INTERNATIONAL STANDARD # IEC 61000-3-3 Edition 1.2 2005-10 Edition 1:1994 consolidated with amendments 1:2001 and 2:2005 Electromagnetic compatibility (EMC) Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current \$16 A per phase and not subject to conditional connection This **English-language** version is derived from the original **bilingual** publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages. ECNORM.COM: Cild # **Publication numbering** As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. # Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. AND2:2005 C5V # Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC catalogue of publications (see below) in addition to new editions, amendments and corrigence. Information on the subjects under consideration and work in progress and artaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: IEC Web Site (<u>www.iec.ch</u>) # . Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/searchsub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda. ## IEC Just Published This summary of recently issued publications (www.iec.ch/online_news/ justpub) is also available by email. Please contact the customer Service Centre (see below) for further information. # Customer Service Centre If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre: Email: custserv@iec.ch/ Tel: +41 22 919 02 11 Fax: \+41 22 919 03 00 ECNORM. Com. Circle # INTERNATIONAL STANDARD # IEC 61000-3-3 Edition 1.2 2005-10 Edition 1:1994 consolidated with amendments 1:2001 and 2:2005 Electromagnetic compatibility (EMC) Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current \$16 A per phase and not subject to conditional connection © IEC 2005 Copyright - all rights reserved No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch ECNORM. COM. PRICE CODE CM # CONTENTS | FOREWORD5 | | | | | | | |---|---|--|--|----|--|--| | INT | RODL | JCTION | | 9 | | | | | | | | | | | | 1 | | Scope | | | | | | 2 | | Normative references | | | | | | 3 | Defin | Definitions | | | | | | 4 | Assessment of voltage changes, voltage fluctuations and flicker | | | | | | | | 4.1 Assessment of a relative voltage change, "d" | | | | | | | | 4.2 | Assessment of the short-term flicker value, P_{st} | | | | | | | | 4.2.1 | Flickermeter | 19 | | | | | | 4.2.2 | Simulation method | 19 | | | | | | 4.2.3 | Analytical method | 19 | | | | | | 4.2.4 | Use of P _{st} = 1 curve | 21 | | | | | 4.3 | | sment of long-term flicker value, P _{lt} | 21 | | | | 5 | Limits | 3 | | 21 | | | | 6 | Test | | ins | | | | | | 6.1 | Genera | al | 23 | | | | | 6.2 | | rement accuracy | 25 | | | | | 6.3 | Test su | upply voltage | 25 | | | | | 6.4 | Refere | nce impedance | 25 | | | | | 6.5 | Observ | vation periodvation period | 27 | | | | | 6.6 | Genera | al test conditions | 27 | | | | | | , | | | | | | | | (normat
ic equip | ive) Application of limits and type test conditions | 37 | | | | | • | | | 07 | | | | cha | naes (| normat
caused | ive) Test conditions and procedures for measuring d _{max} voltage by manual switching | 53 | | | | | 900 | ^ | | | | | | Fig | ure 1 - | - Refere | ence network for single-phase and three-phase supplies derived | | | | | fror | n a thr | ee-pha | se four-wire supply | 29 | | | | Fig | ure 2 - | - Histo | ram evaluation of <i>U(t)</i> | 31 | | | | Fig | ure 3 - | - Relati | ve voltage change characteristic | 31 | | | | Fig | ure 4 - | - Curve | for P _{st} =1 for rectangular equidistant voltage changes | 33 | | | | Figure 5 – Shape factors F for double-step and ramp-voltage characteristics | | | | | | | | Fig | Figure 6 – Shape factors F for rectangular and triangular voltage characteristics | | | | | | | Fig | ure 7 - | - Shape | e factor F for motor-start voltage characteristics | | | | | | | | ont times | 35 | | | | Tah | nle 1 _ | Assess | sment method | 17 | | | | | Table A.1 – Electrode parameters | | | | | | | Table A.2 – Frequency factor <i>R</i> related to repetition rate " <i>r</i> " | | | | | | | # INTERNATIONAL ELECTROTECHNICAL COMMISSION # **ELECTROMAGNETIC COMPATIBILITY (EMC) –** *AMD2:2005C5 Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection # **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each rechilical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to the or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any hature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising on of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent ights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61000-3-3 has been prepared by subcommittee 77A: Lowtequency phenomena, of IEC technical committee 77: Electromagnetic compatibility. This consolidated version of IEC 61000-3-3 consists of the first edition (1994) [documents 77A(BC)38 and 77A(BC)40], its amendment 1 (2001) [documents 77A/326/FDIS and 77A/328/RVD] and its amendment 2 (2005) [documents 77A/493/FDIS and 77A/502/RVD]. The technical content is therefore identical to the base edition and its amendments and has been prepared for user convenience. It bears the edition number 1.2. A vertical line in the margin shows where the base publication has been modified by amendments 1 et 2. Annexes A and B form an integral part of this standard. The committee has decided that the contents of the base publication and its amendments will remain unchanged until the maintenance result date indicated on the IEC web site under *AMD2:2005 CS "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - reconfirmed, - withdrawn, - replaced by a revised edition, or - amended. # INTRODUCTION IEC 61000 is published in separate parts according to the following structure: Part 1: General General considerations (introduction, fundamental principles) Definitions, terminology Part 2: Environment Description of the environment Classification of the environment Compatibility levels Part 3: Limits **Emission limits** Immunity limits (in so far as they do not fall under the responsibility of product committees) Part 4: Testing and measurement techniques Measurement techniques Testing techniques Part 5: Installation and mitigation guidelines Installation guidelines Mitigation methods and devices Part 9: Miscellaneous Each part is further subdivided into sections which are to be published either as International Standards or as Technical Reports. These standards and reports will be published in chronological order and numbered accordingly. This part is a Product Family Standard. The limits in this standard relate to the voltage changes experienced by consumers connected at the interface between the public supply low-voltage network and the equipment user's installation. Consequently, if the actual impedance of the supply at the supply terminals of equipment connected within the equipment user's installation exceeds the test impedance, it is possible that supply disturbance exceeding the limits may occur. 20 *AMD2:2005 CS # **ELECTROMAGNETIC COMPATIBILITY (EMC) –** Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment MD2:2005 CS with rated current ≤16 A per phase and not subject to conditional connection # Scope This part of IEC 61000 is concerned with the limitation of voltage fluctuations and flicker impressed on the public low-voltage system. It specifies limits of voltage changes which may be produced by an equipment tested under specified conditions and gives guidance on methods of assessment. This part of IEC 61000 is applicable to electrical and electronic equipment having an input current equal to or less than 16 A per phase, intended to be connected to public low-voltage distribution systems of between 220 V and 250 V line to heutral at 50 Hz, and not subject to conditional connection. Equipment which does not comply with the limits of this part of IEC 61000 when tested with the reference impedance Z_{ref} of 6.4, and which therefore cannot be declared compliant with this part, may be retested or evaluated to show conformity with IEC 61000-3-11. Part 3-11 is applicable to equipment with rated input current ≤75 A per phase and subject to conditional connection. The tests according to this part are type tests. Particular test conditions are given in annex A and the test circuit is shown in figure 1. NOTE The limits in this part of IEC 61000 are based mainly on the subjective severity of flicker imposed on the light from 230 V/60 W colled-coil filement lamps by fluctuations of the supply voltage. For systems with nominal voltage less than 220 V inc to neutral and/or frequency of 60 Hz, the limits and reference circuit values are under consideration. # Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60050(161):1990, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility IEC 60335-2-11:1993, Safety of household and similar electrical appliances - Part 2: Particular requirements for tumbler dryers IEC 60725:1981, Considerations on reference impedances for use in determining the 102:2005 (5) disturbance characteristics of household appliances and similar electrical equipment IEC 60868:1986, Flickermeter – Functional and design specifications 1) Amendment No. 1 (1990) IEC 60974-1: Arc welding equipment – Part 1: Welding power sources IEC 61000-3-2: Electromagnetic compatibility (EMC) - Part 3-2: Limits -Limits for harmonic current emissions (equipment input current ≤16 A per phase) IEC 61000-3-5:1994, Electromagnetic compatibility (EMC) - Part 3: Limits -Section 5: Limitations of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than 16 A IEC 61000-3-11: Electromagnetic compatibility (EMC) - Part 3 11: Limits - Limitation of voltage changes, voltage fluctuations and flicker in public lowvoltage supply systems -Equipment with rated current ≤75 A and subject to conditional connection # **Definitions** For the purpose of this part of IEC 61000-3, the following definitions apply. # 3.1 # r.m.s. voltage shape, $\mathcal{U}(t)$ the time function of r.m.s. voltage, evaluated as a single value for each successive half period between zero-crossings of the source voltage (see figure 2) # 3.2 # voltage change characteristic, △U(t) the time function of the r.m.s. voltage change evaluated as a single value for each successive half period between zero-crossings of the source voltage between time intervals in which the voltage is in a steady state condition for at least 1 s (see figure 2) NOTE Since this characteristic is only used for assessments using calculations, the voltage in the steady-state condition is assumed to be constant within the measurement accuracy (see 6.2). # 3.3 # maximum voltage change characteristic, ΔU_{max} the difference between maximum and minimum r.m.s. values of a voltage change characteristic (see figure 2) ¹⁾ IEC 60868 will be withdrawn and replaced by IEC 61000-4-15 in 2003. Flickermeters complying with IEC 61000-4-15 may also be used for flicker measurements associated with this part of IEC 61000-3. ## 3.4 # steady-state voltage change, ΔU_c the difference between two adjacent steady-state voltages separated by at least one voltage change characteristic (see figure 2) AMD2:2005 CS NOTE Definitions 3.2 to 3.4 relate to absolute phase-to-neutral voltages. The ratios of these magnitudes to the phase-to-neutral value of the nominal voltage (U_n) of the reference network in figure 1 are called: relative voltage change characteristic: d(t)(definition 3.2); maximum relative voltage change: d_{max} (definition 3.3); relative steady-state voltage change: d_c (definition 3.4). These definitions are explained by the example in figure 3. # 3.5 # voltage fluctuation series of changes of r.m.s. voltage evaluated as a single value for each successive halfperiod between zero-crossings of the source voltage # 3.6 # flicker impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time. [IEV 161-08-13] # short-term flicker indicator, Pst the flicker severity evaluated over a short period (in minutes); $P_{st} = 1$ is the conventional threshold of irritability # 3.8 # long-term flicker indicator, Plt the flicker severity evaluated over a long period (a few hours) using successive P_{st} values # 3.9 # flickermeter: an instrument designed to measure any quantity representative of flicker NOTE Measurements are normally R_{st} and P_{It}. [IEV 161-08-14] # 3.10 # flicker impression time, to value with a time dimension which describes the flicker impression of a voltage change characteristic # 3.11 # conditional connection connection of equipment requiring the user's supply at the interface point to have an impedance lower than the reference impedance $Z_{ m ref}$ in order that the equipment emissions comply with the limits in this part. NOTE Meeting the voltage change limits may not be the only condition for connection; emission limits for other phenomena such as harmonics, may also have to be satisfied. # 3.12 # interface point interface between a public supply network and a user's installation # Assessment of voltage changes, voltage fluctuations and flicker ### Assessment of a relative voltage change, "d" 4.1 11,005 CS The basis for flicker evaluation is the voltage change characteristic at the terminals of the equipment under test, that is the difference ΔU of any two successive values of the phaseto-neutral voltages $U(t_1)$ and $U(t_2)$: $$\Delta U = U(t_1) - U(t_2)$$ The r.m.s. values $U(t_1)$, $U(t_2)$ of the voltage shall be measured or calculated. When deducing r.m.s. values from oscillographic waveform, account should be taken of any waveform distortion that may be present. The voltage change ΔU is due to the change of the voltage drop across the complex reference impedance \underline{Z} , caused by the complex fundamental input current change, $\Delta I_{\rm c}$, of the equipment under test. $\Delta I_{\rm p}$ and $\Delta I_{\rm q}$ are the active and reactive parts respectively of the current change, $\Delta \underline{I}$. $$\Delta \underline{I} = \Delta I_{p} - \mathbf{j} \cdot \Delta I_{q} = \underline{I}(t_{1}) - \underline{I}(t_{2})$$ (2) NOTE 1 I_0 is positive for lagging currents and negative for leading currents. NOTE 2 If the harmonic distortion of the currents $\underline{l}(t_1)$ and $\underline{l}(t_2)$ is less than 0 %, the total r.m.s. value may be applied instead of the r.m.s. values of their fundamental currents NOTE 3 For single-phase and symmetrical three-phase equipment the voltage change can, provided X is positive (inductive), be approximated to: $$\Delta U = \Delta I_p \cdot R + \Delta I_0$$ (3) where ΔI_p and ΔI_q are the active and reactive parts respectively of the current change ΔI_z . R and X are the elements of the complex reference impedance \mathbb{Z} (see figure 1). The relative voltage change is given by: $$^{"}Q" \stackrel{>}{=} \Delta U/U_{n} \tag{4}$$ ### Assessment of the short-term Nicker value, Pst 4.2 The short-term flicker value Pst is defined in amendment 1 to IEC 60868. Table 1 shows alternative methods for evaluating $P_{\rm st}$, due to voltage fluctuations of different types: Table 1 - Assessment method | Types of voltage fluctuations | Methods of evaluation P_{st} | |---|---| | All voltage fluctuataions (on-line evaluation) | Direct measurement | | All voltage fluctuations where $U(t)$ is defined | Simulation
Direct measurement | | Voltage change characteristics according to figures 5 to 7 with an occurrence rate less than 1 per second | Analytical method
Simulation
Direct measurement | | Rectangular voltage change at equal intervals | Use of the P _{st} = 1 curve of figure 4 | ### 4.2.1 **Flickermeter** All types of voltage fluctuations may be assessed by direct measurement using a flickermeter which complies with the specification given in IEC 60868, and is connected as described in clause 6 of this part. This is the reference method for application of the limits. In the case where the relative voltage change characteristic d(t) is known, $P_{\rm st}$ can be evaluated using a computer simulation. 4.2.3 Analytical method For voltage change characteristics of the state t be evaluated by an analytical method using equations (5) and (6). NOTE 1 The value of P_{st} obtained using this method is expected to be within $\pm 10\%$ of the result which would be obtained by direct measurement (reference method). NOTE 2 This method is not recommended if the time duration between the end of the voltage change and the start of the next is less than 1 s. ### 4.2.3.1 Description of the analytical method Each relative voltage change characterisitic shall be expressed by a flicker impression time, $t_{\rm f}$, in seconds: $$t_f = 2.3 (F a_{\text{max}})^{3.2}$$ (5) - the maximum relative voltage change digital expressed as a percentage of the nominal voltage: - the shape factor, F, is associated with the shape of the voltage change characteristic (see 4.2.3.2). The sum of the flicker impression times, Σt_i , of all evaluation periods within a total interval of the length $T_{\rm D}$, in seconds, is the basis for the $P_{\rm st}$ evaluation. If the total time interval $T_{\rm D}$ is chosen according to 6.5, it is an "observation period", and: $$P_{\rm st} = (\Sigma t_{\rm f}/T_{\rm p})^{1/3,2}$$ (6) ### 4.2.3.2 Shape factor The shape factor, F, converts a relative voltage change characteristic d(t) into a flicker equivalent relative step voltage change $(F \cdot d_{max})$. NOTE 1 The shape factor, F, is equal to 1,0 for step voltage changes. NOTE 2 The relative voltage change characteristic may be measured directly (see figure 1) or calculated from the r.m.s. current of the equipment under test (see equations (1) to (4)). The relative voltage change characteristic shall be obtained from a histogram of $\mathit{U}(t)$ (see figure 3). The shape factor may be deduced from figures 5, 6 and 7, provided that the relative voltage change characteristic matches a characteristic shown in the figures. If the characteristics match, proceed as follows: - find the maximum relative voltage change d_{max} (according to figure 3); and - find the time T(ms) appropriate to the voltage change characteristic as shown in figures 5, 6 and 7 and, using this value, obtain the required shape factor, F. NOTE 3 Extrapolation outside the range of the figures may lead to unacceptable errors. In the case of rectangular voltage changes of the same amplitude "d" separated by equal time intervals, the curve of figure 4 may be used to deduce the amplitude corresponding to Pole = 4 for a particular rate of repetition; this amplitude is called d' T' the voltage change "a" in the voltage change "d" is then given by $P_{st} = d/d_{lim}$. ### 4.3 Assessment of long-term flicker value, Plt The long-term flicker value P_{lt} is defined in IEC 60868, appendix A.2, and shall be applied with the value of N = 12 (see 6.5). It is generally necessary to assess the value of $P_{\rm lt}$ for equipment which is normally operated for more than 30 min at a time. ### Limits 5 The limits shall be applicable to voltage fluctuations and flicker at the supply terminals of the equipment under test, measured or calculated according to clause 4 under test conditions described in clause 6 and annex A. Tests made to prove compliance with the limits are considered to be type tests. The following limits apply: - the value of Pst shall not be greater than 1,0 - the value of Plt shall not be greater than 0,65; - the value of d(t) during a voltage change shall not exceed 3,3 % for more than 500 ms; - the relative steady-state voltage change, d_c , shall not exceed 3,3 %; - the maximum relative voltage change d_{max} , shall not exceed - a) 4 % without additional conditions; - b) 6% for equipment which is: - switched manually, or - switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption. NOTE. The cycling frequency will be further limited by the P_{st} and P_{lt} limit. For example: a d_{max} of 6 % producing a rectangular voltage change characteristic twice per hour will give a Pit of about 0,65. # c) 7 % for equipment which is - attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or - switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption. In the case of equipment having several separately controlled circuits in accordance with 6.6 limits b) and c) shall apply only if there is delayed or manual restart after a power supply interruption; for all equipment with automatic switching which is energised immediately on restoration of supply after a power supply interruption, limits a) shall apply; for all equipment with manual switching, limits b) or c) shall apply depending on the rate of switching. $P_{\rm st}$ and $P_{\rm lt}$ requirements shall not be applied to voltage changes caused by manual switching. The limits shall not be applied to voltage changes associated with emergency switching or emergency interruptions. # 6 Test conditions # 6.1 General Tests need not be made on equipment which is unlikely to produce significant voltage | fluctuations or flicker. It may be necessary to determine, by examination of the circuit diagram and specification of the equipment and by a short functional test whether significant voltage fluctuations are likely to be produced. For voltage changes caused by manual switching, equipment is deemed to comply without further testing if the maximum r.m.s. input current (including inrush current) evaluated over each 10 ms half-period between zero crossings does not exceed 20 A, and the supply current after inrush is within a variation band of 1,5 A. If measurement methods are used, the maximum relative voltage change d_{max} caused by manual switching shall be measured in accordance with annex B. Tests to prove the compliance of the equipment with the limits shall be made using the test circuit in figure 1 The test circuit consists of: - the test supply voltage (see 6.3); - the reference impedance (see 6.4); - the equipment under test (see annex A); - if necessary, a flickermeter (see IEC 60868). The relative voltage change d(t) may be measured directly or derived from the r.m.s. current as described in 4.1. To determine the $P_{\rm st}$ value of the equipment under test, one of the methods described in 4.2 shall be used. In case of doubt, the $P_{\rm st}$ shall be measured using the reference method with a flickermeter. :2005 CS NOTE If balanced multiphase equipment is tested, it is acceptable to measure only one of the three line-to-neutral voltages. ### 6.2 Measurement accuracy The magnitude of the current shall be measured with an accuracy of ±1 % or better. If instead of active and reactive current the phase angle is used, its error shall not exceed ±2°. The relative voltage change "d" shall be determined with a total accuracy better than ±8 % with reference to the maximum value d_{max} . The total impedance of the circuit excluding the appliance under test, but including the internal impedance of the supply source shall be equal to the reference impedance. The stability and tolerance of this total impedance shall be adequate to ensure that the overall accuracy of ±8 % is achieved during the whole assessment procedure. NOTE The following method is not recommended where the measured values are close to the limits. When the source impedance is not well defined, for example where the source impedance is subject to unpredictable variations, an impedance having resistance and inductance equal to the reference impedance may be connected between the supply and the terminals of the equipment under test. Measurements can then be made of the voltages at the source side of the reference impedance and at the equipment terminals. In that case, the maximum relative voltage change, d_{max} , measured at the supply terminals shall be less than 20 % of the maximum value d_{max} measured at the equipment terminals. ### 6.3 Test supply voltage The test supply voltage (open-circuit voltage) shall be the rated voltage of the equipment. If a voltage range is stipulated for the equipment, the test voltage shall be 230 V single-phase or 400 V three-phase. The test voltage shall be maintained within ±2 % of the nominal value. The frequency shall be 50 Hz ±0.5 %. The percentage total harmonic distortion of the supply voltage shall be less than 3 %. Fluctuations of the test supply voltage during a test may be neglected if the $P_{\rm st}$ value is less than 0,4. This condition shall be verified before and after each test. ### 6.4 Reference impedance For equipment under test the reference impedance, $\underline{Z}_{ref.}$ according to IEC 60725, is a conventional impedance used in the calculation and measurement of the relative voltage change "d", and the $P_{\rm st}$ and $P_{ m lt}$ values. The impedance values of the various elements are given in figure 1. ### 6.5 Observation period The observation period, T_p , for the assessment of flicker values by flicker measurement, flicker simulation, or analytical method shall be: for P_{st}, $T_{\rm p}$ = 10 min; The observation period shall include that part of the whole operation cycle in which the equipment under test produces the most unfavourable sequence of voltage changes. For the assessment of $P_{\rm st}$, the cycle of operation shall be repeated continuously, unless stated otherwise in annex A. The minimum time to restart the equipment shall be included in this observation period when testing equipment that stops automatically at the end of a cycle of operation which lasts for less than the observation period. For P_{It} assessment, the cycle of operation shall not be repeated, unless stated otherwise in annex A, when testing equipment with a cycle of operation of less than 2 h and which is not normally used continuously. NOTE For example, in the case of equipment with a cycle of operation tasting 45 min, five consecutive $P_{\rm st}$ values will be measured during a total period of 50 min, and the remaining seven Rovalues in the 2 h observation period will be deemed to be zero. ### 6.6 General test conditions The test conditions for the measurement of voltage fluctuations and flicker are given below. For equipment not mentioned in annex A, controls or automatic programs shall be set to produce the most unfavourable sequence of voltage changes, using only those combinations of controls and programmes which are mentioned by the manufacturer in the instruction manual, or are otherwise likely to be used. Particular test conditions for equipment not included in annex A are under consideration. The equipment shall be tested in the condition in which it is supplied by the manufacturer. Preliminary operation of motor dives may be needed before the tests to ensure that results corresponding to those of normal use are obtained. NOTE Operating conditions include mechanical and/or electrical loading conditions. For motors, locked-rotor measurements may be used to determine the largest r.m.s. voltage change, d_{max}, occurring during motor starting. 1 For equipment having several separately controlled circuits, the following conditions apply: - each circuit shall be considered as a single item of equipment if it is intended to be used independently, provided that the controls are not designed to switch at the same instant; - $f{\psi}$ the control of separate circuits are designed to switch simultaneously, the group of circuits so controlled are considered as a single item of equipment. For control systems regulating part of a load only, the voltage fluctuations produced by each variable part of the load alone shall be considered. Detailed type test conditions for some equipment are given in annex A. EUT equipment under test M measuring equipment S supply source consisting of the supply voltage generator G and reference impedance Z with the elements: $$R_{A} = 0.24 \Omega;$$ $$jX_A = 0.15 \Omega \text{ à } 50 \text{ Hz};$$ $$R_{\rm N} = 0.16 \ \Omega;$$ $$jX_{\rm N} = 0,10 \, \Omega$$ à 50 Hz The elements include the actual generator impedance: When the source impedance is not well defined, see 6.2. G voltage source in accordance with 6.3. NOTE In general, three-phase loads are balanced, and $R_{\rm N}$ and $X_{\rm N}$ can be neglected, as there is no current in the neutral wire. Figure 1 Reference network for single-phase and three-phase supplies derived from a three-phase, four-wire supply Figure 4 – Curve for P_{st} =1 for rectangular equidistant voltage changes Figure 5 – Shape factors F for double-step and ramp-voltage characteristics Figure 6 - Shape factors F for rectangular and triangular voltage characteristics NOTE $T_{t} = t_{3} - t_{2}$, $T_{f} = t_{2} - t_{1}$ (see figure 3). Figure 7 – Shape factor F for motor-start voltage characteristics having various front times # Annex A (normative) # Application of limits and type test conditions for specific equipment # A.1 Test conditions for cookers For cookers designed for use in domestic premises, the evaluation of P_{lt} shall not be required. The tests of $P_{\rm st}$ shall be performed at steady-state temperature conditions, unless stated otherwise. Each heater shall be tested separately as follows. # A.1.1 Hotplates Hotplates shall be tested using standard saucepans with diameter, height and water quantity as follows: | Diameter of the hotplate | HANGING OF THE HOT - 122 VIV | Quantity of wate | |--------------------------|------------------------------|------------------| | (mm) | / (mgn) | (g) | | 145 | about 140 | 1 000 ± 50 | | 180 | about 140 | 1 500 ± 50 | | 220 | about 120 | 2 000 ± 50 | Possible losses by evaporation have to be compensated for during the time of measurement. In all of the following tests the hotplate shall comply with the limits given in clause 5. - a) Boiling temperature range: set the control to the position where the water just boils. The test is made five times and the mean value of the test results calculated. - b) Frying temperature range: fill the pot, without a lid, with silicone oil to 1,5 times the quantity of water shown in the table. Set the control to a temperature of 180 °C measured by a thermoscuple in the geometric centre of the oil. - c) Total range of power settings: the total power range shall be checked continuously during a 10 min observation period. If control switches have discrete stages, test all stages up to a maximum of 20 stages. If there are no discrete stages, divide the total range into 10 equally spaced steps. The measurements shall then be made starting at the highest power stage. ### A.1.2 **Baking ovens** The oven shall be tested empty with the door closed. Adjust the control so that a thermocouple fixed in the geometric centre measures a mean temperature of 220 °C for conventional ovens and 200 °C for hot air oven. The grill shall be tested empty with the door closed, if not otherwise stated by the manufacturer. If a control is available it shall be set to the lowest, the medium and the highest setting for grilling operation; and the worst result recorded ### A.1.4 Baking oven/grill combinations The oven/grill combination shall be tested empty with the door closed. Adjust the control so that a thermocouple fixed in the geometric centre measures a mean temperature of 250 °C, or that available temperature closest to this value. ### A.1.5 Microwave ovens The microwave oven or the microwave function of a combination oven shall be tested at the lowest, the medium and a third stage which is the highest adjustable power less than or equal to 90 % of the maximum power. Load the oven with a glass bowl containing 1 000 ± 50 g of water. ### **A.2** Test conditions for lighting and similar equipment The following test conditions shall apply to equipment with a primary function of generating and/or regulating and/or distributing optical adiation by means of incandescent or discharge lamps or LEDs. Such equipment shall be tested with a lamp of that power for which the equipment is rated. If lighting equipment includes more than one lamp, all lamps shall be in use. $P_{\rm st}$ and $P_{\rm lt}$ evaluations are required only for lighting equipment which is likely to produce flicker; for example; disco lighting and automatically regulated equipment. No limits shall apply to lamps. Incandescent temp luminaires with ratings less than or equal to 1 000 W and discharge lamp luminaires with ratings less than or equal to 600 W, are deemed to comply with the d_{max} limits in this standard and are not required to be tested. Luminaires with higher ratings, which cannot comply with this part of IEC 61000, shall be subject to conditional connection in accordance with IEC 61000-3-11. Ballasts are deemed to be part of luminaires and are not required to be tested. ### **A.3** Test conditions for washing machines The washing machine shall be tested during a complete laundry programme incorporating the normal wash-cycle filled with the rated load of double hemmed, pre-washed cotton cloths, MD2:2005 CS size approximately 70 cm \times 70 cm, dry weight from 140 g/m² to 175 g/m². The temperature of the fill water shall be - 65 °C ± 5 °C for washing machines without heater elements; - 15 °C ± 5 °C for other washing machines. For washing machines with a programmer, the 60 °C cotton programme without pre-wash shall be used. If the washing machine does not incorporate a programmer, the water is heated to 90°C ± 5°C or lower if steady conditions are established, before starting the first wash period. Neglect simultaneous switching of heater and motor in the evaluation of d_c , d_{max} and d(t). $P_{\rm st}$ and $P_{\rm lt}$ shall be evaluated. ### Test conditions for tumbler dryers **A.4** The tumble dryer shall be operated with the drum tilled with textile material having a mass in the dry condition of 50 % of the maximum load stated in the instruction for use. The textile material consists of pre-washed double-hemmed cotton sheets, approximately 70 cm \times 70 cm, beying a mass between 140 g/m² and 175 g/m² in the dry condition. The material shall be soaked with water having a temperature of 25 °C ± 5 °C and a mass of 60 % of that of the textile material If a control of the drying degree is available, the test shall be performed at the maximum and minimum settings. Pst and Pt shall be evaluated. ### **A.5** Test conditions for refrigerators Refrigerators shall operate continuously with the door closed. Adjust the thermostat to the mid-value of the adjusting range. The cabinet shall be empty and not heated. The measurement shall be made after a steady state has been reached. $P_{\rm st}$ and $P_{\rm lt}$ shall not be evaluated. ### **A.6** Test conditions for copying machines, laser printers and similar appliances The appliance shall be tested for P_{st} at the maximum rate of copying. The original to be copied/printed is white blank paper and the copy paper shall have a weight of 80 g/m2 if not otherwise stated by the manufacturer. Obtain the P_{lt} value in the stand-by mode. ### **A.7** Test conditions for vacuum cleaners For vacuum cleaners, P_{st} and P_{lt} shall not be evaluated. ### **A.8** Test conditions for food mixers For food mixers, P_{st} and P_{lt} shall not be evaluated. ### **A.9** Test conditions for portable tools M2:2005 CS For portable tools, $P_{\rm lt}$ shall not be evaluated. For portable tools without heating elements, $P_{\rm st}$ shall not be evaluated. For portable tools with heating elements, Psi shall be evaluated as follows. Switch on the tool and allow to operate continuously for 10 min, an until it switches off automatically, in which case 6.5 applies. # A.10 Test conditions for hairdryers For hand-held hairdryers, P_{lt} shall not be evaluated. To evaluate P_{st} , switch on the hairdryer and allow to operate continuously for 10 min or until it switches off automatically, in which case 6.5 applies. For hairdryers incorporating a power range check the total power range continuously during a 10 min observation period. If control switches have discrete stages all stages shall be tested up to a maximum of 20 stages. If there are no discrete stages, divide the total range into 10 equally spaced steps. The measurements hall then be made, starting with the highest power stage. # A.11 Test conditions for consumer electronics products For consumer electronics products, only the measurement of d_{max} is made. # A.12 Test conditions for direct water heaters For direct water heaters without electronic controls, evaluate d_c only by switching the heater on and off (sequence $0 - P_{\text{max}} - 0$). For direct water heaters with electronic controls, the output temperature of the water has to be chosen so that by means of the variation of water flow-rate all electric power consumption rates between P_{\min} and P_{\max} may be produced. P_{\max} is defined as the maximum power which can be chosen, and $P_{\min} > 0$ is defined as the minimum power which can be NOTE For some appliances, the maximum power P_{max} which can be chosen may be less than the rated power. The set temperature value shall be kept unchanged during the total test. Starting from the water flow-rate demand for maximum power consumption, P_{max} , reduce the rate of flow in 20 approximately equal steps to minimum power consumption, P_{min}.