

INTERNATIONAL STANDARD

Electric cables – Calculation of the current rating –
Part 2-3: Thermal resistance – Cables installed in ventilated tunnels

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

IEC publications search - webstore.iec.ch/advsearch.htm
The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Products & Services Portal - products.iec.ch
Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

Electropedia - www.electropedia.org
The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also Known as the International Electrotechnical Vocabulary (IEV) online

IEC 60287-2-3

Edition 2.0 2024-06
REDLINE VERSION

INTERNATIONAL STANDARD

**Electric cables – Calculation of the current rating –
Part 2-3: Thermal resistance – Cables installed in ventilated tunnels**

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 29.060.20

ISBN 978-2-8322-9370-6

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD	4
INTRODUCTION	2
1 Scope	7
2 Normative references	7
3 Terms, definitions and symbols	7
3.1 Terms and definitions	7
3.2 Symbols	8
4 Description of method	9
4.1 General description	9
4.2 Basic formulae	10
4.2.1 General	10
4.2.2 Radial heat transfer by conduction within the cable	11
4.2.3 Heat transfer by radiation from the cable surface to the inner wall of the tunnel	11
4.2.4 Heat transfer by convection from the cable surface to the air inside the tunnel	12
4.2.5 Heat transfer by convection from the air inside the tunnel to the inner tunnel wall	14
4.2.6 Longitudinal heat transfer by convection, resulting from the forced or natural flow of air along the tunnel	14
4.2.7 Radial heat conduction in the soil surrounding the tunnel	15
4.3 Set of formulae	16
4.4 Solving	17
4.5 Iterative process	19
5 Formulae for air properties	20
6 Temperature profile	20
Annex A (informative) Calculation example	22
A.1 Cable and installation	22
A.2 Calculated values	22
Annex B (informative) Delta-star transformation	25
Annex C (informative) Calculation of F_m C_{Fm} coefficient	27
C.1 Definition of spacing	27
C.2 Calculation of C_{Fm} coefficient	27
Bibliography	29
Figure A.1 – Temperature profile along a 1 km tunnel	24
Figure A.2 – Temperature profile along a 10 km tunnel	24
Figure B.1 – Delta-star transformation	26
Figure C.1 – Spacing definitions	27
Table 1 – F_m C_{Fm} coefficient for radiation thermal resistance calculation	12
Table 2 – Values of parameter K_{cv}	14
Table A.1 – Installation data	22
Table A.2 – Iterative process for a 1 km long tunnel	23

Table C.1 – Expression for F_m C_{F_m} coefficient calculation 28

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –****Part 2-3: Thermal resistance – Cables installed in ventilated tunnels****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

This redline version of the official IEC Standard allows the user to identify the changes made to the previous edition IEC 60287-2-3:2017. A vertical bar appears in the margin wherever a change has been made. Additions are in green text, deletions are in strikethrough red text.

IEC 60287-2-3 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This second edition cancels and replaces the first edition published in 2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) symbols alignment with other parts of the IEC 60287 series.

The text of this International Standard is based on the following documents:

Draft	Report on voting
20/2175/FDIS	20/2182/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60287 series, published under the general title *Electric cables – Calculation of the current rating*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

In the IEC 60287 series, IEC 60287-1 provides general formulae for ratings and power losses of electric cables.

The IEC 60287-2 series presents formulae or calculation methods for thermal resistances.

IEC 60287-2-1 provides calculation methods for dealing with cables installed in free air (see IEC 60287-2-1:2015, 4.2.1).

IEC 60287-2-2 provides a method and data for calculating reduction factors for cables in groups running horizontally in free air.

IEC 60287-2-1 and IEC 60287-2-2 consider heat transfer only in a plane perpendicular to the cables; they assume there is no longitudinal heat transfer.

This part of IEC 60287 deals with the rating for cables installed in ventilated tunnels. In such situations, consideration of longitudinal temperature gradients is involved as the air flowing in the tunnel removes some heat from the cables.

Heat transfer with the moving air is convective and is assumed to be either laminar or turbulent depending on the air velocity. The transition situation between laminar and turbulent air flows is ignored.

A general simplified method is provided to estimate the permissible current-carrying capacity of cables installed in ventilated tunnels, the ventilation being either natural or forced.

Only steady states are considered, where the inlet air temperature and the cable loading are constant for a sufficient time for steady temperatures to be achieved.

Where multiple circuits are involved, their characteristics are assumed to be identical.

The main features of the calculation method for cables in tunnels with forced ventilation can be found in Electra n°143 – 144 (1992)[1]¹, as the report of a CIGRE working group, including the erratum in Electra n°209 (2003).

¹ Numbers in square brackets refer to the Bibliography.

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 2-3: Thermal resistance – Cables installed in ventilated tunnels

1 Scope

This part of IEC 60287 describes a method for calculating the continuous current rating factor for cables of all voltages installed in ventilated tunnels. The method is applicable to any type of cable.

The method applies to natural as well as forced ventilation.

Longitudinal heat transfer within the cables and the surroundings of the tunnel is assumed to be negligible.

All cables are assumed to be identical within the tunnel and it is assumed that the tunnel cross-section does not change with distance along the tunnel.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60287-1-1, *Electric cables – Calculation of the current rating – Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General*

IEC 60287-2-1:²⁰¹⁵, *Electric cables – Calculation of the current rating – Part 2-1: Thermal resistance – Calculation of thermal resistance*

3 Terms, definitions and symbols

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at <https://www.electropedia.org/>
- ISO Online browsing platform: available at <https://www.iso.org/obp>

3.2 Symbols

A_t	inner tunnel cross-sectional area	m^2
C_{av}	heat capacity of the air flow	W/K
C_{vair}	volumetric heat capacity of air	$\text{W} \cdot \text{s}/(\text{m}^3 \cdot \text{K})$
D_e^*	external diameter of cable	m
D_t	inner diameter of the tunnel	m
$F_m C_{Fm}$	coefficient for the calculation of radiation shape factor	-
I	current in one conductor (RMS value)	A
K_{cv}	convection factor	-
K_r	radiation shape factor	-
K_t	effective emissivity	-
$L_t I_t^*$	depth of tunnel axis	m
N	number of cables	-
P_r	Prandtl number	-
Re	Reynolds number	-
R_R	alternating current resistance of conductor at its maximum operating temperature with sustained application of a rated current I_R i.e. at standard maximum permissible temperature	Ω/m
T_1	thermal resistance per core between conductor and sheath	$\text{K} \cdot \text{m/W}$
T_2	thermal resistance between sheath and armour	$\text{K} \cdot \text{m/W}$
T_3	thermal resistance of external serving	$\text{K} \cdot \text{m/W}$
T_{4t}	equivalent thermal resistance of cable surrounding	$\text{K} \cdot \text{m/W}$
T_{as}	convection thermal resistance between cable and air	$\text{K} \cdot \text{m/W}$
T_{at}	convection thermal resistance between air and inner wall of the tunnel	$\text{K} \cdot \text{m/W}$
T_e	external thermal resistance of the tunnel	$\text{K} \cdot \text{m/W}$
T_{st}	radiation thermal resistance between cable and inner wall of the tunnel	$\text{K} \cdot \text{m/W}$
$T_a T_a^*$	equivalent star thermal resistance of air	$\text{K} \cdot \text{m/W}$
$T_s T_s^*$	equivalent star thermal resistance of cable	$\text{K} \cdot \text{m/W}$
$T_t T_t^*$	equivalent star thermal resistance of tunnel wall	$\text{K} \cdot \text{m/W}$
V_{air}	air velocity	m/s
$W_a(z_t)$	heat removed by the air, at the point z_t on the cable route	W/m
$W_a(Lz_{tot})$	heat removed by the air, at tunnel outlet	W/m
W_c	losses in a conductor per unit length, assuming maximum conductor temperature	W/m
W_d	dielectric losses per unit length per phase	W/m
$W_k W_{k\text{tot}}$	total heat generated by cable	W/m
h	heat dissipation coefficient given in IEC 60287-2-1 for cables in still air	$\text{W}/(\text{m}^2 \cdot \text{K}^{5/4})$
k_{air}	thermal conductivity for air	$\text{W}/(\text{m} \cdot \text{K})$
n	number of conductors or cores in a cable	
s_1	axial separation between two adjacent cables (mm)	mm
s_r	ratio between spacing and cable diameter	-

$L_0 z_0$	reference length (see Formula (16))	m
$z z_t$	coordinate corresponding to the tunnel axis	m
$L z_{\text{tot}}$	length of the tunnel	m
$\Delta \theta_0$	fictitious increase of ambient temperature to account for the ventilation	K
θ_a	temperature at ground level	°C
$\theta_{\text{at}}(0)$	air temperature at tunnel inlet	°C
$\theta_{\text{at}}(z z_t)$	air temperature, at the point $z z_t$ on the cable route	°C
$\theta_{\text{at}}(L z_{\text{tot}})$	air temperature at tunnel outlet	°C
$\theta(z) \theta_c(z_t)$	conductor temperature, at the point $z z_t$ on the cable route	°C
$\theta_{\text{c_max}}$	maximum permissible conductor temperature	°C
$\theta_e(z z_t)$	temperature at the star point after delta-star transformation	°C
$\theta_s(z z_t)$	temperature of the cable surface, at the point $z z_t$ on the cable route	°C
$\theta_s(L z_{\text{tot}})$	temperature of the cable surface, at tunnel outlet	°C
$\theta_t(z z_t)$	temperature of the inner tunnel wall, at the point $z z_t$ on the cable route	°C
$\theta_t(L z_{\text{tot}})$	temperature of the inner tunnel wall, at tunnel outlet	°C
λ_1	ratio of the total losses in metallic sheaths to the total conductor losses (sheath or screen loss factor)	-
λ_2	ratio of the total losses in armour to the total conductor losses (armour loss factor)	-
ν	kinematic viscosity for air	m^2/s
$\rho_{\text{soil}} \rho$	soil thermal resistivity	$\text{K} \cdot \text{m/W}$
σ_B	Stefan-Boltzmann constant	$\text{W}/(\text{m}^2 \cdot \text{K}^4)$

4 Description of method

4.1 General description

The method is based on the calculation of the temperature of the cable surface, the air in the tunnel and the tunnel wall, as a function of the heat generated by the cables.

For any location along the cable route, a set of formulae is developed, involving:

- heat transfer formulae describing heat transfer mechanisms by radiation and convection between the cables, the air in the tunnel and the tunnel wall;
- energy balance formulae for cables, air in the tunnel and tunnel wall;
- heat transfer formulae for conduction in the surroundings of the tunnel.

This set of formulae may be written in such a way that:

- the heat removed by the air, $W_a(z z_t)$, is linked to the derivative of the air temperature with respect to the longitudinal coordinate of the tunnel;
- every other formula is approximated as a thermal Ohm's law linking temperature drop and heat flow through a thermal resistance; the heat flow is derived from the heat generated by the cables, $W_k W_{\text{tot}}$, and the heat removed by the air, $W_a(z z_t)$.

Some of the thermal resistances depend on the air temperature and consequently on the distance along the tunnel.

This may be dealt with by dividing the tunnel route into elementary lengths, so that:

- the heat removed by the air is proportional to the difference in the air temperature between elementary length outlet and inlet;
- the thermal resistances may be considered constant for the elementary length.

For typical installations considered in the CIGRE work [1], it was recognized that assuming constant thermal resistances along the tunnel route, computed using temperatures at the tunnel outlet, does not lead to a serious error.

With this assumption, solving the set of formulae is straightforward and the temperatures of the cable surface, air and tunnel wall are easily derived as a function of the cable losses.

The permissible current is then derived from the heat transfer formula for conduction within the cable linking the temperature drop between the conductor and the cable surface to the losses in the cables.

As temperatures at the tunnel outlet are not known, an iterative process is necessary.

The heat generated by a cable, $W_k W_{ktot}$, is assumed to be constant along the cable route and is calculated for the maximum permissible conductor temperature, leading to an estimate of the current rating that is on the safe side.

$$\underline{W_k = n \cdot [W_c \cdot (1 + \lambda_1 + \lambda_2) + W_d]}$$

$$W_{ktot} = n \cdot [W_c \cdot (1 + \lambda_1 + \lambda_2) + W_d] \quad (1)$$

$$\underline{W_c = R \cdot I^2}$$

$$W_c = R_R \cdot I^2 \quad (2)$$

where

- $W_k W_{ktot}$ is the total heat generated by a cable (W/m);
- n is the number of conductors in a cable;
- W_c is the losses in a conductor per unit length, assuming maximum conductor temperature (W/m);
- λ_1 is the ratio of the total losses in metallic sheaths to the total conductor losses;
- λ_2 is the ratio of the total losses in armour to the total conductor losses;
- W_d is the dielectric losses per unit length per phase (W/m);
- R_R is the alternating current resistance of conductor ~~at its maximum operating temperature~~ with sustained application of a rated I_R current i.e. at standard maximum permissible temperature (Ω/m);
- I is the current in one conductor (RMS value) (A).

4.2 Basic formulae

4.2.1 General

The following heat transfer mechanisms are taken into account:

- radial heat transfer by conduction within the cable;
- heat transfer by radiation from the cable surface to the tunnel wall;
- heat transfer by convection from the cable surface to the air inside the tunnel;
- heat transfer by convection from the air inside the tunnel to the tunnel wall;
- longitudinal heat transfer by convection resulting from the forced or natural flow of air along the tunnel.

4.2.2 Radial heat transfer by conduction within the cable

The conductor temperature is derived from the formula given in IEC 60287-1-1.

$$\theta_c(z) = \theta_s(z) + W_c \cdot [T_1 + n \cdot (1 + \lambda_1) \cdot T_2 + n \cdot (1 + \lambda_1 + \lambda_2) \cdot T_3] + W_d \cdot \left[\frac{T_1}{2} + n \cdot (T_2 + T_3) \right] \quad (3)$$

where

$\theta_c(z)$ is the conductor temperature, at the point z on the cable route (°C);

$\theta_s(z)$ is the temperature of the cable surface, at the point z on the cable route (°C);

T_1 is the thermal resistance per core between conductor and sheath (K · m/W);

T_2 is the thermal resistance between sheath and armour (K · m/W);

T_3 is the thermal resistance of external serving (K · m/W);

z is the coordinate corresponding to the tunnel axis (m).

The loss coefficients and thermal resistances are defined in IEC 60287-1-1 and IEC 60287-2-1.

4.2.3 Heat transfer by radiation from the cable surface to the inner wall of the tunnel

This heat transfer is modelled by Ohm's thermal law, characterized by a thermal resistance:

$$T_{st} = \frac{1}{\pi \cdot D_e^* \cdot K_t \cdot K_r \cdot \sigma_b \cdot \left[(\theta_s(L) + 273)^2 + (\theta_t(L) + 273)^2 \right]} \cdot \frac{1}{\left[(\theta_s(L) + 273) + (\theta_t(L) + 273) \right]} \quad (4)$$

$$T_{st} = \frac{1}{\pi \cdot D_e^* \cdot K_t \cdot K_r \cdot \sigma_b \cdot \left[(\theta_s(z_{tot}) + 273)^2 + (\theta_t(z_{tot}) + 273)^2 \right]} \cdot \frac{1}{\left[(\theta_s(z_{tot}) + 273) + (\theta_t(z_{tot}) + 273) \right]} \quad (4)$$

where

D_e^* is the cable diameter (m);

σ_b is Stefan-Boltzmann constant, $5,67 \times 10^{-8}$ (W/m² · K⁴);

$\theta_s(L)$ $\theta_s(z_{tot})$ is the cable surface at the tunnel outlet (°C);

$\theta_t(L)$ $\theta_t(z_{tot})$ is the tunnel surface temperatures at the tunnel outlet (°C);

K_t is the emissivity of the cable surface (typically 0,9 for served cable);
 K_r is the radiation shape factor taking into account the radiation areas;
 z_{tot} is the length of the tunnel (m).

K_r may be expressed as:

$$\underline{K_r = \frac{1 - F_m}{1 - (1 - K_t) \cdot F_m}}$$

$$K_r = \frac{1 - C_{Fm}}{1 - (1 - K_t) \cdot C_{Fm}}$$

where

C_{Fm} ~~F_m~~ is a coefficient given in Table 1 and in Annex C.

Table 1 — ~~F_m~~ C_{Fm} coefficient for radiation thermal resistance calculation

Installation	F_m C_{Fm}
Single cable	0
Two cables touching	0,182
Two cables spaced $2 \times D_e^*$	0,081
Two cables spaced $3 \times D_e^*$	0,054
Three cables touching	M: 0,363 O: 0,182
Three cables spaced $2 \times D_e^*$	M: 0,163 O: 0,081
Three cables spaced $3 \times D_e^*$	M: 0,107 O: 0,054
Trefoil touching	0,348
Key	
M Middle cable	
O Outer cable	

4.2.4 Heat transfer by convection from the cable surface to the air inside the tunnel

The convective heat transfer from the cable surface to the air in the tunnel depends on the air flow characteristics, the velocity of the air being the leading parameter.

Where laminar air flow occurs, the convection thermal resistance is given by Formula (5):

$$T_{as} = \frac{1}{\left[\pi \cdot D_e \cdot h - \frac{1}{30^{0,25} \cdot T_{st}} \right] \cdot [\theta_s(L) - \theta_{at}(L)]^{0,25}} \quad (5)$$

$$T_{as} = \frac{1}{\left[\pi \cdot D_e^* \cdot h - \frac{1}{30^{0,25} \cdot T_{st}} \right] \cdot [\theta_s(z_{tot}) - \theta_{at}(z_{tot})]^{0,25}}$$

where

h is the heat dissipation coefficient given in IEC 60287-2-1 for cables in still air ($\text{W}/(\text{m}^2 \cdot \text{K}^{5/4})$);

$\theta_{at}(z_{tot})$ is the air temperature at the tunnel outlet ($^{\circ}\text{C}$);

$\theta_s(z_{tot})$ is the temperature of the cable surface, at tunnel outlet;

T_{st} is the radiation thermal resistance between the cable and inner wall of the tunnel.

Formula (5) applies if the Reynolds number is less than 2 000.

If the Reynolds number is higher, the thermal resistance is first assumed to be given by Formula (6), valid for turbulent air flow.

$$T_{as} = \frac{1}{\pi \cdot k_{air} \cdot K_{cv} \cdot Re^{0,65}} \quad (6)$$

where

Re is the Reynolds number;

$$Re = \frac{V \cdot D_e^*}{\nu}$$

$$Re = \frac{V_{air} \cdot D_e^*}{\nu}$$

ν is the kinematic viscosity for air (m^2/s);

k_{air} is the thermal conductivity for air ($\text{W}/(\text{m} \cdot \text{K})$);

V_{air} is the air velocity (m/s);

K_{cv} is an experimentally determined constant convection factor for which values are given in Table 2.

Table 2 – Values of parameter K_{cv}

Cable arrangement	K_{cv}
Single cable	0,130
3 cables touching horizontally ^b	0,086
3 cables spaced horizontally ^a	0,115
3 cables touching vertically ^b	0,086
3 cables spaced vertically ^a	0,115
3 cables touching in trefoil	0,070

^a To be used where the spacing is larger than $2 \times D_e^*$.

^b To be used where the spacing is smaller or equal to $2 \times D_e^*$.

~~The values from Formulae (5) and (6) are compared and the higher of the two values is used.~~

4.2.5 Heat transfer by convection from the air inside the tunnel to the inner tunnel wall

This transfer is modelled by Ohm's thermal law, characterized by a thermal resistance:

If the Reynolds number is greater than 2 500, the air flow is assumed turbulent and the following relationship applies:

$$T_{at} = \frac{1}{\pi \cdot k_{air} \cdot 0,023 \cdot Re^{0,8} \cdot Pr^{0,4}} \quad (7)$$

where

Re is the Reynolds number;

$$Re = \frac{V \cdot D_t}{v}$$

$$Re = \frac{V_{air} \cdot D_t}{v}$$

Pr is the Prandtl number;

$$Pr = C_{vair} \cdot \frac{v}{k_{air}}$$

C_{vair} is the specific heat of air per unit volume ($J/(m^3 \cdot K)$);

D_t is the inner diameter of the tunnel (m).

If the Reynolds number is less than 2 500, the thermal resistance is considered negligible.

4.2.6 Longitudinal heat transfer by convection resulting from the forced or natural flow of air along the tunnel

The heat removed by the air, W_a (zz_t), is linked to the air temperature variations according to:

$$\underline{W_a(z) = C_{av} \cdot \frac{\partial \theta_{at}(z)}{\partial z}}$$

$$W_a(z_t) = C_{av} \cdot \frac{\partial \theta_{at}(z_t)}{\partial z_t} \quad (8)$$

where

z_t is the coordinate corresponding to the tunnel axis (m);

C_{av} is the heat capacity of the air flow (W/K);

$$\underline{C_{av} = C_{vair} \cdot V \cdot A_t}$$

$$C_{av} = C_{vair} \cdot V_{air} \cdot A_t \quad (9)$$

A_t is the inner tunnel cross-sectional area (m^2).

4.2.7 Radial heat conduction in the soil surrounding the tunnel

For circular tunnels the thermal resistance of the surrounding soil is expressed by:

$$\underline{T_e = \frac{\rho_{soil}}{2 \cdot \pi} \cdot \ln \left[u + \sqrt{u^2 - 1} \right]}$$

$$T_e = \frac{\rho}{2 \cdot \pi} \cdot \ln \left[u + \sqrt{u^2 - 1} \right] \quad (10)$$

Where

$$\underline{u = \frac{2 \cdot L_t}{D_t}}$$

$$u = \frac{2 \cdot L_t^*}{D_t};$$

ρ_{soil} is the soil thermal resistivity ($K \cdot m/W$);

L_t is the depth of the tunnel axis (m);

D_t is the inner diameter of the tunnel (m).

For rectangular tunnels the thermal resistance of the surrounding soil is expressed by:

$$\underline{T_e = \frac{\rho_{soil}}{2 \cdot \pi} \cdot \ln \left[3,388 \cdot \frac{L_t}{\sqrt{A_t}} \right]}$$

$$T_e = \frac{\rho}{2 \cdot \pi} \cdot \ln \left[3,388 \cdot \frac{L_t^*}{\sqrt{A_t}} \right] \quad (11)$$

where

A_t is the inner tunnel cross-sectional area (m^2).

For deep tunnels, these formulae will produce conservative results because of soil thermal inertia. This subject is under consideration.

4.3 Set of formulae

A delta-star transformation is used to derive the following set of formulae:

$$\theta_s(z) - \theta_e(z) = T_s \cdot N \cdot W_k$$

$$\theta_e(z) - \theta_t(z) = T_t \cdot (N \cdot W_k - W_a(z))$$

$$\underline{\theta_t(z) - \theta_a(z) = T_e \cdot (N \cdot W_k - W_a(z))}$$

$$\theta_{at}(z) - \theta_e(z) = -T_a \cdot W_a(z)$$

$$\underline{W_a(z) = C_{av} \cdot \frac{\partial \theta_{at}(z)}{\partial z}}$$

$$\theta_s(z_t) - \theta_e(z_t) = T_s^* \cdot N \cdot W_{k\text{tot}}$$

$$\theta_e(z_t) - \theta_t(z_t) = T_t^* \cdot (N \cdot W_{k\text{tot}} - W_a(z_t))$$

$$\theta_t(z_t) - \theta_a(z_t) = T_e \cdot (N \cdot W_{k\text{tot}} - W_a(z_t)) \quad (12)$$

$$\theta_{at}(z_t) - \theta_e(z_t) = -T_a^* \cdot W_a(z_t)$$

$$W_a(z_t) = C_{av} \cdot \frac{\partial \theta_{at}(z_t)}{\partial z_t}$$

where

z_t is the coordinate corresponding to the tunnel axis;

$W_{k\text{tot}}$ is the total heat generated by the cable (W/m);

$W_a(z_t)$ is the heat removed by the air, at the point z_t on the cable route (W/m);

$T_s - T_s^*$ is the equivalent star thermal resistance of the cable ($\text{K} \cdot \text{m/W}$);

$T_t - T_t^*$ is the equivalent star thermal resistance of the tunnel wall ($\text{K} \cdot \text{m/W}$);

$T_a - T_a^*$ is the equivalent star thermal resistance of air ($\text{K} \cdot \text{m/W}$);

defined as follows:

$$T_s = \frac{\left(\frac{T_{st}}{N}\right) \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

$$T_t = \frac{T_{at} \cdot \left(\frac{T_{st}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

$$T_a = \frac{T_{at} \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

$$T_s^* = \frac{\left(\frac{T_{st}}{N}\right) \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

$$T_t^* = \frac{T_{at} \cdot \left(\frac{T_{st}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

$$T_a^* = \frac{T_{at} \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}$$

(13)

The delta-star transformation is shown diagrammatically in Annex B.

4.4 Solving

The permissible current rating is obtained from Formula (14) which is similar to the classical formula for cable rating given in IEC 60287-1-1:

$$I = \frac{\left[\theta_{max} - [\theta_a + \Delta\theta_0] - W_d \cdot \left[\frac{T_1}{2} + n \cdot (T_2 + T_3 + T_{4t}) \right] \right]^{1/2}}{R \cdot [T_1 + n \cdot (1 + \lambda_1) \cdot T_2 + n \cdot (1 + \lambda_1 + \lambda_2) \cdot (T_3 + T_{4t})]}$$

$$I = \left[\frac{\theta_{c_max} - [\theta_a + \Delta\theta_0] - W_d \cdot \left[\frac{T_1}{2} + n \cdot (T_2 + T_3 + T_{4t}) \right]}{R \cdot [T_1 + n \cdot (1 + \lambda_1) \cdot T_2 + n \cdot (1 + \lambda_1 + \lambda_2) \cdot (T_3 + T_{4t})]} \right]^{\frac{1}{2}} \quad (14)$$

where

$\Delta\theta_0$ is the fictitious increase of ambient temperature to account for the ventilation (K);

$$\Delta\theta_0 = [\theta_{at}(0) - \theta_a] \cdot \frac{T_t + T_e}{T_a + T_t + T_e} \cdot e^{-\frac{L}{L_0}}$$

$$\Delta\theta_0 = [\theta_{at}(0) - \theta_a] \cdot \frac{T_t^* + T_e}{T_a^* + T_t^* + T_e} \cdot e^{-\frac{z_{tot}}{z_0}} \quad (15)$$

T_{4t} is the equivalent thermal resistance of cable surrounding (K · m/W);

$$T_{4t} = N \cdot \left[T_s + (T_t + T_e) \left(1 - \frac{T_t + T_e}{T_a + T_t + T_e} e^{-\frac{L}{L_0}} \right) \right]$$

$$T_{4t} = N \cdot \left[T_s^* + (T_t^* + T_e) \cdot \left(1 - \frac{T_t^* + T_e}{T_a^* + T_t^* + T_e} \cdot e^{-\frac{z_{tot}}{z_0}} \right) \right] \quad (16)$$

$L_0 \cdot z_0$ is the reference length (m);

$$L_0 = (T_a + T_t + T_e) \cdot C_{av} \quad (17)$$

$$z_0 = (T_a^* + T_t^* + T_e) \cdot C_{av} \quad (17)$$

$\theta_{max} - \theta_{c_max}$ is the maximum permissible conductor temperature (°C).

The air temperature $\theta_{at}(L)$ at the tunnel outlet is estimated from:

$$\theta_{at}(L) = \theta_{at}(0) + [\theta_a + (T_t + T_e) \cdot N \cdot W_k - \theta_{at}(0)] \left[1 - e^{-\frac{L}{L_0}} \right]$$

$$\theta_{at}(z_{tot}) = \theta_{at}(0) + \left[\theta_a + (T_t^* + T_e) \cdot N \cdot W_{ktot} - \theta_{at}(0) \right] \cdot \left[1 - e^{-\frac{z_{tot}}{z_0}} \right] \quad (18)$$

The cable surface temperature and the tunnel wall temperature at the tunnel outlet are derived from the air temperature by:

~~$$\theta_s(L) = \theta_{at}(L) + T_a \cdot W_a(L) + T_s \cdot N \cdot W_k$$~~

$$\theta_s(z_{tot}) = \theta_{at}(z_{tot}) + T_a^* \cdot W_a(z_{tot}) + T_s^* \cdot N \cdot W_{ktot} \quad (19)$$

~~$$\theta_t(L) = \theta_{at}(L) + T_a \cdot W_a(L) - T_t \cdot [N \cdot W_k - W_a(L)]$$~~

$$\theta_t(z_{tot}) = \theta_{at}(z_{tot}) + T_a^* \cdot W_a(z_{tot}) - T_t^* \cdot [N \cdot W_{ktot} - W_a(z_{tot})] \quad (20)$$

where

$W_a(L)$ is the heat removed by the air at the tunnel outlet, given by:

~~$$W_a(L) = \frac{(T_t + T_e) \cdot N \cdot W_k - [\theta_{at}(L) - \theta_a]}{T_a + T_t + T_e}$$~~

$$W_a(z_{tot}) = \frac{(T_t^* + T_e) \cdot N \cdot W_{ktot} - [\theta_{at}(z_{tot}) - \theta_a]}{T_a^* + T_t^* + T_e} \quad (21)$$

4.5 Iterative process

The thermal resistances T_a , T_s , T_a^* , T_s^* and T_t , T_t^* are calculated from estimates of the cable surface temperature, the tunnel wall temperature and the air temperature at the tunnel outlet, using Formula (4), Formula (5) or Formula (6), Formula (7) and Formula (13).

The cable permissible current is derived from Formula (14) through Formula (15), Formula (16), Formula (17), T_e being derived from Formula (10) and Formula (11) and C_{av} being derived from Formula (9).

Losses in the cables are calculated with Formula (1) and Formula (2).

The air temperature at the tunnel outlet is calculated with Formula (18), the cable surface temperature and the tunnel wall temperature are calculated with Formula (19) and Formula (20), using Formula (21).

The calculation is repeated using these new estimates of the cable surface temperature, the tunnel wall temperature and the air temperature at the tunnel outlet as input, until convergence.

As first estimates, the temperatures at the tunnel outlet are taken as the air temperature at the tunnel inlet.

5 Formulae for air properties

Formula (22) to Formula (25) provide the required properties needed for air at the appropriate temperature:

The thermal conductivity for air is expressed by:

$$\kappa_{\text{air}} = 2,42 \cdot 10^{-2} + 7,2 \cdot 10^{-5} \cdot \theta_{\text{at}}(L)$$

$$k_{\text{air}} = 2,42 \cdot 10^{-2} + 7,2 \cdot 10^{-5} \cdot \theta_{\text{at}}(z_{\text{tot}}) \quad (22)$$

The kinematic viscosity for air is expressed by:

$$\nu = 1,32 \cdot 10^{-5} + 9,5 \cdot 10^{-8} \cdot \theta_{\text{at}}(L)$$

$$\nu = 1,32 \cdot 10^{-5} + 9,5 \cdot 10^{-8} \cdot \theta_{\text{at}}(z_{\text{tot}}) \quad (23)$$

The Prandtl number for air is expressed by:

$$Pr = 0,715 - 2,5 \cdot 10^{-4} \cdot \theta_{\text{at}}(L)$$

$$P_r = 0,715 - 2,5 \cdot 10^{-4} \cdot \theta_{\text{at}}(z_{\text{tot}}) \quad (24)$$

The volumetric heat capacity of air, C_{vair} , being derived from P_r , k_{air} and ν is expressed by:

$$C_{\text{vair}} = P_r \cdot \frac{k_{\text{air}}}{\nu} \quad (25)$$

6 Temperature profile

Formula (26) gives the air temperature $\theta_{\text{at}}(zz_t)$ in any location zz_t along the tunnel.

$$\theta_{\text{at}}(z) = \theta_{\text{at}}(0) + [\theta_a + (T_t + T_e) \cdot N \cdot W_k - \theta_{\text{at}}(0)] \left[1 - e^{-\frac{z}{L_0}} \right]$$

$$\theta_{at}(z_t) = \theta_{at}(0) + \left[\theta_a + \left(T_t^* + T_e \right) \cdot N \cdot W_{ktot} - \theta_{at}(0) \right] \cdot \left[1 - e^{-\frac{z_t}{z_0}} \right] \quad (26)$$

where

W_{ktot} , T_t^* , T_e and z_0 have been determined according to Clause 4;

z_t is the coordinate corresponding to the tunnel axis (m).

A complete calculation example can be found in Annex A.

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

Annex A

(informative)

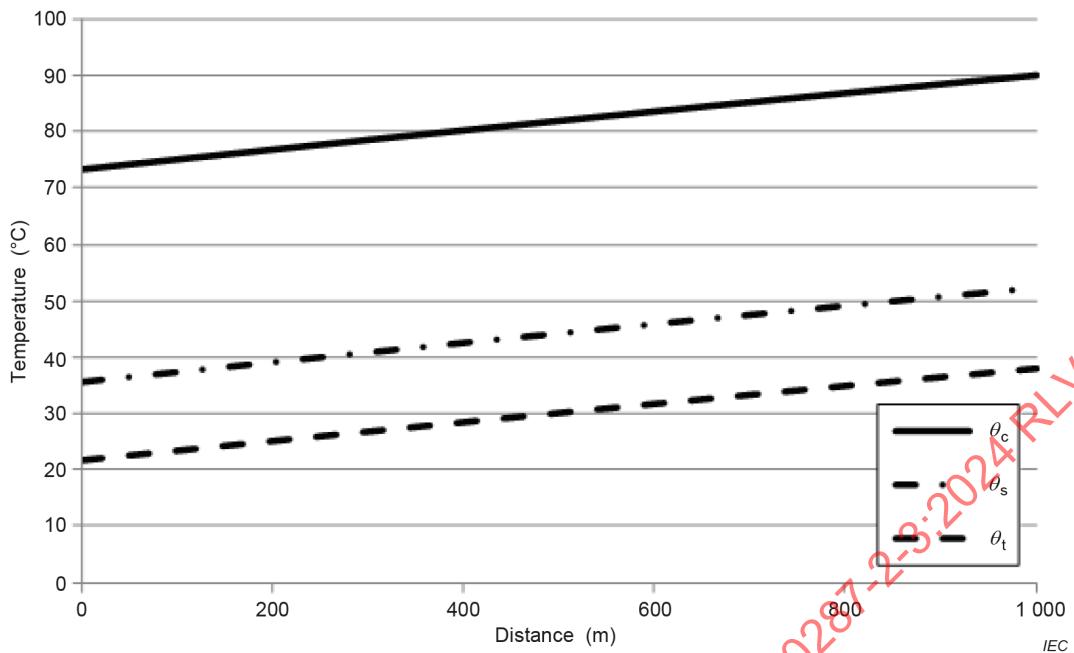
Calculation example

A.1 Cable and installation

The example given in Table A.1 considers three single-core cables without armour ($T_2 = 0$ and $\lambda_2 = 0$) spaced vertically within a circular ventilated tunnel (the spacing between the cables being three times their diameter).

Table A.1 – Installation data

Cables	Symbol	Value	Unit
Number of cables	N	3	-
Number of conductors in a cable	n	1	-
Cable outer diameter	D_e^*	0,122	m
Alternating current resistance of conductor at its maximum operating temperature	R_R^*	1,28E-05	Ω/m
Dielectric losses per unit length per phase	W_d	4,0	W/m
Sheath or screen loss factor	λ_1	0,045 03	-
Maximum permissible conductor temperature	θ_{c_max}	90	$^{\circ}C$
Thermal resistance per core between conductor and sheath	T_1	0,341	$K \cdot m/W$
Thermal resistance of external serving	T_3	0,038	$K \cdot m/W$
Tunnel and surroundings			
Soil thermal resistivity	ρ_{soil}	1,0	$K \cdot m/W$
Depth of tunnel axis	L_t^*	4,0	m
Inner tunnel diameter	D_t	3,0	m
Length of the tunnel	L_{tot}	1 000	m
Temperature at ground level	θ_a	20	$^{\circ}C$
Air temperature at tunnel inlet	$\theta_{at}(0)$	20	$^{\circ}C$
Air velocity	V_{air}	2	m/s
Constants			
Convection factor	K_{cv}	0,115	-
Radiation shape factor	K_r	0,90	-
Effective emissivity	K_t	0,90	-


A.2 Calculated values

The number of significant figures given in Table A.2 does not indicate the accuracy of the calculations but is intended to assist those developing a calculation tool.

Table A.2 – Iterative process for a 1 km long tunnel

Iteration	Formula	1	2	3
assumed $\theta_s(\text{Lz}_{\text{tot}})$		20	52,11	52,15
assumed $\theta_t(\text{Lz}_{\text{tot}})$		20	36,83	37,89
assumed $\theta_{\text{at}}(\text{Lz}_{\text{tot}})$		20	36,49	37,30
T_e	(10)	0,261	0,261	0,261
T_{st}	(4)	0,564 6	0,443 6	0,441 3
k_{air}	(22)	0,026	0,027	0,027
v	(23)	$1,51 \times 10^{-5}$	$1,666\ 65 \times 10^{-5}$	$1,674\ 34 \times 10^{-5}$
Re	(6)	16 159	14 640	14 573
T_{as}	(6)	0,198 5	0,202 3	0,202 5
Pr	(24)	0,710 0	0,705 9	0,705 7
Re	(7)	397 351	360 003	358 351
T_{at}	(7)	0,020 5	0,021 3	0,021 3
$\text{F}_s T^*_{\text{s}}$	(13)	0,045 3	0,042 1	0,042 1
$\text{F}_t T^*_{\text{t}}$	(13)	0,014 1	0,013 3	0,013 3
$\text{F}_a T^*_{\text{a}}$	(13)	0,004 9	0,006 1	0,006 1
C_{vair}	(25)	1 206	1 136	1 133
C_{av}	(9)	17 044	16 063	16 019
$\text{L}_0 z_0$	(17)	4 764	4 496	4 484
$\Delta\theta_0$	(15)	0	0	0
T_{4t}	(16)	0,303 7	0,304 5	0,304 8
I	(14)	2 758	2 756	2 755
W_c	(2)	97,3	97,2	97,2
$W_k W_{\text{k tot}}$	(1)	105,7	105,6	105,6
$\theta_{\text{at}}(\text{Lz}_{\text{tot}})$	(18)	36,49	37,30	37,33
$W_a(\text{Lz}_{\text{tot}})$	(21)	252,58	248,11	247,84
$\theta_s(\text{Lz}_{\text{tot}})$	(19)	52,11	52,15	52,17
$\theta_t(\text{Lz}_{\text{tot}})$	(20)	36,83	37,89	37,93

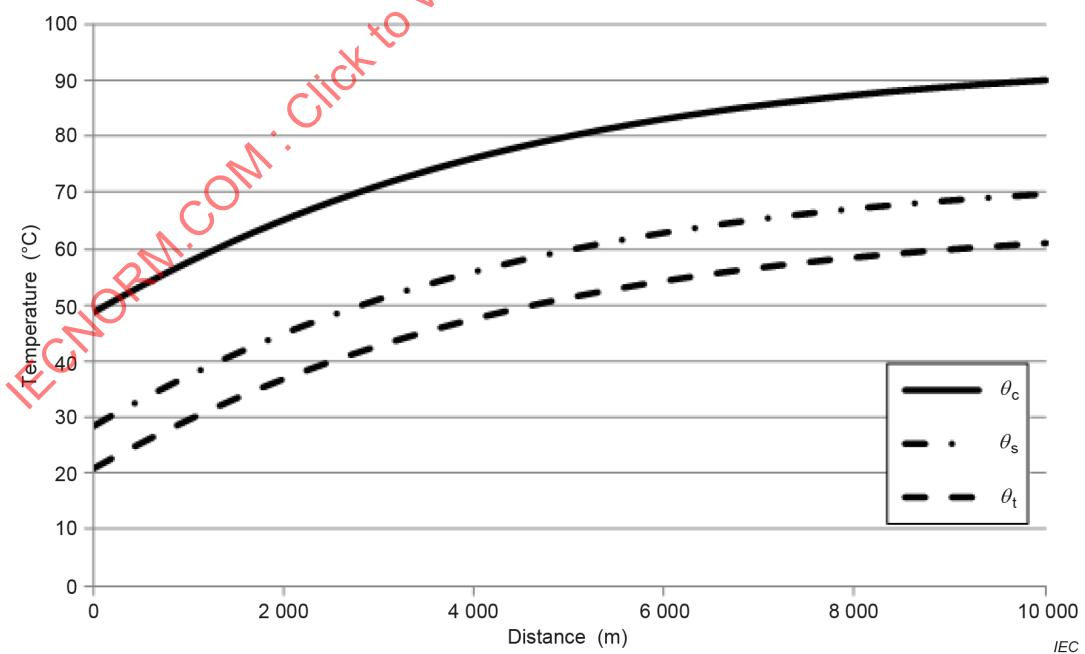
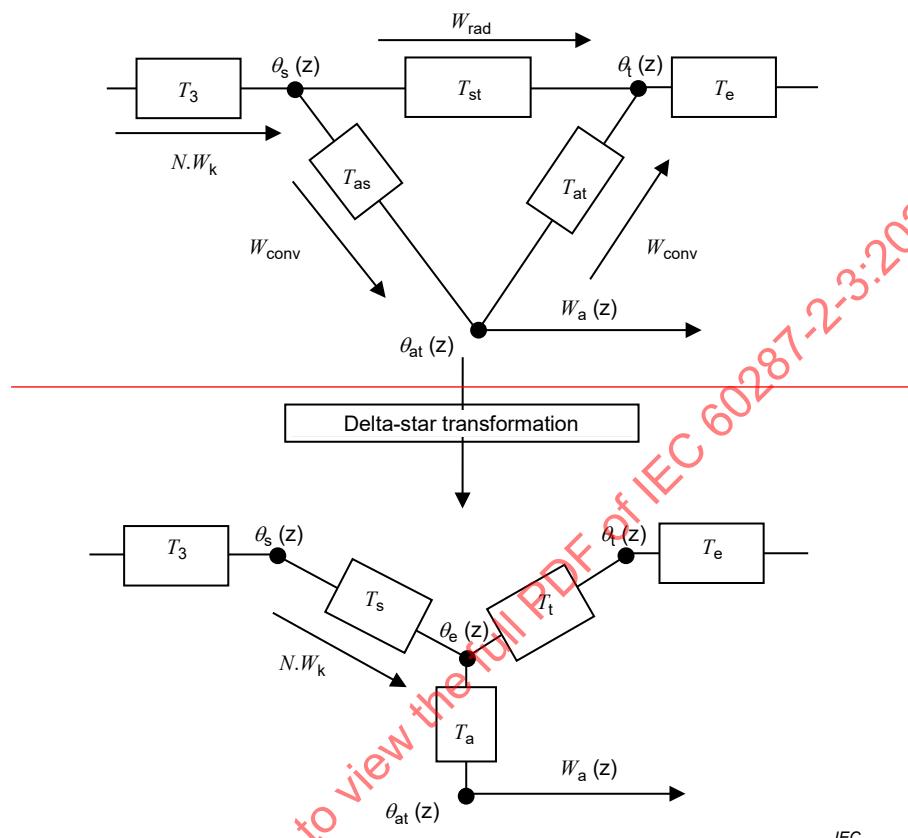

The temperature profile along the 1 km length of the tunnel is given in Figure A.1.

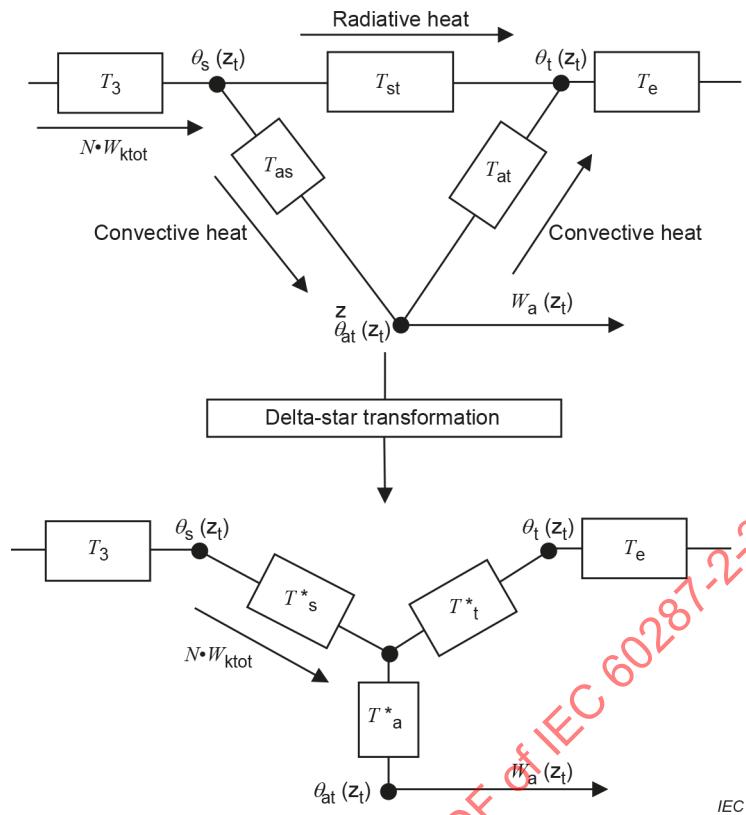
Figure A.1 – Temperature profile along a 1 km tunnel

In the example given in Figure A.1 the thermal properties of the air have been determined for the calculated air temperature in the tunnel at each stage in the iteration. If the air thermal properties were determined at a temperature of 30 °C, the current rating would be 2 764 A, compared to 2 755 A calculated above.

Repeating the calculation using the same data, except for a tunnel length of 10 000 m, results in a current rating of 1 999 A. The temperature profile along the 10 km tunnel is shown in Figure A.2.

Figure A.2 – Temperature profile along a 10 km tunnel


If the air thermal properties are determined for a temperature of 30 °C, the permissible current is found to be 2 018 A, instead of 1 999 A. This difference is considered to be insignificant.


Annex B

(informative)

Delta-star transformation

The heat transfer mechanism in the tunnel and the delta-star given in 4.3 is shown in Figure B.1.

Figure B.1 – Delta-star transformation

Annex C (informative)

Calculation of F_m C_{Fm} coefficient

C.1 Definition of spacing

The spacing between cables is defined as the distance between the cables' axes (see Figure C.1).

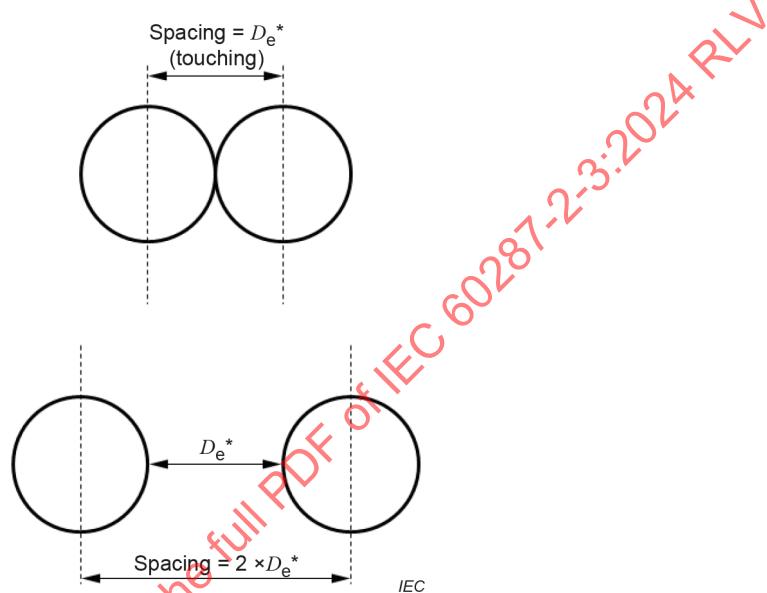


Figure C.1 – Spacing definitions

C.2 Calculation of F_m C_{Fm} coefficient

The coefficient F_m C_{Fm} can be calculated with the expressions given in Table C.1.

Table C.1 – Expression for F_m C_{F_m} coefficient calculation

Two cables		$F_m = \frac{1}{\pi} \left[\arcsin\left(\frac{1}{s}\right) + \left(\frac{s^2 - 1}{s}\right)^{0,5} - s \right]$ $C_{F_m} = \frac{1}{\pi} \left[\arcsin\left(\frac{1}{s_r}\right) + \left(\frac{s_r^2 - 1}{s_r}\right)^{0,5} - s_r \right]$
Three cables	Middle cable	$F_m = \frac{2}{\pi} \left[\arcsin\left(\frac{1}{s}\right) + \left(\frac{s^2 - 1}{s}\right)^{0,5} - s \right]$ $C_{F_m} = \frac{2}{\pi} \left[\arcsin\left(\frac{1}{s_r}\right) + \left(\frac{s_r^2 - 1}{s_r}\right)^{0,5} - s_r \right]$
	Outer cables	$F_m = \frac{1}{\pi} \left[\arcsin\left(\frac{1}{s}\right) + \left(\frac{s^2 - 1}{s}\right)^{0,5} - s \right]$ $C_{F_m} = \frac{1}{\pi} \left[\arcsin\left(\frac{1}{s_r}\right) + \left(\frac{s_r^2 - 1}{s_r}\right)^{0,5} - s_r \right]$
Trefoil touching		$F_m = \frac{1}{6} + \frac{1}{\pi} \left(\frac{\pi}{2} - 1 \right)$ $C_{F_m} = \frac{1}{6} + \frac{1}{\pi} \cdot \left(\frac{\pi}{2} - 1 \right)$

where

s_r is the ratio between spacing and cable diameter;

$$s = \frac{\text{Spacing}}{D_e}$$

$$s_r = \frac{s_1 \cdot 10^{-3}}{D_e}$$

where

s_1 is the axial separation between two adjacent cables (mm).

Bibliography

[1] Electra n°143 – 144 (1992), *CIGRE (International Council on Large Electric Systems)*, [including Erratum published in Electra n°209 (2003)]

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

INTERNATIONAL STANDARD

Electric cables – Calculation of the current rating –
Part 2-3: Thermal resistance – Cables installed in ventilated tunnels

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

CONTENTS

FOREWORD	4
INTRODUCTION	6
1 Scope	7
2 Normative references	7
3 Terms, definitions and symbols	7
3.1 Terms and definitions	7
3.2 Symbols	8
4 Description of method	9
4.1 General description	9
4.2 Basic formulae	10
4.2.1 General	10
4.2.2 Radial heat transfer by conduction within the cable	11
4.2.3 Heat transfer by radiation from the cable surface to the inner wall of the tunnel	11
4.2.4 Heat transfer by convection from the cable surface to the air inside the tunnel	12
4.2.5 Heat transfer by convection from the air inside the tunnel to the inner tunnel wall	13
4.2.6 Longitudinal heat transfer by convection, resulting from the forced or natural flow of air along the tunnel	14
4.2.7 Radial heat conduction in the soil surrounding the tunnel	14
4.3 Set of formulae	15
4.4 Solving	16
4.5 Iterative process	17
5 Formulae for air properties	17
6 Temperature profile	18
Annex A (informative) Calculation example	19
A.1 Cable and installation	19
A.2 Calculated values	19
Annex B (informative) Delta-star transformation	22
Annex C (informative) Calculation of C_{Fm} coefficient	23
C.1 Definition of spacing	23
C.2 Calculation of C_{Fm} coefficient	23
Bibliography	25
Figure A.1 – Temperature profile along a 1 km tunnel	21
Figure A.2 – Temperature profile along a 10 km tunnel	21
Figure B.1 – Delta-star transformation	22
Figure C.1 – Spacing definitions	23
Table 1 – C_{Fm} coefficient for radiation thermal resistance calculation	12
Table 2 – Values of parameter K_{cv}	13
Table A.1 – Installation data	19
Table A.2 – Iterative process for a 1 km long tunnel	20

Table C.1 – Expression for C_{F_m} coefficient calculation.....	23
---	----

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024 RLV

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**ELECTRIC CABLES –
CALCULATION OF THE CURRENT RATING –****Part 2-3: Thermal resistance – Cables installed in ventilated tunnels****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60287-2-3 has been prepared by IEC technical committee 20: Electric cables. It is an International Standard.

This second edition cancels and replaces the first edition published in 2017. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) symbols alignment with other parts of the IEC 60287 series.

The text of this International Standard is based on the following documents:

Draft	Report on voting
20/2175/FDIS	20/2182/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 60287 series, published under the general title *Electric cables – Calculation of the current rating*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IECNORM.COM : Click to view the full PDF of IEC 60287-2-3:2024

INTRODUCTION

In the IEC 60287 series, IEC 60287-1 provides general formulae for ratings and power losses of electric cables.

The IEC 60287-2 series presents formulae or calculation methods for thermal resistances.

IEC 60287-2-1 provides calculation methods for dealing with cables installed in free air (see IEC 60287-2-1:2015, 4.2.1).

IEC 60287-2-2 provides a method and data for calculating reduction factors for cables in groups running horizontally in free air.

IEC 60287-2-1 and IEC 60287-2-2 consider heat transfer only in a plane perpendicular to the cables; they assume there is no longitudinal heat transfer.

This part of IEC 60287 deals with the rating for cables installed in ventilated tunnels. In such situations, consideration of longitudinal temperature gradients is involved as the air flowing in the tunnel removes some heat from the cables.

Heat transfer with the moving air is convective and is assumed to be either laminar or turbulent depending on the air velocity. The transition situation between laminar and turbulent air flows is ignored.

A general simplified method is provided to estimate the permissible current-carrying capacity of cables installed in ventilated tunnels, the ventilation being either natural or forced.

Only steady states are considered, where the inlet air temperature and the cable loading are constant for a sufficient time for steady temperatures to be achieved.

Where multiple circuits are involved, their characteristics are assumed to be identical.

The main features of the calculation method for cables in tunnels with forced ventilation can be found in Electra n°143 – 144 (1992)[1]¹, as the report of a CIGRE working group, including the erratum in Electra n°209 (2003).

¹ Numbers in square brackets refer to the Bibliography.

ELECTRIC CABLES – CALCULATION OF THE CURRENT RATING –

Part 2-3: Thermal resistance – Cables installed in ventilated tunnels

1 Scope

This part of IEC 60287 describes a method for calculating the continuous current rating factor for cables of all voltages installed in ventilated tunnels. The method is applicable to any type of cable.

The method applies to natural as well as forced ventilation.

Longitudinal heat transfer within the cables and the surroundings of the tunnel is assumed to be negligible.

All cables are assumed to be identical within the tunnel and it is assumed that the tunnel cross-section does not change with distance along the tunnel.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60287-1-1, *Electric cables – Calculation of the current rating – Part 1-1: Current rating equations (100 % load factor) and calculation of losses – General*

IEC 60287-2-1, *Electric cables – Calculation of the current rating – Part 2-1: Thermal resistance – Calculation of thermal resistance*

3 Terms, definitions and symbols

3.1 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- IEC Electropedia: available at <https://www.electropedia.org/>
- ISO Online browsing platform: available at <https://www.iso.org/obp>

3.2 Symbols

A_t	inner tunnel cross-sectional area	m^2
C_{av}	heat capacity of the air flow	W/K
C_{vair}	volumetric heat capacity of air	$\text{W} \cdot \text{s}/(\text{m}^3 \cdot \text{K})$
D_e^*	external diameter of cable	m
D_t	inner diameter of the tunnel	m
C_{Fm}	coefficient for the calculation of radiation shape factor	-
I	current in one conductor (RMS value)	A
K_{cv}	convection factor	-
K_r	radiation shape factor	-
K_t	effective emissivity	-
L_t^*	depth of tunnel axis	m
N	number of cables	-
P_r	Prandtl number	-
Re	Reynolds number	-
R_R	alternating current resistance of conductor with sustained application of a rated current I_R i.e. at standard maximum permissible temperature	Ω/m
T_1	thermal resistance per core between conductor and sheath	$\text{K} \cdot \text{m/W}$
T_2	thermal resistance between sheath and armour	$\text{K} \cdot \text{m/W}$
T_3	thermal resistance of external serving	$\text{K} \cdot \text{m/W}$
T_{4t}	equivalent thermal resistance of cable surrounding	$\text{K} \cdot \text{m/W}$
T_{as}	convection thermal resistance between cable and air	$\text{K} \cdot \text{m/W}$
T_{at}	convection thermal resistance between air and inner wall of the tunnel	$\text{K} \cdot \text{m/W}$
T_e	external thermal resistance of the tunnel	$\text{K} \cdot \text{m/W}$
T_{st}	radiation thermal resistance between cable and inner wall of the tunnel	$\text{K} \cdot \text{m/W}$
T_a^*	equivalent star thermal resistance of air	$\text{K} \cdot \text{m/W}$
T_s^*	equivalent star thermal resistance of cable	$\text{K} \cdot \text{m/W}$
T_t^*	equivalent star thermal resistance of tunnel wall	$\text{K} \cdot \text{m/W}$
V_{air}	air velocity	m/s
$W_a(z_t)$	heat removed by the air, at the point z_t on the cable route	W/m
$W_a(z_{tot})$	heat removed by the air, at tunnel outlet	W/m
W_c	losses in a conductor per unit length, assuming maximum conductor temperature	W/m
W_d	dielectric losses per unit length per phase	W/m
W_{ktot}	total heat generated by cable	W/m
h	heat dissipation coefficient given in IEC 60287-2-1 for cables in still air	$\text{W}/(\text{m}^2 \cdot \text{K}^{5/4})$
k_{air}	thermal conductivity for air	$\text{W}/(\text{m} \cdot \text{K})$
n	number of conductors or cores in a cable	
s_1	axial separation between two adjacent cables (mm)	mm
s_r	ratio between spacing and cable diameter	-
z_0	reference length (see Formula (16))	m

z_t	coordinate corresponding to the tunnel axis	m
z_{tot}	length of the tunnel	m
$\Delta\theta_0$	fictitious increase of ambient temperature to account for the ventilation	K
θ_a	temperature at ground level	°C
$\theta_{\text{at}}(0)$	air temperature at tunnel inlet	°C
$\theta_{\text{at}}(z_t)$	air temperature, at the point z_t on the cable route	°C
$\theta_{\text{at}}(z_{\text{tot}})$	air temperature at tunnel outlet	°C
$\theta_c(z_t)$	conductor temperature, at the point z_t on the cable route	°C
θ_{c_max}	maximum permissible conductor temperature	°C
$\theta_e(z_t)$	temperature at the star point after delta-star transformation	°C
$\theta_s(z_t)$	temperature of the cable surface, at the point z_t on the cable route	°C
$\theta_s(z_{\text{tot}})$	temperature of the cable surface, at tunnel outlet	°C
$\theta_t(z_t)$	temperature of the inner tunnel wall, at the point z_t on the cable route	°C
$\theta_t(z_{\text{tot}})$	temperature of the inner tunnel wall, at tunnel outlet	°C
λ_1	ratio of the total losses in metallic sheaths to the total conductor losses (sheath or screen loss factor)	-
λ_2	ratio of the total losses in armour to the total conductor losses (armour loss factor)	-
ν	kinematic viscosity for air	m^2/s
ρ	soil thermal resistivity	$\text{K} \cdot \text{m/W}$
σ_B	Stefan-Boltzmann constant	$\text{W}/(\text{m}^2 \cdot \text{K}^4)$

4 Description of method

4.1 General description

The method is based on the calculation of the temperature of the cable surface, the air in the tunnel and the tunnel wall, as a function of the heat generated by the cables.

For any location along the cable route, a set of formulae is developed, involving:

- heat transfer formulae describing heat transfer mechanisms by radiation and convection between the cables, the air in the tunnel and the tunnel wall;
- energy balance formulae for cables, air in the tunnel and tunnel wall;
- heat transfer formulae for conduction in the surroundings of the tunnel.

This set of formulae may be written in such a way that:

- the heat removed by the air, $W_a(z_t)$, is linked to the derivative of the air temperature with respect to the longitudinal coordinate of the tunnel;
- every other formula is approximated as a thermal Ohm's law linking temperature drop and heat flow through a thermal resistance; the heat flow is derived from the heat generated by the cables, W_{ktot} , and the heat removed by the air, $W_a(z_t)$.

Some of the thermal resistances depend on the air temperature and consequently on the distance along the tunnel.

This may be dealt with by dividing the tunnel route into elementary lengths, so that:

- the heat removed by the air is proportional to the difference in the air temperature between elementary length outlet and inlet;
- the thermal resistances may be considered constant for the elementary length.

For typical installations considered in the CIGRE work [1], it was recognized that assuming constant thermal resistances along the tunnel route, computed using temperatures at the tunnel outlet, does not lead to a serious error.

With this assumption, solving the set of formulae is straightforward and the temperatures of the cable surface, air and tunnel wall are easily derived as a function of the cable losses.

The permissible current is then derived from the heat transfer formula for conduction within the cable linking the temperature drop between the conductor and the cable surface to the losses in the cables.

As temperatures at the tunnel outlet are not known, an iterative process is necessary.

The heat generated by a cable, W_{ktot} , is assumed to be constant along the cable route and is calculated for the maximum permissible conductor temperature, leading to an estimate of the current rating that is on the safe side.

$$W_{\text{ktot}} = n \cdot [W_c \cdot (1 + \lambda_1 + \lambda_2) + W_d] \quad (1)$$

$$W_c = R_R \cdot I^2 \quad (2)$$

where

W_{ktot} is the total heat generated by a cable (W/m);

n is the number of conductors in a cable;

W_c is the losses in a conductor per unit length, assuming maximum conductor temperature (W/m);

λ_1 is the ratio of the total losses in metallic sheaths to the total conductor losses;

λ_2 is the ratio of the total losses in armour to the total conductor losses;

W_d is the dielectric losses per unit length per phase (W/m);

R_R is the alternating current resistance of conductor with sustained application of a rated I_R current i.e. at standard maximum permissible temperature (Ω/m);

I is the current in one conductor (RMS value) (A).

4.2 Basic formulae

4.2.1 General

The following heat transfer mechanisms are taken into account:

- radial heat transfer by conduction within the cable;
- heat transfer by radiation from the cable surface to the tunnel wall;
- heat transfer by convection from the cable surface to the air inside the tunnel;
- heat transfer by convection from the air inside the tunnel to the tunnel wall;

- longitudinal heat transfer by convection resulting from the forced or natural flow of air along the tunnel.

4.2.2 Radial heat transfer by conduction within the cable

The conductor temperature is derived from the formula given in IEC 60287-1-1.

$$\theta_c(z_t) = \theta_s(z_t) + W_c \cdot [T_1 + n \cdot (1 + \lambda_1) \cdot T_2 + n \cdot (1 + \lambda_1 + \lambda_2) \cdot T_3] + W_d \cdot \left[\frac{T_1}{2} + n \cdot (T_2 + T_3) \right] \quad (3)$$

where

$\theta_c(z_t)$ is the conductor temperature, at the point z_t on the cable route (°C);

$\theta_s(z_t)$ is the temperature of the cable surface, at the point z_t on the cable route (°C);

T_1 is the thermal resistance per core between conductor and sheath (K · m/W);

T_2 is the thermal resistance between sheath and armour (K · m/W);

T_3 is the thermal resistance of external serving (K · m/W);

z_t is the coordinate corresponding to the tunnel axis (m).

The loss coefficients and thermal resistances are defined in IEC 60287-1-1 and IEC 60287-2-1.

4.2.3 Heat transfer by radiation from the cable surface to the inner wall of the tunnel

This heat transfer is modelled by Ohm's thermal law, characterized by a thermal resistance:

$$T_{st} = \frac{1}{\pi \cdot D_e^* \cdot K_t \cdot K_r \cdot \sigma_B \cdot \left[\left(\theta_s(z_{tot}) + 273 \right)^2 + \left(\theta_t(z_{tot}) + 273 \right)^2 \right] \cdot \left[\left(\theta_s(z_{tot}) + 273 \right) + \left(\theta_t(z_{tot}) + 273 \right) \right]} \quad (4)$$

where

D_e^* is the cable diameter (m);

σ_B is Stefan-Boltzmann constant, $5,67 \times 10^{-8}$ (W/m² · K⁴);

$\theta_s(z_{tot})$ is the cable surface at the tunnel outlet (°C);

$\theta_t(z_{tot})$ is the tunnel surface temperatures at the tunnel outlet (°C);

K_t is the emissivity of the cable surface (typically 0,9 for served cable);

K_r is the radiation shape factor taking into account the radiation areas;

z_{tot} is the length of the tunnel (m).

K_r may be expressed as:

$$K_r = \frac{1 - C_{Fm}}{1 - (1 - K_t) \cdot C_{Fm}}$$

where

C_{Fm} is a coefficient given in Table 1 and in Annex C.

Table 1 – C_{Fm} coefficient for radiation thermal resistance calculation

Installation	C_{Fm}
Single cable	0
Two cables touching	0,182
Two cables spaced $2 \times D_e^*$	0,081
Two cables spaced $3 \times D_e^*$	0,054
Three cables touching	M: 0,363 O: 0,182
Three cables spaced $2 \times D_e^*$	M: 0,163 O: 0,081
Three cables spaced $3 \times D_e^*$	M: 0,107 O: 0,054
Trefoil touching	0,348
Key	
M Middle cable	
O Outer cable	

4.2.4 Heat transfer by convection from the cable surface to the air inside the tunnel

The convective heat transfer from the cable surface to the air in the tunnel depends on the air flow characteristics, the velocity of the air being the leading parameter.

Where laminar air flow occurs, the convection thermal resistance is given by Formula (5):

$$T_{as} = \frac{1}{\left[\pi \cdot D_e^* \cdot h - \frac{1}{30^{0,25} \cdot T_{st}} \right] \cdot \left[\theta_{at}(z_{tot}) - \theta_s(z_{tot}) \right]^{0,25}} \quad (5)$$

where

h is the heat dissipation coefficient given in IEC 60287-2-1 for cables in still air ($W/(m^2 \cdot K^{5/4})$);

$\theta_{at}(z_{tot})$ is the air temperature at the tunnel outlet ($^{\circ}C$);

$\theta_s(z_{tot})$ is the temperature of the cable surface, at tunnel outlet;

T_{st} is the radiation thermal resistance between the cable and inner wall of the tunnel.

Formula (5) applies if the Reynolds number is less than 2 000.

If the Reynolds number is higher, the thermal resistance is first assumed to be given by Formula (6), valid for turbulent air flow.

$$T_{as} = \frac{1}{\pi \cdot k_{air} \cdot K_{cv} \cdot Re^{0,65}} \quad (6)$$

where

Re is the Reynolds number;

$$Re = \frac{V_{air} \cdot D_e^*}{\nu}$$

ν is the kinematic viscosity for air (m^2/s);

k_{air} is the thermal conductivity for air ($W/(m \cdot K)$);

V_{air} is the air velocity (m/s);

K_{cv} is an experimentally determined constant convection factor for which values are given in Table 2.

Table 2 – Values of parameter K_{cv}

Cable arrangement	K_{cv}
Single cable	0,130
3 cables touching horizontally ^b	0,086
3 cables spaced horizontally ^a	0,115
3 cables touching vertically ^b	0,086
3 cables spaced vertically ^a	0,115
3 cables touching in trefoil	0,070

^a To be used where the spacing is larger than $2 \times D_e^*$.

^b To be used where the spacing is smaller or equal to $2 \times D_e^*$.

4.2.5 Heat transfer by convection from the air inside the tunnel to the inner tunnel wall

This transfer is modelled by Ohm's thermal law, characterized by a thermal resistance:

If the Reynolds number is greater than 2 500, the air flow is assumed turbulent and the following relationship applies:

$$T_{at} = \frac{1}{\pi \cdot k_{air} \cdot 0,023 \cdot Re^{0,8} \cdot P_r^{0,4}} \quad (7)$$

where

Re is the Reynolds number;

$$Re = \frac{V_{air} \cdot D_t}{\nu}$$

P_r is the Prandtl number;

$$P_r = C_{vair} \cdot \frac{v}{k_{air}}$$

C_{vair} is the specific heat of air per unit volume (J/(m³ · K));

D_t is the inner diameter of the tunnel (m).

If the Reynolds number is less than 2 500, the thermal resistance is considered negligible.

4.2.6 Longitudinal heat transfer by convection resulting from the forced or natural flow of air along the tunnel

The heat removed by the air, $W_a(z_t)$, is linked to the air temperature variations according to:

$$W_a(z_t) = C_{av} \cdot \frac{\partial \theta_{at}(z_t)}{\partial z_t} \quad (8)$$

where

z_t is the coordinate corresponding to the tunnel axis (m);

C_{av} is the heat capacity of the air flow (W/K);

$$C_{av} = C_{vair} \cdot V_{air} \cdot A_t \quad (9)$$

A_t is the inner tunnel cross-sectional area (m²).

4.2.7 Radial heat conduction in the soil surrounding the tunnel

For circular tunnels the thermal resistance of the surrounding soil is expressed by:

$$T_e = \frac{\rho}{2 \cdot \pi} \cdot \ln \left[u + \sqrt{u^2 - 1} \right] \quad (10)$$

where

$$u = \frac{2 \cdot L_t^*}{D_t};$$

ρ is the soil thermal resistivity (K · m/W);

L_t^* is the depth of the tunnel axis (m);

D_t is the inner diameter of the tunnel (m).

For rectangular tunnels the thermal resistance of the surrounding soil is expressed by:

$$T_e = \frac{\rho}{2 \cdot \pi} \cdot \ln \left[3,388 \cdot \frac{L_t^*}{\sqrt{A_t}} \right] \quad (11)$$

where

A_t is the inner tunnel cross-sectional area (m^2).

For deep tunnels, these formulae will produce conservative results because of soil thermal inertia. This subject is under consideration.

4.3 Set of formulae

A delta-star transformation is used to derive the following set of formulae:

$$\begin{aligned}
 \theta_s(z_t) - \theta_e(z_t) &= T_s^* \cdot N \cdot W_{k\text{tot}} \\
 \theta_e(z_t) - \theta_t(z_t) &= T_t^* \cdot (N \cdot W_{k\text{tot}} - W_a(z_t)) \\
 \theta_t(z_t) - \theta_a(z_t) &= T_e \cdot (N \cdot W_{k\text{tot}} - W_a(z_t)) \\
 \theta_{at}(z_t) - \theta_e(z_t) &= -T_a^* \cdot W_a(z_t) \\
 W_a(z_t) &= C_{av} \cdot \frac{\partial \theta_{at}(z_t)}{\partial z_t}
 \end{aligned} \tag{12}$$

where

z_t is the coordinate corresponding to the tunnel axis;

$W_{k\text{tot}}$ is the total heat generated by the cable (W/m).

$W_a(z_t)$ is the heat removed by the air, at the point z_t on the cable route (W/m);

T_s^* is the equivalent star thermal resistance of the cable ($\text{K} \cdot \text{m}/\text{W}$);

T_t^* is the equivalent star thermal resistance of the tunnel wall ($\text{K} \cdot \text{m}/\text{W}$);

T_a^* is the equivalent star thermal resistance of air ($\text{K} \cdot \text{m}/\text{W}$);

defined as follows:

$$\begin{aligned}
 T_s^* &= \frac{\left(\frac{T_{st}}{N}\right) \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}} \\
 T_t^* &= \frac{T_{at} \cdot \left(\frac{T_{st}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}} \\
 T_a^* &= \frac{T_{at} \cdot \left(\frac{T_{as}}{N}\right)}{\left(\frac{T_{st}}{N}\right) + \left(\frac{T_{as}}{N}\right) + T_{at}}
 \end{aligned} \tag{13}$$

The delta-star transformation is shown diagrammatically in Annex B.

4.4 Solving

The permissible current rating is obtained from Formula (14) which is similar to the classical formula for cable rating given in IEC 60287-1-1:

$$I = \left[\frac{\theta_{c_max} - [\theta_a + \Delta\theta_0] - W_d \cdot \left[\frac{T_1}{2} + n \cdot (T_2 + T_3 + T_{4t}) \right]}{R \cdot [T_1 + n \cdot (1 + \lambda_1) \cdot T_2 + n \cdot (1 + \lambda_1 + \lambda_2) \cdot (T_3 + T_{4t})]} \right]^{\frac{1}{2}} \quad (14)$$

where

$\Delta\theta_0$ is the fictitious increase of ambient temperature to account for the ventilation (K);

$$\Delta\theta_0 = [\theta_{at}(0) - \theta_a] \cdot \frac{T_t^* + T_e}{T_a^* + T_t^* + T_e} \cdot e^{-\frac{z_{tot}}{z_0}} \quad (15)$$

T_{4t} is the equivalent thermal resistance of cable surrounding (K · m/W);

$$T_{4t} = N \cdot \left[T_s^* + (T_t^* + T_e) \cdot \left(1 - \frac{T_t^* + T_e}{T_a^* + T_t^* + T_e} \cdot e^{-\frac{z_{tot}}{z_0}} \right) \right] \quad (16)$$

z_0 is the reference length (m);

$$z_0 = (T_a^* + T_t^* + T_e) \cdot C_{av} \quad (17)$$

θ_{c_max} is the maximum permissible conductor temperature (°C).

The air temperature $\theta_{at}(z_{tot})$ at the tunnel outlet is estimated from:

$$\theta_{at}(z_{tot}) = \theta_{at}(0) + \left[\theta_a + (T_t^* + T_e) \cdot N \cdot W_{ktot} - \theta_{at}(0) \right] \cdot \left[1 - e^{-\frac{z_{tot}}{z_0}} \right] \quad (18)$$