF(28) is realized
as GF(2)[x] /ψ8431(x), where ψ8431(x) is an irreducible polynomial of degree 8 defined over GF(2). The
Enocoro-80 keystream generator uses the following irreducible polynomial:

ψ8431(x) = x8 + x4 + x3 + x + 1.

6.2.2 Initialization function Init

The initialization of Enocoro-80 involves five steps. The initialization function Init is as follows:

Input: 80-bit key K, 64-bit initialization vector IV.

Output: Initial value of the state variable S0 = (a(0), b(0)).

a) Use the key K to set part of the state variable bj
 (–40) as follows:

 Set(K0||K1||...||K9) = K, where Kj is 8 bits for j=0,1,2...,9.

 For j=0,1,2...,9, set bj
 (–40) = Kj.

b) Use the initialization vector IV to set part of the state variable bj
 (–40) as follows:

 Set (I0||I1||,...,||I7) = IV, where Ij is 8 bits for j=0,1,2...,7.

 For j=0,1,2...,7, set bj+10
 (–40) = Ij.

c) Set the constants C0, C1, C2, C3 to set part of the state variable aj
(–40) and bj

(–40) as follows:

 Set b 18
(−40) = C0 = 0x66,

 Set b 19
(−40) = C1 = 0xe9,

 Set a 0
(−40) = C2 = 0x4b,

 Set a 1
(−40) = C3 = 0xd4.

d) Perform the following steps for i=-40,-39...,-1:

 Set Si+1 =Next(Si).

e) Output S0

6.2.3 Next-state function Next

The next-state function of Enocoro-80 is defined using the functions ρ and λ defined in 6.2.5 and 6.2.6
respectively. The next-state function Next of Enocoro-80 is as follows:

Input: State variable Si = (a(i), b(i)).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

12 © ISO/IEC 2012 – All rights reserved

Ouput: Next value of the state variable Si+1 = (a(i+1), b(i+1)).

 Set a(i+1) = ρ(a(i), b(i)),

 Set b(i+1) = λ(b(i), a0
(i)),

 Set Si+1 = (a(i+1), b(i+1)),

 Output Si+1.

6.2.4 Keystream function Strm

The keystream function Strm is as follows:

Input: State variable Si.

Output: Keystream block Zi.

 Set Zi = a1
(i).

Output Zi.

6.2.5 Function ρ

The function ρ is composed of XORs, a non-linear transformation using the function S8, a linear transformation
using the matrix L8431. The function S8 is described in 6.1.8. The function ρ is as follows:

Input: State variable Si = (a(i), b(i)).

Output: The next value of the state variable a(i+1).

 Set u0 = a 0
(i)  s8[b 1

(i)],

 Set u1 = a 1
(i)  s8[b4

(i)],

 Set (v0, v1) = L8431(u0, u1),

 Set a 0
(i+1) = v0  s8[b6

(i)],

 Set a 1
(i+1) = v1  s8[b16

(i)].

 Output a (i+1).

6.2.6 Function λ

The function λ is as follows:

Input: State variable Si = (a(i), b(i)).

Output: The next value of the state variable b(i+1).

 Set bj
(i+1) = b j−1

(i), for j ≠0, 2, 5, 7,

 Set b 0
(i+1) = b 19

(i)  a 0
(i),

 Set b 2
(i +1) = b 1

 (i)  b 3
 (i),

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 13

 Set b 5
(i +1) = b 4

 (i)  b 5
 (i),

 Set b 7
(i +1) = b 6

 (i)  b 15
 (i),

 Output b(i+1).

6.2.7 Function L8431

The function L8431 is the internal function of the ρ function. Denote the input and the output to the L8431 function
by U and V respectively. The function L8431 is as follows:

Input: 16-bit string U.

Output: 16-bit string V.

 Set (u0, u1) = U, where ui is an 8-bit string and an element of GF(28).

 Set

.
0201

11
),(

1

0
108431

1

0


























u

u

x
uuL

v

v

where 0x02 is the hexadecimal representation of the element of GF(28) which is realized as
GF(2)[x] /ψ8431(x).

 Set V = v0 || v1.

 Output V.

6.3 Trivium keystream generator

6.3.1 Overview

TRIVIUM is a keystream generator which takes as input an 80-bit secret key K = (K0, ... , K79), an 80-bit
initialization vector IV = (IV0, ... , IV79), and generates up to 264 bits of keystream z0, z1, ... , zN − 1.

NOTE This keystream generator was originally proposed in [7].

The keystream bits zi are computed by combining the elements of three internal bit sequences {ai}, {bi}, and
{ci}, which themselves are generated by iterating three interconnected nonlinear recurrence relations. The
exact relations are specified in 6.3.4.

The first 288 sequence bits involved in the recursion are initialized using the secret key, the initialization
vector, and some constant bits. The next 1152 triplets (ai, bi, ci), starting from index i = −1152, are computed
recursively, but without producing any output. These 1152 initial iterations are referred to as blank rounds.

Each subsequent iteration, starting from i = 0, outputs one keystream bit zi, which is computed by XORing
together a subset of six sequence bits. This is repeated until all requested keystream bits have been
generated.

In the following sections, the complete keystream generation algorithm is described more formally using the
framework introduced in 5. The internal state Si is defined in 6.3.2, and the functions Init, Next, and Strm are
specified in 6.3.3, 6.3.4, and 6.3.5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

14 © ISO/IEC 2012 – All rights reserved

6.3.2 Internal State

Since each new triplet (ai, bi, ci) only depends on a limited number of earlier sequence bits, there is no need to

keep the entire sequences in memory. At any point in time i, it suffices for the algorithm to maintain an internal
state Si consisting of the following 288 sequence bits:

Si = (ai − 1, … , ai − 93, bi − 1, … , bi − 84, ci − 1, … , ci − 111).

NOTE In a straightforward hardware implementation of TRIVIUM, this internal state would be stored in shift registers,
as sketched in Figure4. The bits in the registers (represented by boxes in the figure) are shifted in a clockwise direction
after each iteration.

Figure 4 — An implementation of TRIVIUM using shift registers

6.3.3 Initialization function Init

The internal state of TRIVIUM is initialized using the following Init function.

Input: 80-bit key K, 80-bit initialization vector IV.

Output: Initial value of the internal state S0 = (a−1, … , a−93, b−1, … , b−84, c−1, … , c−111).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 15

a) Set i = −1152, and initialize the 288 bits of Si as follows:

 Set (ai − 93, … , ai − 1) = (0, ... , 0, K0, ... , K79).

 Set (bi − 84, … , bi − 1) = (0, ... , 0, IV0, ... , IV79).

 Set (ci − 111, … , ci − 1) = (1, 1, 1, 0, ... , 0).

b) For i = −1151, −1150, … , −1, 0:

 Set Si = Next(Si − 1).

c) Output S0.

6.3.4 Next-state function Next

The next-state function Next is defined below.

Input: Internal state Si = (ai − 1, … , ai − 93, bi − 1, … , bi − 84, ci − 1, … , ci − 111).

Output: Next value of the internal state Si + 1 = (ai, … , ai − 92, bi, … , bi − 83, ci, … , ci − 110).

a) Compute the bits ai, bi, and ci:

 Set ai = ci − 66  ci − 111  ci − 110 · ci − 109  ai − 69.

 Set bi = ai − 66  ai − 93  ai − 92 · ai − 91  bi − 78.

 Set ci = bi − 69  bi − 84  bi − 83 · bi − 82  ci − 87.

b) Output Si + 1 = (ai, … , ai − 92, bi, … , bi − 83, ci, … , ci − 110).

6.3.5 Keystream function Strm

The output function Strm is defined as follows.

Input: Internal state Si = (ai − 1, … , ai − 93, bi − 1, … , bi − 84, ci − 1, … , ci − 111).

Output: Keystream bit zi.

Output zi = ci − 66  ci − 111  ai − 66  ai − 93  bi − 69  bi − 84.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

16 © ISO/IEC 2012 – All rights reserved

Annex A
(normative)

Object Identifiers

This annex lists the object identifiers assigned to algorithms specified in this part of ISO/IEC 29192 and
defines algorithm parameter structures.

LightweightCryptography-3 {
iso(1) standard(0) lightweight-cryptography(29192) part3(3)
asn1-module(0) algorithm-object-identifiers(0)}

DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

-- IMPORTS None; --

OID ::= OBJECT IDENTIFIER -- Alias

-- Synonyms --
is29192-3 OID ::= {iso(1) standard(0) lightweight-cryptography(29192) part3(3)}
keystream-generators OID ::= {is29192-3 dedicated-keystream-generators(1)}
-- Lightweight dedicated keystream generators
enocoro-128v2 OID ::= {keystream-generators enocoro-128v2(1)}
enocoro-80 OID ::= {keystream-generators enocoro-80(2)}
trivium OID ::= {keystream-generators trivium(3)}

LightweightCryptographyIdentifier ::= SEQUENCE {
algorithm ALGORITHM.&id({StreamAlgorithms}),
parameters ALGORITHM.&Type({StreamAlgorithms}{@algorithm}) OPTIONAL

}

StreamAlgorithms ALGORITHM ::= {
{ OID enocoro-128v2 PARMS KeyLengthID } |
{ OID enocoro-80 PARMS KeyLengthID } |
{ OID trivium PARMS KeyLengthID },
... -- Expect additional algorithms --
}

KeyLength ::= INTEGER

KeyLengthID ::= CHOICE {
int KeyLength,
oid OID

}

-- Cryptographic algorithm identification --

ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
}
 WITH SYNTAX {OID &id [PARMS &Type]}

END -- LightweightCryptography-3 --

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 17

Annex B
(informative)

Test vectors

B.1 Test vectors for Enocoro-128v2

B.1.1 Key, initialization vector, and keystream triplets

This clause provides numerical test vectors consisting of a 128-bit key, a 64-bit initialization vector, and the
first 256 corresponding bits of keystream produced by Enocoro-128v2.

IV = 00 00 00 00 00 00 00 00

key = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Keystream =

63 d7 da 6b 55 73 7f cf 57 34 b6 77 3a e7 72 e8 e6 5c b3 bd a0 75 e6 b6 94 1c e3 e5 ca 28 2a 1e

IV = 00 10 20 30 40 50 60 70

Key = 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

Keystream =

c8 c8 ee 43 3b 0d c0 40 e5 3b c5 06 ea 21 ad 82 20 05 88 89 b7 c8 45 b8 fb bc fc 26 66 d6 5a ce

IV = 80 90 a0 b0 c0 d0 e0 f0

Key = 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00

Keystream =

f7 73 f9 b4 3f 1c b2 3c e4 19 8f 11 28 89 64 a3 e1 20 2e 6d ea 7d c8 07 7b 5d b1 5e cb 67 c8 6e

B.1.2 Sample internal states

The intermediate values of the state and buffer used to generate a keystream sequence are listed below.

IV = 10 00 10 00 10 00 10 00

Key = 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00

Keystream =

6c 1b 26 05 d1 97 f7 9f d4 60 4d 13 13 93 89 2e 29 6d 5d 50 f7 e6 07 10 ac 62 56 01 b3 e6 5e a6

round = -96

state = 88 4c

buffer = 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 10 00 10 00 10 00 10 00 66 e9 4b d4 ef 8a 2c

3b

round = -95

state = ee bf

buffer = b2 01 00 00 00 01 00 01 00 01 00 01 00 01 00 01 00 ff 00 10 00 10 00 10 00 66 e9 4b d4 ef 8a

2c

round = -94

state = 03 b6

buffer = c0 b2 01 00 00 00 01 00 00 00 01 00 01 00 01 00 01 d4 ff 00 10 00 10 00 10 00 66 e9 4b d4 ef

8a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

18 © ISO/IEC 2012 – All rights reserved

round = -93

state = d6 29

buffer = 8d c0 b2 00 00 00 00 01 00 00 00 01 00 01 00 01 00 4a d4 ff 00 10 00 10 00 10 00 66 e9 4b d4

ef

round = -92

state = 92 8c

buffer = 31 8d c0 b2 00 00 00 00 00 00 00 00 01 00 01 00 01 e9 4a d4 ff 00 10 00 10 00 10 00 66 e9 4b

d4

 ・

 ・

 ・

round = 0

state = 6a 6c

buffer = 7c 63 d7 8b 44 d5 a8 02 5f 29 87 6d 98 1f 46 e3 bc 45 72 32 9c d6 ca ed 0b fc 30 2f 8e 02 b4

85

round = 1

state = 61 1b

buffer = ef 7c 63 7f 8b 44 d5 a8 e1 5f 29 87 6d 98 1f 46 e3 32 45 72 32 9c d6 ca ed 0b fc 30 2f 8e 02

b4

round = 2

state = 42 26

buffer = d5 ef 7c b6 7f 8b 44 d5 ee e1 5f 29 87 6d 98 1f 46 cc 32 45 72 32 9c d6 ca ed 0b fc 30 2f 8e

02

round = 3

state = c8 05

buffer = 40 d5 ef 38 b6 7f 8b 44 ca ee e1 5f 29 87 6d 98 1f 76 cc 32 45 72 32 9c d6 ca ed 0b fc 30 2f

8e

round = 4

state = c7 d1

buffer = 46 40 d5 64 38 b6 7f 8b dc ca ee e1 5f 29 87 6d 98 e3 76 cc 32 45 72 32 9c d6 ca ed 0b fc 30

2f

B.2 Test vector for Enocoro-80

B.2.1 Key, initialization vector, and keystream triplets

This clause provides numerical test vectors consisting of an 80-bit key, a 64-bit initialization vector, and the
first 128 corresponding bits of keystream produced by Enocoro-80.

Key = 00 00 00 00 00 00 00 00 00 00

IV = 00 00 00 00 00 00 00 00

Keystream = c9 22 79 45 6e be 3b ff d8 d4 73 12 3e ce b9 57

Key = 00 01 02 03 04 05 06 07 08 09

IV = 00 10 20 30 40 50 60 70

Keystream = 9b 0a 97 39 4b 58 72 73 3d bf 9e e5 0c 33 73 3e

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 19

B.2.2 Sample internal states

The intermediate values of the state and buffer used to generate a keystream are listed below.

Key = 00 00 00 00 00 00 00 00 00 00

IV = 00 00 00 00 00 00 00 00

Keystream = c9 22 79 45 6e be 3b ff d8 d4 73 12 3e ce b9 57

round = -40

state = 4b d4

buffer = 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 66 e9

round = -39

state = fc 3e

buffer = a2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 66

round = -38

state = a1 46

buffer = 9a a2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

round = -37

state = 47 28

buffer = a1 9a a2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

round = -36

state = 0e d3

buffer = 47 a1 9a a2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

 ・

 ・

 ・

round = 0

state = 20 c9

buffer = 33 cb 98 13 d3 e0 5a 45 fc f3 ae b2 a7 0f 05 f7 0a 24 d2 4e

round = 1

state = 43 22

buffer = 6e 33 d8 98 13 33 e0 ad 45 fc f3 ae b2 a7 0f 05 f7 0a 24 d2

round = 2

state = 44 79

buffer = 91 6e ab d8 98 20 33 e5 ad 45 fc f3 ae b2 a7 0f 05 f7 0a 24

round = 3

state = e8 45

buffer = 60 91 b6 ab d8 b8 20 3c e5 ad 45 fc f3 ae b2 a7 0f 05 f7 0a

round = 4

state = 40 6e

buffer = e2 60 3a b6 ab 60 b8 87 3c e5 ad 45 fc f3 ae b2 a7 0f 05 f7

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

20 © ISO/IEC 2012 – All rights reserved

B.3 Test vector for Trivium

B.3.1 Key, initialization vector, and keystream triplets

This clause provides a numerical test vector consisting of an 80-bit key, an 80-bit initialization vector, and the
first 128 corresponding bits of keystream produced by TRIVIUM.

Note that TRIVIUM is specified at a bit level, and is indifferent to the order in which these bits are grouped into
bytes. In order to simplify the verification of this test vector on software platforms with different endianness
conventions, each group of eight bits is printed in two different hexadecimal formats. The first format maps the
first bit of each byte to the most significant bit, and is better suited for big-endian platforms; the second one
uses the reverse ordering, and is more natural on little-endian platforms.

80-bit Key: [MSB first] [LSB first]

 0...31: 11110000 01000110 10101101 00010000 F0 46 AD 10 0F 62 B5 08
 32...63: 11011010 01110101 10000000 00101010 DA 75 80 2A 5B AE 01 54
 64...79: 11100101 01011111 E5 5F A7 FA

80-bit IV: [MSB first] [LSB first]

 0...31: 00010100 11110001 01101111 10111010 14 F1 6F BA 28 8F F6 5D
 32...63: 00100011 11010100 01001001 10011111 23 D4 49 9F C4 2B 92 F9
 64...79: 00000110 11100011 06 E3 60 C7

First 128 bits of keystream: [MSB first] [LSB first]

 0...31: 00100101 00011100 00110110 10110110 25 1C 36 B6 A4 38 6C 6D
 32...63: 01101110 00100100 00011001 11111100 6E 24 19 FC 76 24 98 3F
 64...95: 01010111 10110001 01111101 11001110 57 B1 7D CE EA 8D BE 73
 96..127: 00101000 10100111 01111111 11111000 28 A7 7F F8 14 E5 FE 1F

B.3.2 Internal Sequence Bits

The values of the internal sequence bits ai, bi, and ci which were computed in order to generate the previous

test vector, are listed below.

 i: -1280 -1272 -1264 -1256 -1248 -1240 -1232 -1224
 | | | | | | | |
a[i]: 00000 00000000 11110000 01000110
b[i]: 0000 00010100 11110001
c[i]: 1110000 00000000 00000000 00000000 00000000 00000000

 i: -1216 -1208 -1200 -1192 -1184 -1176 -1168 -1160
 | | | | | | | |
a[i]: 10101101 00010000 11011010 01110101 10000000 00101010 11100101 01011111
b[i]: 01101111 10111010 00100011 11010100 01001001 10011111 00000110 11100011
c[i]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

[the 1152 blank rounds start here]

 i: -1152 -1144 -1136 -1128 -1120 -1112 -1104 -1096
 | | | | | | | |
a[i]: 01010101 01101000 10000110 11010011 10101100 00000001 01010111 00101010
b[i]: 11111000 10001000 00001010 00000000 00000111 11010100 01001010 10010111
c[i]: 10001010 00101110 11001110 00000011 00000000 00000001 10111100 10001101

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

© ISO/IEC 2012 – All rights reserved 21

 i: -1088 -1080 -1072 -1064 -1056 -1048 -1040 -1032
 | | | | | | | |
a[i]: 11011000 00100000 11110111 10110110 01011101 01100001 01110001 11110101
b[i]: 11001111 10001110 11101000 10001110 01101100 01000100 00110100 00110110
c[i]: 00101111 00110010 00000000 11001100 11011101 00000010 10100100 11011001

 i: -1024 -1016 -1008 -1000 -992 -984 -976 -968
 | | | | | | | |
a[i]: 10110001 00000011 10000111 10001001 00011100 10010001 11000100 01011101
b[i]: 01111100 01011101 11011010 10001001 11110100 01101000 00100010 10011110
c[i]: 11111001 10101100 11100000 00000011 01100001 11101010 11010111 11011111

 i: -960 -952 -944 -936 -928 -920 -912 -904
 | | | | | | | |
a[i]: 11010000 01011000 11111110 00111001 11011011 01101010 00001100 10101111
b[i]: 11010011 10010100 10000001 00101010 10100101 00101111 11101100 11111110
c[i]: 11110001 11101100 10110101 11100001 11111001 11001011 11100100 10011001

 i: -896 -888 -880 -872 -864 -856 -848 -840
 | | | | | | | |
a[i]: 11010010 11110110 00101110 01011110 00000001 01101001 11001101 10111010
b[i]: 10011010 11111011 01010010 10101010 11110001 10111000 00100101 01000011
c[i]: 10100001 00011001 01100110 10110011 11000100 01010000 00010110 11000111

 i: -832 -824 -816 -808 -800 -792 -784 -776
 | | | | | | | |
a[i]: 11111010 00010101 11011101 01000110 11001000 01101000 00001001 10101111
b[i]: 10111000 00010111 00000101 11111100 01010011 00000000 00000110 10111110
c[i]: 01100100 11001110 10000010 01100110 10010000 01101010 00010101 10011111

 i: -768 -760 -752 -744 -736 -728 -720 -712
 | | | | | | | |
a[i]: 11010011 00001010 10000110 11010011 10101101 11001110 00001110 10000111
b[i]: 00100100 11011101 01101001 11010101 01110101 01011100 00100100 00010101
c[i]: 00111111 10111001 01101011 01100111 11001111 11111100 00001000 01100101

 i: -704 -696 -688 -680 -672 -664 -656 -648
 | | | | | | | |
a[i]: 10110100 10101011 00101111 00111011 01000001 11010111 11110001 11011110
b[i]: 10101001 01111010 01101111 01000111 11110100 01110010 00101000 01111100
c[i]: 00100101 11100001 10110111 01101111 00000111 11010001 01110101 11101001

 i: -640 -632 -624 -616 -608 -600 -592 -584
 | | | | | | | |
a[i]: 10101011 00001100 10010100 10111010 00001010 00110000 10101110 00110011
b[i]: 10001011 11001100 11011010 01101000 11001000 00010011 10110111 01000101
c[i]: 10010111 00011010 01100011 10101000 01010011 11111001 11001100 00000111

 i: -576 -568 -560 -552 -544 -536 -528 -520
 | | | | | | | |
a[i]: 01100111 01111000 11101101 11101100 10101000 01111000 11000000 00000101
b[i]: 00011101 11110000 10011101 00101000 10010011 11001011 10101101 00010010
c[i]: 01100100 00111101 01111101 00110000 10101101 00101001 01010001 10011100

 i: -512 -504 -496 -488 -480 -472 -464 -456
 | | | | | | | |
a[i]: 10001001 01100100 00110000 00010110 11110110 00011110 01011010 11111100
b[i]: 01010111 01001111 11111111 00000110 00000010 01110111 10001100 11001010
c[i]: 10000100 11000011 11011000 11000010 00110100 10110110 10110101 01111110

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

ISO/IEC 29192-3:2012(E)

22 © ISO/IEC 2012 – All rights reserved

 i: -448 -440 -432 -424 -416 -408 -400 -392
 | | | | | | | |
a[i]: 00010111 10011010 10101101 11100010 10011101 11000100 01010100 00000001
b[i]: 10010010 11011110 01010001 00000110 00001110 10111100 00011111 10011000
c[i]: 00011011 11001000 01100011 01000100 10110111 10010010 11011000 00100100

 i: -384 -376 -368 -360 -352 -344 -336 -328
 | | | | | | | |
a[i]: 10010101 11001010 00100100 01000011 11010010 00000110 11101101 00111000
b[i]: 11000111 11111111 00111000 01100001 00101110 10111100 11011100 11100101
c[i]: 10100000 00100000 10100111 10000001 11000101 10100011 10001000 11111111

 i: -320 -312 -304 -296 -288 -280 -272 -264
 | | | | | | | |
a[i]: 11101010 00101111 10001011 11100101 10011111 10110001 10010101 00010111
b[i]: 01101101 00110011 00110110 11110000 10100011 01010100 00100011 10011011
c[i]: 00100001 10010100 00101100 00000011 01111101 10110100 11110110 00000000

 i: -256 -248 -240 -232 -224 -216 -208 -200
 | | | | | | | |
a[i]: 01011100 00110001 11111000 00010100 11100001 10010110 11110110 00000000
b[i]: 11011001 01100101 10111100 11111110 11101101 10100010 10001011 00101000
c[i]: 10110010 10101110 00111000 00100011 11011010 10110001 10101101 10010010

 i: -192 -184 -176 -168 -160 -152 -144 -136
 | | | | | | | |
a[i]: 11101110 01000101 00011110 00100010 00101101 10100001 00111001 10111000
b[i]: 01010110 11111111 10110011 01001000 10101000 00001110 11001011 10100001
c[i]: 11110101 01111100 11100011 00011100 11010111 11001101 00100100 00010110

 i: -128 -120 -112 -104 -96 -88 -80 -72
 | | | | | | | |
a[i]: 00001010 01100100 11100101 11010001 01011011 10111000 00101011 11010010
b[i]: 00001011 11001001 11101100 01111101 11110100 01100011 11011111 01000100
c[i]: 00001001 00011110 01011101 10000000 10100011 11110010 11000101 01110011

 i: -64 -56 -48 -40 -32 -24 -16 -8
 | | | | | | | |
a[i]: 10001100 01001111 00000001 11110100 11101010 00011101 01100010 01001110
b[i]: 11010001 00010111 11001000 10010011 10110000 00110010 11101101 11110000
c[i]: 11101110 11001100 01110011 10111101 01110100 11010000 11111100 11110011

[the keystream generation starts here]

 i: 0 8 16 24 32 40 48 56
 | | | | | | | |
a[i]: 10110000 11010000 00101100 10000111 01110001 00001100 00111011 10010111
b[i]: 00110000 11000001 11100010 10110110 11111010 01010001 10001001 11110011
c[i]: 10001101 00110110 00000100 10001000 10001001 11101111 10110010 10000001

z[i]: 00100101 00011100 00110110 10110110 01101110 00100100 00011001 11111100

 i: 64 72 80 88 96 104 112 120
 | | | | | | | |
a[i]: 11111101 01010000 01101011 11100100 00000011 10011000 10110111 10000000
b[i]: 01001010 10011011 11011010 10010001 11011000 00011001 00000011 11111110
c[i]: 00010111 10011100 11101111 00010011 11111101 11110100 01101100 11111001

z[i]: 01010111 10110001 01111101 11001110 00101000 10100111 01111111 11111000

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 29
19

2-3
:20

12

https://iecnorm.com/api/?name=e21aaca77dc20201ec07757e3388d049

	1 Scope
	2 Normative reference
	3 Terms and definitions
	4 Symbols and operational terms
	5 General models for stream ciphers
	5.1 General
	5.2 Synchronous Keystream generators
	5.3 Output functions
	5.3.1 General model of output function
	5.3.2 Binary-additive output function

	6 Dedicated keystream generators
	6.1 Enocoro-128v2 keystream generator
	6.1.1 Introduction to Enocoro-128v2
	6.1.2 Initialization function Init
	6.1.3 Next-state function Next
	6.1.4 Keystream function Strm
	6.1.5 Function ρ
	6.1.6 Function λ
	6.1.7 Function L8432
	6.1.8 Function S8

	6.2 Enocoro-80 keystream generator
	6.2.1 Introduction to Enocoro-80
	6.2.2 Initialization function Init
	6.2.3 Next-state function Next
	6.2.4 Keystream function Strm
	6.2.5 Function ρ
	6.2.6 Function λ
	6.2.7 Function L8431

	6.3 Trivium keystream generator
	6.3.1 Overview
	6.3.2 Internal State
	6.3.3 Initialization function Init
	6.3.4 Next-state function Next
	6.3.5 Keystream function Strm

