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FOREWORD

This Standard addresses verification and validation (V&V) in computational fluid dynamics (CFD) and compu-
tational heat transfer (CHT). The concern of V&V is to assess the accuracy of a computational simulation. The V&V
procedures presented in this Standard can be applied to engineering and scientific modeling problems ranging in
complexity from simple lumped masses, to 1-D steady laminar flows, to 3-D unsteady turbulent chemically reacting
flows. In V&V, the ultimate goal of engineering and scientific interest is validation, which is defined as the process
of determiping the degree to which a model is an accurate representation of the real world from the perspeetiye of
the intend¢d uses of the model. However, validation must be preceded by code verification and solution vefificgtion.
Code veriffcation establishes that the code accurately solves the mathematical model incorporated in the code, i.¢| that
the code if free of mistakes for the simulations of interest. Solution verification estimates the numericahaccuracy of a
particular falculation.

The estipnation of a range within which the simulation modeling error lies is a primary objective of the validation
process ar|d is accomplished by comparing a simulation result (solution) with an appropriate experimental rfesult
(data) for gpecified validation variables at a specified set of conditions. There can be no valifiation without experinental
data with which to compare the result of the simulation.” Usually a validation effort will cover‘arange of conditions wjithin
a domain ¢f interest.

Both th¢ American Institute of Aeronautics and Astronautics (AIAA) and the%American Society of Mechgnical
Engineers (ASME) have published V&V Guides that present the philosophy and ‘procedures for establishing a fom-
prehensivg¢ validation program, but both use definitions of error and uncertairntty~that are not demonstrated within the
guides to provide quantitative evaluations of the comparison of the validatiornvariables predicted by simulation and
determinegl by experiment. ASME V&V 10-2006, for instance, defines ertor.as “a recognizable deficiency in any phase
or activity pf modeling or experimentation that is not due to lack of knowledge” and defines uncertainty as “a potgntial
deficiency[in any phase or activity of the modeling, computation, or’experimentation process that is due to inhprent
variability|or lack of knowledge.”

In contrpst, this Standard presents a V&V approach that.isibased on the concepts and definitions of erroi and
uncertainty that have been internationally codified by the experimental community over several decades. In [1993,
the Guide[to the Expression of Uncertainty in Measurement was published by the International Organizatioph for
Standardigation (ISO) in its name and those of six othér international organizations.” According to the Forewopd in
the ISO Gyide, “In 1977, recognizing the lack of intémational consensus on the expression of uncertainty in meapure-
ment, the yorld’s highest authority in metrology, the Comite International des Poids et Mesures (CIPM), requested the
Bureau Infernational des Poids et Mesures (BIPM) to address the problem in conjunction with the national standards
laboratori¢s and to make a recommendationy” After several years of effort, this led to the assignment of responsipility
to the ISO| Technical Advisory Group-on_Metrology, Working Group 3, to develop a guidance document. This| ulti-
mately culninated in the publication ofthe ISO Guide, which has been accepted as the de facto international starjdard
for the exgression of uncertainty n\measurement.

The V&) approach presentedhint this Standard applies these concepts to the errors and uncertainties in the experi-
mental resjilt and also to the ertors and uncertainties in the result from the simulation. Thus, the uncertainties in the ex-
perimental value and in thé-simulation value are treated using the same process. Using the approach of the ISO Guide,
for each etfror source (dther than the simulation modeling error) a standard uncertainty, u, is estimated such thalt u is
the standafd deviation of the parent population of possible errors from which the current error is a single realizgtion.
This allowp estimatien of a range within which the simulation modeling error lies.
tiviegf this Standard is the specification of a verification and validation approach that quantifies the d¢gree
inferred from the comparison of solution and data for a specified variable at a specified validation goint.
The scope of this Standard is the quantification of the degree of accuracy for cases in which the conditions of the actual
experiment are simulated. Consideration of the accuracy of simulation results at points within a domain other than
the validation points (e.g., interpolation/extrapolation in a domain of validation) is a matter of engineering judgment
specific to each family of problems and is beyond the scope of this Standard.

*This is implicit in the phrase “real world” used in the definition of validation.

*Bureau International des Poids et Mesures (BIPM), International Electrotechnical Commission (IEC), International Federation of Clinical
Chemistry (IFCC), International Union of Pure and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics (IUPAP),
and International Organization of Legal Metrology (OIML)
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ASME PTC 19.1-2005 “Test Uncertainty” is considered a companion document to this Standard, and it is assumed
the user has both so many of the details of estimating the uncertainty in an experimental result are not repeated herein.
ASME PTC 19.1-2005 illustrates the application of the ISO Guide methodology in straightforward and also in complex
experiments.

Ideally, as a V&V program is initiated, those responsible for the simulations and those responsible for the experiments should be
involved cooperatively in designing the V&V effort. The validation variables should be chosen and defined with care. Each
measured variable has an inherent temporal and spatial resolution, and the experimental result that is determined
from these measured variables should be compared with a predicted result that possesses the same spatial and tem-
poral resolutlon If this is not done, such conceptual errors must be 1dent1f1ed and corrected or est1mated in the initial

Finally, as an aid to the reader of thls Standard, the followmg guide to the topics and discussions of each [section are
pres¢nted. It is recommended that the reader proceed through the Standard beginning in Section 1 and sticcessively
read |each subsequent section. The presentation in this Standard follows a procedure starting with verifif}tion (code
and golution), proceeding to parameter uncertainty assessment, experimental uncertainty assessfnent, simufation vali-
datign, and concluding with a comprehensive example problem. As stated, this Standard followsldn overall procedure;
however, each section of this Standard may also be viewed as a standalone presentation on each of the releyant topics.
The Intent of this document is validation in which uncertainty is determined for both,the-experimental dqta and the
simulation of the experiment. However, the material in Sections 2, 3, and 4 can be studiedindependently of the remain-
der gf the document as they are important in their own right. A reader’s guide follows:
Segtion 1 presents an introduction to the concepts of verification and validatign, the definitions of error pnd uncer-
tainty, and the introduction of the overall validation methodology and approdch as defined in this Standand. The key
concgpts of this Section are the validation comparison error and the validation standard uncertainty. It is ghown that
validation standard uncertainty is a function of three standard uncertainties associated with errors due to|numerical
soluffion of the equations, due to simulation inputs, and due to experimental data.
Seftion 2 presents two key topics:
(a)|the details of a method for code verification based on the techinique of the method of manufactured s¢lutions
(b)|the details of a method for solution verification based on-the technique of the Grid Convergence IndeX (an exten-
sion pf Richardson Extrapolation).
The outcome of Section 2 is a method for estimating the'standard uncertainty associated with numerical ferrors.
Segtion 3 presents two different approaches for estimating the standard uncertainty associated with errofs in simu-
latiop input parameters. One approach evaluates, fesponse of the simulation or system in a local neighborhood of the
inpuf vector, while the other approach evaluates response in a larger global neighborhood. The first approgch is com-
monly referred to, for example, as the sensitivity coefficient method, and the second approach is generally [referred to
as thp sampling or Monte Carlo method.
Seftion 4 presents a brief overview @f the method presented in the ASME PTC 19.1-2005 Test Uncertaintly standard
for eftimating uncertainty in an experimental result. At the conclusion of this Section, the reader will have njethods for
estinjating the key uncertaintiesreguired to complete a validation assessment.
Segtion 5 presents two approaches for estimating the validation standard uncertainty given the estimates of uncer-
tainty associated with num@rical, input, and experimental data errors as developed in the three previous sections. At
the cpnclusion of this Section, the reader will have the necessary tools to estimate validation standard unceftainty and
the error associated with*the mathematical model.
Segtion 6 presentSadiscussion of the interpretation of the key validation metrics of validation comparisof error and
validation uncertainty. It is shown that the validation comparison error is an estimate of the mathematical nhodel error
and that the yalidation uncertainty is the standard uncertainty of the estimate of the model error.
Seftion Z summarizes the methods presented in the previous sections by implementing them in a comprehensive
exanjple-problem working through each element of the overall procedure and results in a complete validaffion assess-
ment ofa candidate mathematical model. T
Finally, several appendices are included in this Standard. Some are considered as part of the Standard and are iden-
tified as mandatory appendices. Other included appendices are considered as nonmandatory or supplementary and
are identified as such.
ASME V&V 20-2009 was approved by the V&V 20 (previously PTC 61) Committee on January 9, 2009 and approved
by the American National Standards Institute (ANSI) on June 3, 2009.
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ASME V&V 20-2009

STANDARD FOR VERIFICATION AND VALIDATION IN
COMPUTATIONAL FLUID DYNAMICS AND HEAT TRANSFER

1-1 | GENERAL

Thiis Standard addresses verification and validation
(V&Y) in computational fluid dynamics (CFD) and com-
putafional heat transfer (CHT). The concern of V&V is
to agsess the accuracy of a computational simulation.
The V&V procedures presented in this Standard can be
applled to engineering and scientific modeling prob-
lems|ranging in complexity from simple lumped masses
to 1-P steady laminar flows to 3-D unsteady turbulent
chenjically reacting flows. In V&V, the ultimate goal of
engti::[teering and scientific interest is validation, which
is ddfined as the process of determining the degree to
whidh a model is an accurate representation of the réat
worlfl from the perspective of the intended uses oof the
modgl. However, validation must be preceded, by code
veriffcation and solution verification. Code (etification
estaljlishes that the code accurately solves(the'mathemat-
ical odel incorporated in the code (i.e.; that the code is
free pf mistakes for the simulations ofiinterest). Solution
veriffcation estimates the numerical accuracy of a partic-
ular falculation. Both code and ‘selution verification are
discyssed in detail in Section 2.

The estimation of a rapge-within which the simulation
modgling error lies is.a\primary objective of the valida-
tion process and is accomplished by comparing a simula-
tion fesult (solution) with an appropriate experimental
result (data) forspecified validation variables at a speci-
fied pet of donditions. There can be no validation without
experfimefital data with which to compare the result of the sim-
ulatign PUsually a validation effort will cover a range of

Section 1
Introduction to Validation Methodology

the degree of accuracy inferted from the confparison of
solution and data for atspecified variable at p specified
validation point. The approach, proposed by Coleman
and Stern [1], uses th€ concepts from experimental un-
certainty analysis\2—4] to consider the errors pnd uncer-
tainties in bath the solution and the data.

The scope)of this Standard is the quantificdtion of the
degree of accuracy of simulation of specified|validation
varjables at a specified validation point for cas¢s in which
the eonditions of the actual experiment are [simulated.
Consideration of solution accuracy at pointp within a
domain other than the validation points (e.g.{ interpola-
tion/extrapolation in a domain of validation)is a matter
of engineering judgment specific to each family of prob-
lems and is beyond the scope of this Standard

Fluid dynamics and heat transfer are the ardas of engi-
neering and science that are specifically addtessed, but
the validation approach discussed is applicaljle in other
areas as well. Discussion and examples are cpntered on
models using partial differential equations, Hut simpler
models also fall within the purview of the|validation
approach.

1-3 ERRORS AND UNCERTAINTIES

Pertinent definitions from metrology are as ffollows:

(a) error (of measurement), &: “result of a measurement
minus a true value of the measurand” [5]

(b) uncertainty (of measurement), u: “paramelter, associ-
ated with the result of a measurement, that chiracterizes
the dispersion of the values that could reagonably be

conditions within a domain of interest.

1-2 OBJECTIVE AND SCOPE

The objective of this Standard is the specification of
a verification and validation approach that quantifies

! This is implicit in the phrase “real world” used in the definition
of validation.

attributed to the measurand” [5]

These concepts were extended in reference [1] to apply
to the value of a solution variable from a simulation as
well as a measured value of the variable from an experi-
ment.

In that context, then, an error, §, is a quantity that has
a particular sign and magnitude, and a specific error,
8, is the difference caused by error source i between a
quantity (measured or simulated) and its true value. In
the approach outlined in this Standard, it is assumed
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Fig. 1-4-1 Schematic of Finned-Tube Assembly for Heat Transfer Example
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that each drror whose sign and magnitude is known has
been remojved by correction. Any remaining error is thus
of unknown sign and magnitude,” and an uncertainty
u is estimgted with the idea that *u characterizes,the
range confaining 8. In experimental uncertainty analy-
sis [2], u is|the standard uncertainty and correspornids con-
ceptually {o an estimate of the standard deviation, o, of
the parent{distribution from which & is(a single realiza-
tion. It is pignificant to note that no ‘assumption about
the form of the parent distribution'is associated with the
definition pof u.

The congepts of verificatioftand validation used in this
Standard dre consistent with-the definitions used in pre-
viously pyblished guides‘and texts on V&V [6-8]. The
concepts and definitions for error and uncertainty used
herein differ from<those in the previously published
guides, hqweyer. Both the American Institute of Aero-
nautics anpd{Astronautics (AIAA) and the American

- g ——>
(b) End View

to provide quantitative evaluations of the compatison
of the validation variables predicted by simulation and
determined by experiment. ASME V&V 10-2004, for
instance, defines error as “a recognizable deficiency
in any phase or activity of modeling or experimgnta-
tion that is not due to lack of knowledge” and défines
uncertainty as “a potential deficiency in any phage or
activity of the modeling, computation, or experimpnta-
tion process that is due to inherent variability orflack
of knowledge.”

1-4 EXAMPLE FOR VALIDATION NOMENCLATURE
AND APPROACH

In the validation process, a simulation result (sol{tion)
is compared with an experimental result (data) for gpeci-
fied validation variables at a specified set of conditions
(validation point). As an example (shown schematjcally

Society of Mectamnical Engineers <ASME) tave pub-=
lished V&V Guides [6, 7] that present the philosophy
and procedures for establishing a comprehensive vali-
dation program, but both use definitions of error and
uncertainty that are not demonstrated within the guides

*There are asymmetric errors that are more likely to (or are cer-
tain to) have one sign rather than the other. Treatment of these by
either “zero-centering” or by estimating asymmetric uncertainties
is discussed in references [3] and [4].

in Fig. 1-4-T), consider the case of fully developed flow of
a hot fluid inside a round tube. Square fins are attached to
the outside tube wall to enhance the heat transfer. Valida-
tion variables of interest are the downstream bulk fluid
temperature, T, and the rate of heat loss, g, over the tube
length, L. A description of the problem, the correspond-
ing simulation model, and nomenclature are presented
in detail in Mandatory Appendix I.

This example is discussed in the context of validation
in Section 5 for cases in which the following occur.
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Fig. 1-5-1
A

Schematic Showing Nomenclature for Validation Approach
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1-4.1 Case 1
The validation variable, T, is directly measured.

1-4.2 Case 2

The validation variable, g, is determined using a data
reduftion equation that combines multiple variables
from| the experiment as

q=pQC,T, —T)

and I’ and T are separately measured and have no shared
erroif sources.

1-4.3 Case 3

The validation is the same.as-Case 2 in para. 1-4.2
abovg, except the T, and T~measurements have shared
erro1 sources.

The validation set point’is at the Reynolds number de-
fined as

(1-4-1)

_ 4pQ
Re =" 7 (1-4-2)
Cdnsider.Cdse 1 in para. 1-4.1 above as an example to
desctibethe validation approach nomenclature. In the
expefinient, the validation variable, T, is directly mea-

Reynolds Number,Re

the heat transfer example discussed in the|preceding
paragraph.

Denote the predicted value of T from the pimulation
solution as S, the value determined from ¢xperimen-
tal data as D, and the true (but unknown) yalue as T.
(Obviously, the relative magnitudes of S, D, pnd T will
differ among cases and will not necessarily| be in the
order shown in the figure.) The validation cpmparison

error?® E is defined as
E=S-D (1-5-1)

The error in the solution value, S, is the difference be-
tween S and the true value T

6,=5-T (1-5-2)
and similarly the error in the experimental value D is

6,=D—-T (1-5-3)

Using egs. (1-5-1) through (1-5-3), E can be expressed as

E=S-D=(T+4)=(T+5,)=6—9 (1-54)

The validation comparison error E is thus fhe combi-

sured. In the simulation, the experimentally determined
valuesof T, T, Q, dl , d,, L and the reference quantities p,
w, C,h,h, hf, h, kf, k, w, and w, are inputs to the model
and the value of T is predicted. The specific validation
point Re is calculated from eq. (1-4-2).

1-5 VALIDATION APPROACH

The nomenclature used in the validation approach
presented in this Standard is shown in Fig. 1-5-1 using

nation of all of the efrors in the simulation result and
the experimental result, and its sign and magnitude are
known once the validation comparison is made.

NOTE: The “truth” is the value of a quantity of interest
defined by the observer and is an abstraction. However, in-
complete definition of the quantity gives rise to an additional

*Equation (1-5-1) actually defines E as a discrepancy rather than
an error at this point in the development, but E is shown to be an
error by eq. (1-5-6).
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uncertainty [2]. In this Standard, the experiment “as run” is
defined as the reality of interest (truth), and thus the condi-
tions of the actual experiment are the “validation point” that
is simulated.

All errors in S can be assigned to one of three catego-
ries [1]:

(a) the error §__, due to modeling assumptions and
approximations

(b) the error §  _ due to the numerical solution of the

of E are known from eq. (1-5-1). However, the signs and
magnitudes of 5, Sinput’ and &, are unknown. The stan-
dard uncertainties corresponding to these errorsare u__,
Uypour and u, (where u,, for instance, is the estimate of the
standard deviation of the parent distribution from which
d,,is a single realization).

NOTE: Once D and S have been determined, their values
always differ by the same fixed amount from the true value.

That is, all errors affecting D and S have become “fossilized”
[A] and SL) S S andd rare all Sy stematic errors. This

equations

(c) the drror Sinput in the simulation result due to errors
in the simplation input parameters (T, T, Q, d,, d,, L,
p i, C,hth, hf, h, kf, k, w, and w, " in the heat transfer
example)

These 8’k will be defined further in later sections.
Thus
5.=8

S model

+5, +8, (1-5-5)

input

The obj¢ctive of a validation exercise is to estimate
3, .4 to within an uncertainty range.

The confparison error can then be written as

+8 +8  —8, (1-5-6)

input

E=5¢

model

This approach is shown schematically in Fig. 1-5-2,
where the pources of error are shown in the ovals.
Rearranging eq. (1-5-6) to isolate §__, , gives
S odel = E 7 (Oum T O ~ ) (1-5-7)

model num input

Consider the terms on the right hand side of the equation.
Once S and D are determined, the sign and magnitude

Fig. 1-5-2 Overview of theValidation Process With Sources of Error in Ovals

mnput” — num’ mode
u

means that the uncertainties to be estimated (uinput’ ) and
up) are systematic standard uncertainties. In the-Conceptual
approach of the ISO Guide [2], there is no distinetion made
in the mathematical treatment of uncertainties thaft are
“random” and those that are “systemati¢,” A systematic
error is a single realization from some-parent populatijon of
possible values from a systematic ertor source, and the qorre-
sponding systematic standard umncertainty, u, is the est{mate
of the standard deviation, o, ef that parent population

Following reference [i],~a validation standard incer-
tainty, u_, can be defifted' as an estimate of the stanjdard
deviation of the parent'population of the combinatipn of
errors (5 + & N+— 6,). Considering the relatiomship

input

shown in eq. (1457),
(E * uval) (1-5_8)

then.eharacterizes an interval within which & falls,

or

model

)

model

elE—u_,E+u

val’/ val]

1+5-9)

Reality, of Interest (Truth): Experiment “As Run”

Experimental
errors

Modeling Omodel

assumptions Y

Simulation
model

Simulation inputs 5input

(properties, etc.)

Y

m fo)
INUTTIETiCdr SOTUtions TTaTTT
of equations

Y

Experimental data, D

Comparison error:
E=S-D
validation uncertainty,

Y

Simulation result, S

A

Uyal

E=0model + (6input +0pym-0p)
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The estimation of u_, is thus at the core of the methodology
presented in this Standard and E and u_ are the validation
metrics.

If the three errors on the RHS of eq. (1-5-7) are effectively
independent, then

u =

val

Wl Fous . U (1-5-10)

input

As will be discussed in detail in Section 5, when the

validation variable is directly measured — as is T, in the

the qccnmph.nn of offec

1-6 OVERVIEW OF SUBSEQUENT SECTIONS

Considering the relationship shown in eq. (1-5-10), an
estimate of u  must be made to obtain an estimate of u_;
estimates must be made of the standard uncertainties in all
input parameters that contribute to u,  and of the stan-
dard uncertainties in the experiment that contribute to u,,.

Code verification and solution verification processes,
discussed in Section 2, result in estimation of u__. Code
verification is the process of determining that a code is

tively independent errors is generally reasonable. How-
ever|when the validation variable is determined using a
datafreduction equation —as is g in Cases 2 and 3 (paras.
1-4.2Jand 1-4.3) — the experimental g, and predicted g,
valugs can be functions of shared variables and 6, and
8, arp not independent. The equivalent to eq. ( 5p 10) is
shown for these cases in Section 5.

If,|as demonstrated in the basic methodology in this
Stanglard, uncertainty contributions to u  are considered
that fake into account all of the error sourcesinég__, amput’
and ¢, then §__, includes only errors arising from mod-
eling assumptlons and approximations (“model form”
). In practice, there are numerous gradations that

counpted for in 8, and which error sources are defined
inherent part of §__, .

The code used will often have more adjustable para-
metdrs or data inputs than the analyst may decide
to uge (e.g., for a commercial code). The decision of
whidh parameters to include in the definition of-the
computational simulation (conceptually separaté from
the gpde) is somewhat arbitrary. Some (even all¥) of the
parameters available may be considered.-fixed for the
simylation. For example, an analyst may'decide to treat
parameters in a chemistry packagenas fixed (“hard-

wirefl”) and therefore not to be considered in estimat-
ing 4, .. even though these parameters could have
accessed and had assoc1ated uncerta1nt1es The

certdinfies

mathematically correct for the simulations of imterest (i.e.,
it can converge to a correct continuum Soldfion as the
discretization is refined). Code verification invjplves error
evaluation from a known benchmark solutioh. Solution
verification is the process of estimating numetical uncer-
tainty for a particular solution~of a problem pf interest.
Solution verification involves.error estimation father than
evaluation from a knownbénchmark solution.

Techniques for estination of u, , the standard uncer-
tainty in the solutien $’due to the standard urjcertainties
in the simulatiorfinput parameters, are preserfted in Sec-
tion 3. Obviogusly; estimates of the standard urjcertainties
of all of theihput parameters are required. Then u, is
determified"from propagation by either of the|following:

(a) Wising a sensitivity coefficient (local) method that
requijreés estimates of simulation solution [sensitivity
coefficients

(b) using a Monte Carlo (sampling, globgl) method
that makes direct use of the input parametefr standard
uncertainties as standard deviations in assurhed parent
population error distributions

The standard uncertainty in the experimental result u,,
is determined using well-accepted techniques [2—4, 9] de-
veloped by the international community over a period of
decades and is discussed in Section 4 of this docpiment. The
estimate u,, is the standard uncertainty appropyiate for D.
It includes all effects of averaging, includes all rgndom and
systematic uncertainty components, and includgs effects of
any correlated experimental errors and any other factors
that influence D and u,. As explained previoudly, when D
and u,, are used in the validation comparison ahy random
uncertainty components have been fossilized gnd u, is a
systematic standard uncertainty.

The estimation of u , for a range of pragtical V&V
situations is demonstrated in Section 5, and a[discussion
of the interpretation of the results of a validatipon effort is
presented in Section 6.

It is crucial in interpreting the results of a validation effort
that those error sources that are included in &_ ,, and those
that are accounted for in the estimation of u_ be defined pre-
cisely and unambiguously.

*If all parameter values are considered fixed in the model, this
is the limit of what has been termed a strong-model approach. See
Roache [8] for further discussion, history, and implications to the
philosophy of scientific validation.

A comprehensive end-to-end example of the applica-
tion of the techniques covered in Sections 1 through 6 is
presented and discussed in Section 7.
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Section 2
Code Verification and Solution Verification

2-1 GENERAL

boundary-fitted erids), two-dimensional or three-

Thiis Section is ultimately concerned with the evaluation
of the uncertainty of a numerical solution due to numeri-
cal efror, denoted by u_ _in eq. (1-5-10), Section 1. Prior
to esfimating u_ it is necessary to verify the code itself
[i.e., fo determine that the code is free of mistakes (code
veriffcation)]. Solution verification is then the process to
estimate u .

m

2-2 | INTRODUCTION

THe objective of verification is to establish numeri-
cal gccuracy, independent of the physical (modeling)
accufacy that is the subject of validation. The necessity
for rpquiring quantitative assessment of numerical ac-
curagy was first formally asserted in the editorial policy
statement of the ASME Journal of Fluids Engineering [1]
and pubsequently updated in two revised policy state-
menfs [2, 3]. As described in Section 1, code verification
is digtinct from solution verification and must precede
it, eyen though both procedures utilize grid cénver-
gencp studies. In general, code verificationlassesses
code| correctness and specifically involves error evalua-
tion for a known solution. By contrast, solution verifica-
tion% involves error estimation, since tthe* exact solution
to th specific problem is unknowmn,‘Code and solution
veriffcation are mathematical agfivities, with no concern
whaftsoever for the agreemerit of the simulation model
results with physical data(from experiments; that is the
concprn of validation. Note, however, that the solution
and {ts error estimatidn\from a solution verification will
be uged in the validdtion process. In this way, code veri-
fication, solution“wverification, and validation are cou-
pled|into andoverall process for assessing the accuracy
of thp compiited solution.

The vetification methods discussed in this Section
are doddifi . . . .
primarily finite difference, finite volume, and finite el-
ement methods in which discrete grid intervals are de-
fined between computational nodes. The grids may be
unstructured or structured (including nonorthogonal

5The term “solution verification” is used in this Standard; in other
references the term “calculation verification” is also used inter-
changeably with “solution verification” and is the equivalent term
used by Freitas [2] and in the ASME V&V 10-2006 Guide.

dimensional, quadrilateral (or hexahedral),
lar (or tetrahedral), and static or dynamicy’

The remainder of this Section 2 ptovided a recom-
mended approach to successfully cémpleting b code and
solution verification effort. Code verification| is treated
throughout subsection 2-3. Solttion verificatiop is treated
throughout subsection 2-4.

r triangu-

2-3 CODE VERIFICATION

Code verification, establishing the correcthess of the
code itself, ¢an only be done by systematic [discretiza-
tion conyérgence tests and monitoring the cqnvergence
of the solutions towards a known “benchmark” solution
(i.e,.avstandard of comparison). The best henchmark
solution is an exact analytical solution (i.e.,|a solution
expressed in simple primitive functions likp sin, exp,
tanh, etc.). Further, it is not sufficient that thg analytical
solution be exact; it is also necessary that the solution
structure be sufficiently complex that all tefms in the
governing equation(s) of the code being tesfed are ex-
ercised.

A perception may exist, and has often beeh stated in
research journal articles, that general accurady verifica-
tion of codes for difficult problems (e.g., the fuill Navier-
Stokes equations of fluid dynamics) is ndt possible
because exact solutions exist only for relativiely simple
problems that do not fully exercise a code. Tlis percep-
tion has resulted in a haphazard and often |piecemeal
approach to code verification. In actuality, there exists
a systematic approach based on grid convergence tests
that is both tractable and effective (subsection 2-3.3).
Some modeling approaches such as large ed¢ly simula-
tion (LES) and direct numerical simulation (DNS) may
pose some challenges to the use of grid cqnvergence
for assessing code accuracy, but fundamentaflly the ap-
i i i plied (see

subsection 2-5 for an additional discussion).

®Dynamic grid methods include adaptive, Lagrangian, or
arbitrary Lagrangian Eulerian. Free Lagrangian methods such as
discrete vortex and discrete element methods may also use the
approach defined in this Section, where the Lagrangian markers
and initial distribution can be viewed as analogous to a grid dis-
tribution. Based on the initial distribution of Lagrangian markers,
a refinement strategy may be deployed to determine “grid” conver-
gence order and an assessment of uncertainty.
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2-3.1 Requirements of Code Verification

The process of developing a computer code for non-
linear partial differential equations (PDEs) necessarily
involves much testing and evaluation of algorithms and
coding. Mostly, this is performed for sets of simplified
problems with analytical solutions. For example, a 3-
D time-dependent fully nonlinear Navier-Stokes code
will probably have been tested on a simple 1-D linear
advection- dlffu51on equatlon a 2 D or 3-D Burgers equa—
tion, and dther j
ascertainirlg code performance, and classmal analytical
solutions for restricted problems (e.g., heat conduction)
can somefimes provide convincing evidence for code
verificatiof. For more general problems (e.g., Reynolds-
Averaged [Navier-Stokes codes), while these piecemeal
analytical [solutions taken all together can constitute
a partial ¢r informal code verification, they are often
inadequat¢ to convincingly demonstrate that the code is
correct for|the targeted problems.

To achi¢ve convincing code verification, one needs
an exact apalytical solution or family of solutions that
exercises gll the relevant features of a code (e.g., vari-
able propgrties, nonlinearities, turbulence model, etc.).
It is well known that even the laminar Navier-Stokes
equations [do not have known analytical solutions for
any but the most trivial boundary and initial condi-
tions. Fortlunately, a very general procedure does exist
for generafing exact analytical solutions required for ac-
curacy verffication of codes. This procedure, the method
of manufatured solutions (MMS), is described in sub-
section 2-3.3.

In today’s simulation community, many engineers
are using [commercial tools provided by a vendor. In
e vendor community has attempted”to ad-

verification, and many follow software
trol protocols to address doding accuracy.

tion provifled to users by vendors is often inadequate.
Therefore the commercialcode user is cautioned not to
rely on vepdor verificdtion of a code. The user should
recognize [that, even~though a commercial code may
have enjoyed widespread use and even verification for
some problems, the code may not have been verified for
the specifif problems that the user intends to solve Itis
always us
documentation on their code verification, but it is also
recommended that the user perform a code verification
independently.

2-3.2 Code Option Combinations

The practical difficulties arising from the large numbers
of user input options and combinations are widely recog-
nized,butareoftenexaggerated,asdiscussedbyRoache[4].
Briefly, option combinations are countable, and pessimistic

computer science conclusions about complex codes being
unverifiable are based on unrealistic conditions like “ar-
bitrary complexity.” Furthermore, the number of option
combinations required often can be greatly reduced by
“partitioning the option matrix” [4] based on common
sense and knowledge of code structure (a “glass box”
philosophy [5] as opposed to the more demanding “black
box” philosophy). Failing this, codes can be verified only
fora subset of option combinations In fact this is the most
. The
generahty of the MMS approach descrlbed next wiltrdduce
these difficulties arising from option complexity be¢ause
less testing will be required for each optionf¢ombination
compared to a less formal approach to code'yerification.

2-3.3 Method of Manufactured Solutions (MMS)

The method of manufacturéd ,solutions (MMS) [[4-8]
provides a methodology for-code verification thaf has
been successfully demonsttated in a variety of codes. It
is applicable to codes baséd on the solution of partigl dif-
ferential or integro,différential equations (usually, nqnlin-
ear systems of equations) — the subject of this document
and of much ©f etomputational science and enginedring.
For some mathematical models, the method can he set
up with hdspecial code requirements, but this subsection
will outline the most general and easy-to-apply apprpach,
whiclirequires code features that may not be already|built
into the computer code (i.e., the ability to incorporate juser-
Written subroutines and the ability to handle source terms
and nonhomogeneous boundary conditions). The follow-
ing discussion of MMS is given to provide a general $ense
of the method; detailed examples of the implementation
of the method are given in Nonmandatory Appendix|A for
a heat conduction problem.

As noted previously, Code Verification requires an pxact,
analytical solution to a nontrivial problem that covefs the
same options as the problem to be eventually addr¢ssed
with the verified code. The formulation of an exactana-
lytical solution may seem difficult for nonlinear syqtems
of PDEs, but in fact it is relatively easy. MMS starts gt the
end, with a sufficiently complex solution form (e.g|, hy-
perbolic tangents or other transcendental functions). A
linear solution, however, would not exercise the terms
in our PDEs. Also, tanh is easily evaluated and differen-
tiated, and contains all orders of derivatives (other func-
tional forms also possess this attribute). One can use fanh,
O another nonphysical analytical sofution, of a physically
realistic solution (an approximate solution to a physical
problem) in the MMS method as long as sufficient com-
plexity is embedded in the functional form.

2-3.3.1 Simple 1-D Example of MMS. To emphasize
the generality of the MMS concept, as in references [4, 6, 7]
the example solution is selected before the governing equa-
tions are specified. Then the same solution may be used for
different problems, where the problem consists of a set of
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governing PDEs and boundary conditions. The chosen

solution V(t,x) in this example is the following:
V(t,x)=A +sin(B), B=x+Ct (2-3-1)

This 1-D transient solution is applied to the nonlinear
Burgers equation, often taken as a model problem for

of boundary condition types. The following combinations
of inflow (left boundary, e.g., x = 0) or outflow (e.g., x = 1)
boundary conditions will produce the same solution V(t,x)
over thedomain0 =x = 1.

Dirichlet-Dirichlet:

CFD algorithm development [4]. u(t, 0) = V(t,0) = A + sin(Ct) (2-3-9)
/it = —vdv/dx + ad*v/dx? (2-3-2) o(t,1) = A + sin(1 + Ct) (2-3-10)
or, using the more compact subscript notation to indicate Dirichlet-OQutflow Gradient (Neumann):
partipl derivatives,
o(t,0) = V(t,0) = A + sin(Ct) (2-3-11)
v,= —vv, + av,_, (2-3-3)
' av/ax|(t, 1) = cos(1 + Ct) (2-3-12)

In¢identally, this specified solution V(t,x) is the exact
soluffion for the constant velocity advection equation with
bourjdary condition of v(t,0) = A + sin(Ct). However,
the pghysical realism of the solution selected for MMS is
irrelgvant to the code verification process. All that is re-
quirgd of the solution is that it be nontrivial, and that it
exerdise the computational algorithm appropriately.

Thie source term Q(t,x) is determined that, when added
to thp Burgers equation for v(t,x), produces the solution
o(t,x} = V(t,x). The Burgers equation is written as an op-

eratdr (nonlinear) of v,
Lo)=v,+ v —av_=0 (2-3-4)

Then the source function Q that produces V by operat-

ing qn V with L is evaluated.
Qt, H=LIV(t, x)]|=dV/dt +VIV/ox — ad?V/ox* (2-3:5)

Byl elementary operations on the manufactured
soluffion V(t,x) stated in eq. (2-3-1),

Q(t, 1) =C cos(B) + [A + sin(B)] cos(B) + a§in(B)  (2-3-6)
If the modified equation is now solvied
Lo)=o + oo, — e St (2:37)
or
v, = —ovo{Hav + Qt x) (2-3-8)

with| compatible initial and boundary conditions, the
exac{ solution_of-the modified problem will be V(tx)
given by eq. (2-3-1).

initial\eonditions are obviously just v(0,x) = V(0x)
everywhefe. The boundary conditions are determined from
the npartufactured solution V(t.x) given by eq. (2-3-1). Note

Robin (Mixed)-Outflow Gradient’(Neumann):

av + bov/ox = c¢ at (£0). Given a and b, |select
¢ = a[A 4rsin(Ct)] + b cos(Ct] (2-3-13)

dv/ dx|(t, w) <eps(w + Ct) (2-3-14)

For this time-dependent solution, the boundary values
are time-dependent as well. It also will be possible to
manufactute,* time-dependent solutions with steady
boundafy'values, if required by the code. In reference [7],
the samie solution is applied to a new and mqre compli-
catedBurgers-like PDE that might be a candfidate for a
1:D turbulence formulation based on the mixing length
concept. A third example in reference [7] us¢s a physi-
cally unrealistic manufactured solution; othef examples
are given in references [4, 8].

2-3.3.2 General Operator Formulation of [MMS. In
the general MMS approach, the problem [is written
symbolically as a nonlinear (system) operator|L.

Liftx, v, 2,01 =0
Choose a manufactured solution and denotg it by M.
f=M(x,y,zt) (2-3-16)

The problem is now changed to a new operator, L,
such that the solution to

L'[ftx,y,z, 5] =0

is exactly the manufactured solution M. The|most gen-
eral and straightforward approach is to determine L’ by
adding a source term to the original problem.

(2-3-15)

(2-3-17)

that the domain of the solution is not even specified as yet. To
consider the usual model 0 = x = 1 or something like —10 =
x = 100, the same solution eq. (2-3-1) applies, but of course,
the boundary values are determined at the corresponding
locations in x. Note also that the type of boundary condi-
tion as yet has not been specified. This aspect of the meth-
odology has often caused confusion. It is widely known that
different boundary conditions on a PDE produce different
answers, but not everyone recognizes immediately that the
same solution V(t,x) can be produced by more than one set

L'lf1=LIf1-Q

The required source term is evaluated by passing the
manufactured solution M through the operator, L.

Q=L[M] (2-3-19)

(2-3-18)

So instead of solving the original problem L(f) = 0 with
an unknown solution, L(f) = Q [or equivalently, L'(f) =
0], which has the known solution, M, is solved. Bound-
ary values, for any boundary condition to be tested, are
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determined from the manufactured solution, M, as are
the initial conditions.

Armed with a nontrivial exact analytical solution, M,
one may perform grid convergence tests on the code and
verify not only that it converges, but also at what rate it
converges. Further, the magnitude (and sign) of the error
is directly computed from the difference between the
numerical solution and the analytical solution.

For complex models involving much chain-rule dif-
ferentiatiop,computer Symbolic Manipulation is recom-

where H.O.T. are higher order terms. (For smooth
problems, it may be possible in principle to evaluate
the coefficient C and the H.O.T. from the continuum
solution, but as a practical matter, this is not done in
the accuracy verification procedure.) The discretization
error is then monitored as the grid is systematically
refined. Only refinement — not successive grid halving
— is required. It should be noted, however, that for a
meaningful assessment of p, grid refinement should
not be trivial (a minimum value of 1.3 is recommended

mended fdr evaluating the source term, Q. It is not even
necessary [to look at the complex continuum equations
and then encode them. Rather, one can just use the code-
writing capability of a commercial Symbolic Manipula-
tion code fo produce a source code segment (in Fortran,
C, etc.) for|the source term.

For congiseness of presentation, no further examples
are presenfed in this Section on the basic concept of MMS.
However, g detailed example on an easily replicated prob-
lem is givep in Nonmandatory Appendix A. Even this brief
description} of MMS will be sulfficient for many readers to
get started[using it, but a potential user may not see all the
ramificatiops at first glance. Many details and issues are

addressed [in references [4, Chapter 3; 6-8].
2-3.3.3 | Application of MMS to Verification of
Codes. Opce a nontrivial exact analytic solution has been

generated, [by this method of manufactured solutions or
perhaps anpther method, the solution is now used to verify
a code by performing systematic discretization convergence
tests (usually, grid convergence tests) and monitoring the
convergende as h — 0, where 1 is a measure of discretizatiorn
[e.g., Ax (i space), At (in time) in a finite differenceor fi-
nite volump code, and element size in a finite element code,
number of [vortices in a discrete vortex methad, number of
surface facgts in a radiation problem, etc.].

The prircipal definition of “order of ‘convergence” is
based on the behavior of the error-of the discrete solu-
tion. Ther¢ are various measures~of“discretization error
E,, but in ome sense this disefission is always referring
to the diff¢rence between the discrete solution f(/) (or a
functionalfof the solutionfsuch as lift coefficient) and the
exact (confinuum) solution,

Eh :f(h) _fexact

For an order_p-method and a well-behaved problem, the
error in thq solution E, asymptotically will be proportional

(2-3-20)

in subsection 2-4). In addition, thorough iterptive
convergence is required. Theoretically [from)eq.|(2-3-
21)], values of C = E, / " should becomé tonstaht as
the grid is refined for a uniformly p-th‘order method,
“uniformly” implying at all points forldll derivatives.
Graphical presentation is also common; the slopefof E,
vs. ¥ should become constant., Examples will be given
in Section 7; details and many.8ther examples are given
in reference [4].

2-3.3.3.1 Differences Between Observed p| and
Theoretical p. The value of the observed p versus 4 the-
oretically expected value of p provides valuable insights
to the numericdl error in the computer code. If the values
of the observed p and the theoretical p vary greatly |from
each othet; then this indicates one of several possible is-
sues:
(a)“the grid convergence study has not been cafried
out to a sufficient level of refinement
(b) there are more significant errors being genetated
in the code than those due to discretization and thus a
detailed review of the code is required
(c) boundary conditions may not be appropriate|(e.g.,
some convective outflow boundary conditions s¢t by
simple vortex models are not ordered in /, or the ifpple-
mentation of the boundary condition is flawed sucl that
the global order is affected, or the boundary condiftions
over-constrain the problem and propagate into the|inte-
rior, thus reducing the observed order)
(d) initial conditions may not be appropriate [(e.g.,
exact continuum initial conditions may not be corhpat-
ible with solutions to the discretized equations, of are
incompatible with the boundary conditions)
(e) incomplete iterative convergence and round-off
errors

2-3.3.3.2 Verification of a Systematic Grid Cohver-

to /7. This terminology applies to the “consistent” method-
ologies of finite difference methods (FDM), finite volume
methods (FVM), finite element methods (FEM), vortex-in-
cell, etc., regardless of solution smoothness.” Thus,

E, =f(h) — fo**=Ch + HO.T  (2:3-21)

7 This order of convergence description will not apply to global
spectral methods or to p-refinement FEM, but the exact solutions of
MMS will still be useful for code verification.

10

gence Test. Finally, when a systematic grid conver-
gence test is verified (for all point-by-point values), then
the following have been verified:

(a) any equation transformations used (e.g., nonor-
thogonal boundary fitted coordinates)

(b) the order of the discretization

(c) the encoding of the discretization

(d) the matrix solution procedure

As with any nontrivial technique, there are always ad-
ditional details and subtleties in the application that a
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serious user should be aware of. This is true for MMS.
The reader is directed to Nonmandatory Appendix C for
additional details and summary points relevant to the
advanced use of MMS.

2-3.3.4 Code-to-Code Comparisons. Verification
of codes is sometimes approached by code-to-code
comparisons. The idea is to take the solution(s) of a pre-
viously verified code as the benchmark. This can be done
at twa levels of applications:

benchmark repository of experimental data including
interpolation algorithms (by solving nonlinear PDEs).
The benchmark code must be accurate to be worth-
while; there is nothing to be gained by comparison with
another code that is merely old. In historical practice,
code-to-code comparisons for code verification and val-
idation have been notoriously unsatisfying. It is more
convincing to perform validation by direct comparison
with experimental data. For further discussion see ref-
erence [4]

(a)] solutions on a specific grid

(b)] “grid-free” solutions (i.e., high resolution solutions
that fire taken as good approximations to the exact solu-
tiong, such as with Direct Numerical Simulations)

The first approach can be useful and economical, but
it refjuires that both codes have identical discretiza-
tiong not only at interior points, but also at all boundary
poings. It also requires tight iterative convergence toler-
ance|(in essence, close to machine-zero convergence). In
practice, it is effective when the new code to be verified
is a fjew version of the previously verified code, and the
new [version does not change any of the discretizations.
For ¢xample, the new version might contain a new lin-
ear olver, or simply use a new compiler or hardware
platfprm (an important and practical situation). Such
comjparisons can be done advantageously even on very
coarge grids. However, beyond this limited though
impqrtant application, this approach will not give very
convjincing results because of the tolerances involved.
can He used economically to develop confidence during'a
code|development program (even if the benchmarkcode
does|not use identical discretizations) but the t¢lerances
invo}ved will usually be too crude or large to enable truly
convjincing verification [4].

The same follows for the second appreach. In princi-
ple, this would work if the benchmatk code were itself
thorgughly verified and if the/solitions were indeed
“grid-free” or have resolved all’ the pertinent length
scales of the problem (possibly’down to viscous dissipa-
tion)|as is the requiremeht)for Direct Numerical Simula-
tiong (DNS). In general, hiowever, small coding errors can
be miasked by the lack-of complete agreement due to the
fuzziness of the benchmark. As with the first approach, it
can he used eConhomically to develop confidence during a
code|development program, but a more convincing and
credible (final) code verification will always be attained
by the ‘preferred approach of MMS. Note that DNS re-

The methods discussed above do provide valuable
support in the development of computer fodes and
models. And these are approaches that-shoyld be rou-
tinely used to support development.and enhancement of
codes. However, these are not appropriate njethods for
a formal, convincing, and dectimented verification and
validation effort.

2-4 SOLUTION VERIFICATION

s assumed
hnd docu-

Prior to performing solution verification, it
that code verification has been completed
mented.

Systenmiatic grid refinement is the cornerstone of veri-
fication processes for either codes or solutjons [4-9].
Whereas grid-refinement studies in the cont¢xt of code
verification provide an evaluation of error, grid-refine-
ment studies used in solution verification prpvide only
an estimate of error. The most widely used method to
obtain an error estimate is classical Richardson Extrapo-
lation (RE) [10, 11]. Since its first elegant applichtion by its
originator, L. F. Richardson, in 1910 and later in 1927, this
method has been studied by many authors. [Its intrica-
cies, pitfalls, and generalizations have been exhaustively
investigated and cataloged [4, 9-12]. A genefalized RE
and a Least Squares version [13] are more ywidely ap-
plicable to difficult problems. There are also pingle grid
error estimators (notably Zhu-Zienkiewicz estjmators) of
more specialized application [4, 14].

Error estimates and uncertainty estimates
but are not equivalent, and confusion is co
error estimate is intended to provide an impr
the result of a calculation. For example, if the
calculation for heat transfer coefficient using 4
grid is f and the error estimate is &, then an|improved

value (closer to the true value f,) is f — . On the other
hnﬂA, an (aquﬂﬂor])s 11mnpv{-n1‘w+1‘/l estimato 1] - s intended
X%

hre related
mmon. An
vement to
result of a
particular

sults are often used as being equivalent to “whole-field
experimental data,” which then are used to assess pre-
dictive performance of Large Eddy Simulation subgrid
scale models. However, this should not be confused with
a formal verification and validation effort as discussed in
this Standard, but rather is a strategy for developing new
subgrid scale models.

Similar evaluation applies to the common approach
of validation by code-to-code comparisons. In prin-
ciple, one could view a previously validated code as a

11

to provide a statement that the interval f = U , character-
izes a range within which the true (mathematical) value
of f, probably falls, with probability of x%.

Quantifying that probability is the goal of uncer-
tainty estimation. A common uncertainty target (for both

8 By contrast, the standard uncertainty u has no level of probability
inherently associated with it until a distribution of errors is assigned;
this will be discussed more in Section 6.
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experiments and computations) is ~95% (i.e., ~20:1 odds
that the true value f, is in fact in the interval f * U,_),
where U, is the estimate of the (expanded) uncertainty
at the 95% confidence level. Note that this target confi-
dence level is compatible with the 20 range for a Gauss-
ian distribution, but the concept and the semi-empirical
methods presented here do not depend on the assump-
tion of Gaussian distribution or any other distribution.

Uncertainty estimates (U,,) can be calculated by

at every time step should be checked, and example
convergence trends should be documented for selected,
critically important, variables. The preferred approach
is to reduce the iterative error to a level negligible com-
pared to the discretization error. This does not necessar-
ily require iteration to (nearly) machine zero.

Iteration error and its interaction with discretization
error has been thoroughly studied in reference [18] for
one class of problems; there is no reason to assume

GCI is an

Roache’s [4,14-16] Grid Convergence Index (GCI), The that other problems are more benign. A method for
estimated 95% uncertainty obtained by mul-  estimation of iteration error based on extrapolatir)g by
tiplying the absolute value of the (generalized) RE error ~ geometric progressions was developed angd.justjfied,

estimate (pr any other ordered error estimator) by an
empirically determined factor of safety, Fs. The Fs is in-
tended to [convert an ordered error estimate into a 95%
uncertainty estimate. (Since all ordered error estimators
for the same quantity will asymptotically produce the
same errof estimate, the GCI factor of safety Fs could
be applied to any of these, at least asymptotically; the
empirical yalue of Fs has been determined from RE es-
timates.)

Richardpon Extrapolation is based on the assump-
tion that [discrete solutions, f, have a power series
representdtion in the grid spacing, h. If the formal
order of afcuracy of an algorithm is known, then the
method pfovides an estimate of the error when using
solutions from two different grids. If the formal order
of accurady is not known, then three different grid so-
lutions ar¢ required to determine the observed order
of convergence and the error estimate. Although grid
doubling [or halving) is often used with RE, it is not
required [¢#], and the ratio of grid spacing, r, maylbe
any real flumber. Integer grid refinement is €t re-
quired; itfhas an advantage of simplicity (especially
for local vplues that can be co-located in the grid fam-
ily) but cgn cause difficulty. For example, when the
finer grid|is just sufficient to resolye scales of inter-
est (e.g., bpundary layer resolution) then a coarse grid
with half [the resolution may e insufficient for the
problem Heing simulated.

Before qny discretizationerror estimation is calcu-
lated, it must be ensured(that iterative convergence is
achieved. |(Iterative_methods are always required for
nonlinear problems solved by implicit formulations and
may be uspd as«art of an explicit formulation as well.)
Otherwise, the“incomplete iteration error will pollute
the uncerfaiity estimation. (RE amplifies incomplete

and applied to realistic turbulent flows. These rgsults
show that the iteration error needs to be2 to 3 orders
of magnitude smaller than the discretiZzation errpr to
guarantee a negligible influence. This'is often assumed,
although seldom demonstrated~¢onvincingly. If the
uncertainty u, contributed by the (estimated) iterption
error is much less than u,contributed by the (ordg¢red)
discretization error, thefipwe take the numerical uhcer-
tainty u_ _ to be

24-1)

num h (

If more care'is taken and u; is to be added, it ip not
adequate (conservative) to use RMS addition, bedqause
the iteration error affects the results for discretizfition
errorc(f€., u, and u, are not uncorrelated), violating
the, underlying assumption of RMS addition. Rdther,
the two must be combined by less optimistic simple
addition [18].

u =u, +u

o (2-4-2)

Application of RE and GCI often encounter some¢ dif-
ficulties in practical problems. Local values of predjicted
variables may not exhibit a smooth, monotonic d¢pen-
dence on grid resolution, and in a time-dependent cal-
culation, this nonsmooth response will also be a funfction
of both time and space. However, integral quantitiep like
overall heat transfer coefficient, lift coefficient, etq. are
usually better behaved (i.e., are more likely to conyerge
monotonically). The GCI, especially the Least Sqpiares
versions pioneered by Eca and Hoekstra [13; see alqo 14,
19, 20 in Nonmandatory Appendix C], is currently the
most robust and tested method available for the predic-
tion of numerical uncertainty.

The influence of the outflow boundary position on
the interior solution will depend on the outflow c¢ndi-

iteration errors [4].) A commonly used but unjustifiable
rule of thumb is to require at least three orders of magni-
tude decrease in properly normalized residuals for each
equation solved over the entire computational domain.
This criterion is used as a default in some commercial
codes, but is demonstrably inadequate for many prob-
lems even for basic accuracy, without considering the
added requirements of uncertainty estimation. Results
in references [17, 18] belie the casualness of this rule.
For time-dependent simulations, iterative convergence

12

tion used and on the distance to the outflow boundary.
The errors of these approximations do not vanish as
h — 0, and hence are “nonordered approximations” or
modeling errors rather than discretization errors. (See
also Nonmandatory Appendix C.) The same can be
stated for other far-field boundaries. The adequacy of
these approximations should be assessed by sensitiv-
ity tests [4] at least on similar problems, but unfortu-
nately in practice these tests are not often addressed
convincingly.
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2-4.1 Five-Step Procedure for Uncertainty Estimation

A five-step procedure is defined below for the applica-
tion of the Grid Convergence Index (GCI) method [3].

a simulation series. A three-grid solution for the
observed order p may be adequate if some of the
values of the variable ¢ predicted on the three
grids are in the asymptotic region for the simu-

Step 1: Define a representative cell, mesh, or grid size, . . . .
. . lation series. In fact, it may require more than
h. For example, for three-dimensional, struc- . ..
tured ically simil d ) four grids to convincingly demonstrate asymp-
ured, geometrically similar grids (not necessar . A . .
. . totic response in difficult problems, possibly five
ily Cartesian), . . . .
or six grid resolutions in cases where the con-
h= (A%, )(AY,.)(Az )]1/ 3 (2-4-3) vergence is noisy [13, 19, 20]. It is all dependent
- ~ o~ on the initial grid resolution used and where the
For nonstructured grids one can define predicted value of ¢ lies as a fumction of grid
N 1/3 resolution. However, to provide.a Halance be-
h= (E AV,-)/ N (2-4-4) tween providing both a tractable method and
o ensuring a level of accuracy in the pr¢dicted ob-
where served order p, at least a thrée-grid styidy should
N = total number of cells used for the computations be performed. If the solution verifichtion error
AV, = volume of the i" cell [4] and uncertainty terms J,, and u,,, rdspectively,
Step P:  Select three significantly different sets of grid are then found tobé small compared fo the other
resolutions and run simulations to determine 8, and u, termsin this Standard, three|grids may
the values of key variables important to the ob- then be sufficient. If not, then more grids will be
jective of the simulation study (e.g., a variable required;
¢). There are some advantages to using integer ~ Step 4: Caleulate the extrapolated values|from the
grid refinement but it is not necessary. It is desir- equation
able that the grid refinement factor,» =h___ /b, . ” ) ,
should be greater than 1.3 for most practical Pou = (110, = @,)/Ith = 1) (2-4-8)
problems. This value of 1.3 is again based on  gyop'5: Calculate and report the followfing error
experience and not on some formal deriva- estimates along with the observed ofder of the
tion. The grid r'efmement shpuld, how.ever, be method p. Approximate relative errpr may be
made systematically; that is, thfe reﬁner'ner}t cast as a dimensionless form [eq. (2-4-9)] or in a
itself should be structu.red even 1}c the grid is dimensioned form [eq. (2-4-10)]:
unstructured. Geometrically similar cells in 0. — @
the grid sequence are required to awoid noisy S (2-4-9)
and erroneous observed p. It is highly recom- !
mended not to use different grid kefinement fac- el = o, — o (2-4-10)
tors in different directions (e.g.,-#. = 1.3 and r . .
_ ! Y If ¢, is zero or the user wishes to calfulate u
= 1.6), because erroneous,ebserved p values are 1 num
. . (see eqgs. 2-4-13 and 2-4-14) then one $hould use
produced, as shown in [21}A(The computational 9410
solutions still converge to the correct answers Eq‘t'( - t_ d)' " lated relati
with 7_# r, but the-observed rate of conver- stimated extrapolated relative error
gence p is affected.) a P @, 0411
Step B: Let hy < h, <hyand r, = h,/h, r,, = h,/h, and Coxt = o2 (2-4-11)
ext
calculate theapparent (or observed) order, p, of i )
the metkiad from reference [4] The fine Grid Convergencze1 Index:
21 Fs - e,
R 1/Inr,) [In|e,/,| + qip)] (2-4-5) GClpe = rh—1 (2-4-12)
) =1 (r{l - s) (2-4-6) The relative error estimates and the GCI mgy use nor-
1P n vl — s malizing based on values other than local valfies; in fact,
s=1-sign(e,/e,) (2-4-7) this is often advantageous for avoiding indeterminacies.

where e, = ¢, — ¢,, 5, = ¢, — ¢, and ¢, de-
notes the simulation value of the variable on the
k" grid. Note that q(p) = 0 for r = constant. This
set of three equations can be solved using fixed
point iteration with the initial guess equal to the
first term (i.e., g = 0).

A minimum of four grids is required to dem-
onstrate that the observed order p is constant for

13

Also, the error estimates and the GCI may use dimen-
sional values instead of relative or normalized values
[4, pp. 113, 115]. This is often the more natural choice for
use with experimental results and will be used in the ex-
amples in Section 7.

The Factor of Safety, Fs, originally was assigned a
value of 3 for two-grid studies [16], but Roache [4] has
subsequently recommended a less conservative value
for Fs = 1.25, but only when using at least three grid
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solutions and the observed p. He arrived at this value
through empirical studies, and this value roughly cor-
relates with the definition of uncertainty U used in ref-
erences [22, 23] and suggests that using a value of 1.25
results in a GCI with a 95% confidence interval. Fur-
ther experience in hundreds of CFD cases (more than
500 demonstrated cases) by dozens of groups has sup-
ported this empiricism [4, 13, 14, 15, 19, 20, 24]. Based
on this current evidence, we recommend that a value
of Fs = 1.25 be used with three-grid studies involving

developed using 1o, and the corresponding uncertainty
isu_ . If the procedure adopted for the other uncertainty
components is to base everything on the commonly used
expanded uncertainty level U, then U = GCI and
no assumption of a distribution is required. Otherwise,
to convert this (partially) empirical GCI from U_  to the
u_ - needed in eq. (1-5-10) it is now necessary to make an
assumption. If the distribution were Gaussian about the
fine grid solution, the value of u_ _ would be obtained
using an expansion factor k = 2, and the required term

structured| grid refinement. (Note that a base grid may
be unstrugtured, but the grid sequence may be gener-
ated by stfuctured refinement of an unstructured grid
[4].)

The valyge of Fs = 1.25 has not been thoroughly evalu-
ated for ynstructured refinement. Scatter in observed
p is to be[expected because the grid refinement factor
r is well dlefined only for geometrically similar grids.
The accurgcy of the GCI will obviously depend on the
quality of [the unstructured grid refinement algorithm.
Until a suffficient data set is collected and studies are
completed| for unstructured refinement, it is generally
recommended that the more conservative value of
Fs = 3 be fised to obtain a GCI for unstructured grid re-
finement. [The results to be presented in Section 7 are
well behavfed, and Fs = 1.25 is sufficient.)

If the cajculated order of the method p is less than 1.0,
an uncertafinty band may also be given by assuming p =
1.0. This i done not to ignore the observed p, but sim-
ply to give[two calculations, one with the observed p and
one with g = 1.0, as an indicator of the sensitivity of thé
error band| to the observed value of p. However, thexGCI
computed [with the observed p <1 is the more conserva-
tive approgich. It should also be noted that if the ‘ebserved
value of f is significantly different from the-expected
order of the method (for example, the methiod might be
expected tp be third-order for the primary-variables but it
is observedl to be less than 1), then eneshould delve into
the root cquse of this difference”It-may suggest a pos-
sible error[in the method or ifs‘implementation, or that
the grid rgsolutions are notin‘the asymptotic region, or
that a singularity is presefit: (See references [25, 26] for
methods tp detect and\distinguish singularities during
grid convergence studies.)

The forth of the\GClI is based on theory, but the use
of absolutTvalues for estimated errors and the factor Fs
are based |on{empiricism involving the examination of

for ea. (1-5-10) would be
L=Uu /k=GCI/2

However, the error distribution about.the fine grid so-
lution is roughly Gaussian only for poorly’behaved prob-
lems (oscillatory convergence). For ‘well behaved| and
highly resolved problems, the errordistribution is royghly
Gaussian not about the fine giid’ solution ¢, but rpther
about the extrapolated solution @2, of eq. (2-4-8) [i.4, the
fine grid solution ¢, plusith&’estimated signed error b2l of
eq. (2-4-11)]. Thus thelerror distribution about theg fine
grid solution is rotighly a shifted Gaussian. Analydes of

u

nui

(2-1-13)

this situation indigate an expansion factor k = 1.1 tq 1.15
to obtain a conservative value for u__.

u =U_/k=GCI/115 (2-f-14)

If the‘overall u_ is later expanded to U, using K = 2,

the numerical contribution will then be more consprva-
tive than 95% (see Section 6).

The five-step procedure presented in this section
makes no distinction between steady state computa-
tions or time-dependent computations. The methpd is
independent of temporal resolution in the sense tHat At
does not appear in any of the equations. So, for fime-
dependent computations, the five-step procedure sHould
be applied at each relevant time step in the computhtion
at a given node. However, it should be noted that gs the
spatial grid is refined during the convergence study, the
size of At is likely decreasing as well due to numg¢rical
stability issues and thus At is implicitly accounted for in
the convergence study. Although not discussed hdre, it
has been shown that the above procedure may be applied
accounting for both spatial and temporal grid copver-
gence explicitly. The At is treated just like Ax is trefated.
However, some minor complications arise in the tyjpical
case where the numerical methods have different ofders
of accuracy in space and time, or even different ofders

several hundred CFD case studies. The empirical tests
involved the determination of conservatism in 95% of
the cases, corresponding to (dimensional) GCI = U_
at 95% confidence. No assumptions on the form of the
error distributions were made nor were necessary for
these empirical studies, since actual data was examined
with a simple pass/fail criterion. Specifically, the com-
mon statistical assumption of a Gaussian distribution
was not used. To agree with the new international stan-
dard use of one standard deviation o, eq. (1-5-10) was

14

in different spatial directions, as may occur in boundary
layer codes [4].

Paragraphs 2-4.2 and 2-4.3 present example Solution Ver-
ifications for two realistic and difficult problems in CFD.
This Standard will also present examples for heat conduc-
tion problems that are less demanding numerically and
exhibit close to theoretical performance. But the following
two CFD problems are not so ideal, and the convergence
behaviors are representative of many real and practical
problems that the reader will likely need to deal with.
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2-4.2 Example 1: Turbulent Flow Over a Backstep

To

demonstrate the results of the GCI calculation

following this five-step procedure, data of Table 2-4-1 are

used

from Celik and Karatekin [12], where steady, tur-

bulent flow over a backward facing step was simulated
on nonuniform structured grids with the total number
of cells defined by three grid resolutions, N,, N,, and N.,.
Two variables were used in the evaluation of uncertainies:

the

dimensionless reattachment length, L, and the

Table 2-4-1 Sample Uncertainty Analysis:

Backward Facing Step

axiall
stud
for t
reatt
were
locity
cells
of ay
four
be 1.
the r
(£1.4
0.12
Th
and
are 11
thor
merd
grad
othe
actud
of hi
term|
of th

Velocity, V, at a speciiic focation. 1 this partcutar
b, two different sets of grid refinements were used
he two variables of interest. For the dimensionless
ichment length, L, the three grid resolutions used
4,500, 8,000, and 18,000 cells; while for the axial ve-
b, V, three grid resolutions of 980, 4,500, and 8,000
were used. Since the order of the method in terms
ial velocity is less than 1 in this example, column
displays results where the value of p is assumed to
Based on this analysis with Fs = 1.25, the value of
pattachment length would be reported as 6.06 + 0.09
16%), and the axial V' velocity at a point as 10.8 =
+1.06%).
e calculated values of observed p being noninteger
ess than the theoretical value (p = 2 in this case)
ot at all unusual in difficult applications, even for
ughly verified codes (often not the case for com-
ial software). Real problems involving local high
ents in the solution, and especially shock waves or.
singularities, reduce the observed p (or even the
1 asymptotic p [4]) because the locally large yalttes
bher-order solution derivatives cause highérzorder
5 to be significant in the power-series €xpansion
e discretization errors [4]. This example (and the

secomnd, following) illustrates the importance of evalu-

ating
case
verif]

the GCI using values of p observed for the actual
under study, rather than thedrétical values or code
cation studies based on Wwell-behaved problems.

40

20

Fig. 2-4-1") Sample Uncertainty Analysis: Explosive Detonation in a Fluid Filled Box

15.6
15.4
15.2
15.0
14.8

L v Vip=1)
N, 18,000 8,000 8,000
N, 8,000 4,500 4,500
N, 4,500 980 980
I 1.5 2.0 2.0
I, 1.33 2.14 2.14
@, 6.06 10.8 10.8
> £ Qg7 107 10.7
¢, 5.86 10.6 10.6
p 1.53 0.75 1.00
oo 6.17 10.9 10.9
e 1.50% 0.58% 0.58%
el 1.71% 0(85% 0.58%
GCIZY, 1.46% 1.06% 0.73%
In many practical case${ the observed p’s |calculated
over more than one-giid triplet will be noigy, indicat-
ing erratic or evenymenmonotonic convergenge; in such
cases, a least-squiares approach developed in|references
[13, 14, 197, 20] is recommended (Nonmandatory
Appendix¢C)> Alternative techniques with g choice of
GCI or ©thér methods for oscillatory or nonmonotonic
convergence are discussed in references [25,26]. Note,
however, that observed p values that approkimate the

theoretical p can be obtained with good algorifhms, good

grid generation, high resolution, and careful Y
for time-dependent turbulent flows [4], or prol
shock fronts. For heat conduction problems,
mon for observed p to be well-behaved, as der]
in Section 7.

2-4.3 Example 2: Confined Detonation

Figure 2-4-1 provides another example of tH
procedure of the GCI calculation for a TNT c}
nated in a rigid, fluid-filled box. The quantity

it

work, even
blems with

is com-

honstrated

e five-step

of

Jarge deto-

interest

Z, Cin
Pressure MPa

14.6
14.4
14.2
14.0
13.8
13.6

15

—e— Bottom corners
—&— Top corners
—a— Center of x/y walls
—v— Center of zwalls

—O— Fluid z midplane

| —o— Fluid x/y midplanes | .

i
4

Grid Resolution
(Zones Across Diameter of Charge)

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
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Table 2-4-2 Sample Uncertainty Analysis: Explosive Detonation

Wall Fluid

Location of Variable Corner
Observed order p 1.7
GCl value (%) 1.2

Value = U
num

Value + u
num

Fine grid prediction

15.34 £ 0.18 MPa
15.34 = 0.16 MPa
15.47 MPa

1.5

1.6

15.23 £ 0.24 MPa
15.23 = 0.21 MPa
15.40 MPa

1.02

3.6

15.24 = 0.55 MPa
15.24 = 0.48 MPa
15.39 MPa

figure disglays the predicted value of pressure as a func-
tion of gridl resolution at various measurement locations
predicted by the set of simulations. In this example, the
magnitudg of pressure has a smooth dependence on grid
resolution| The basis for the grid resolution used is the
number of{zones across the diameter of the charge.

Table 2-4-2 summarizes the results of the application of
the GCI tof the explosive detonation problem. Here pres-
sures at thiree different locations are used [i.e., a node in
the corner fof the box (corner), a node near the center of a
box side (yvall), and a node at mid-distance between the
charge centerline and a box side (fluid)]. The second row
of the tabld provides the computed (observed) order of the
method, and the third row provides the computed GCI
using Fs =[1.25. To compute these values, the first four grid
resolutiond (4, 8, 16, and 20 zones across the diameter of the
charge) wdre used. Rows four and five provide the range
in pressurgas predicted by the GCI, but presented with thé
uncertainty estimates of U_ _and u_ . The range of value
ended to bound the exact mathematical solution
with a 95% confidence or a 20 uncertainty estimate, while
value *u_[ (fifth row of Table 2-4-2) is a o uncertainty es-
timate. The sixth row in the table displays'the predicted
value of pressure on the finest grid (regolirtion of 32 zones
across the dliameter of the charge). The ranges displayed in
row four dof the table should theri botund the values here,
and they dp, again, demonstrating both the validity of this
approach gnd the appropridteness of the magnitude of Fs
= 1.25 in the GCI method.

2-5 SPECIAL CONSIDERATIONS

The si
five-step .
the simulation: local values of the dependent variables
like u, v, p; volume-weighted RMS values; or integrated
functionals of the solution like lift coefficient or heat flux.
The same principles of solution verification apply in all
cases, but the following should be noted. First, integrated
functionals typically are better behaved (more smooth)
than local values and thus the observed p tends to be
less noisy. Second, different simulation variables can
converge at different rates. Third, the same techniques
for solution verification can be applied to derivatives of

lation variable, ¢, that is evaluated by the

16

integrated functionals with respect to input parameters,
as will be required in the following Section.

Care must be taken in determining the appropriate
grid resolution requirements for both the)grid copver-
gence exercise and the grid resolution required to pnini-
mally resolve the physics of the problem. For exarple,
if the problem to be solved has,a specific range of lgngth
scales that characterize the fldw~physics such as bgund-
ary layers or thermal gradients, then the grid resolfition
for the coarsest grid used’in the grid convergence dtudy
must still adequatelyzesolve these length scales. This is
particularly impozrtantin the context of large eddy dimu-
lation (LES). Thie DES filter width is usually related to a
measure of the{grid resolution, and thus as the grid freso-
lution is chahged during the grid convergence study, the
filter width also is changed. This means that the jparti-
tioning.of energy between the resolved and unres¢lved
scales’is changing. Thus, if the users are not carefu| and
as the grid convergence study is executed, they mgy be
solving a different problem for some of the coarsergrid
resolutions if the boundary between resolved and finre-
solved scales changes significantly from grid to grid| The
same logic applies to direct numerical simulation (IPNS)
as well, in that coarser grid resolutions may not regolve
the same set of appropriate flow scales adequately to
qualify the simulation as DNS. A DNS simulation by
definition resolves all pertinent flow scales (in freqyency
domain) up to viscous dissipation.

Finally, the following is suggested as an approafh to
effectively and efficiently perform and use a solfition
verification exercise in applications. For the given prob-
lem to be simulated, the first step is to define a det of
simulation objectives (i.e., why the problem is being| sim-
ulated, what quantities are of interest for prediction} and
what level of accuracy is required). Given the simulption
objectives a nominal simulation problem is deffned,
a a ninal
problem should be representatlve of the problem set to
be studied (where typically many simulations are per-
formed to achieve the problem solution). This nominal
problem will then serve as the basis for the solution veri-
fication grid convergence study. A detailed grid conver-
gence study of this specific, nominal problem is executed
with 3 to 6 levels of grid refinement (similar to the con-
fined detonation example problem of para. 2-4.3). Based
on the results of the solution verification for the nominal
problem, a base grid resolution is defined that achieves



https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

ASME V&V 20-2009

the simulation objectives for estimated accuracy. This
base grid resolution is then used in all subsequent simu-
lations for the particular problem. If, during the course
of the subsequent simulations, the problem definition
changes significantly such that the nominal problem no
longer is representative of the study, then a new nominal
problem should be defined and a new solution verifica-
tion performed.

[5] Oberkampf, W. L. and Trucano, T. G., “Verification
and Validation in Computational Fluid Dynamics,” Prog-
ress in Aerospace Sciences, Vol. 38, No. 3, 2002, pp. 209-272.

[6] Roache, P. J. (2004), “Building PDE Codes to be
Verifiable and Validatable,” Computing in Science and En-
gineering, Special Issue on Verification and Validation,
September/October 2004, pp. 30-38.

[7] Roache, P. J. (2002), “Code Verification by the
Method of Manufactured Solutions,” ASME Jour-

L Vol mb | —le I . . XLl 114 DL ha | A4
T O] 1 LTS IR Ieer g, vor. 11+, INO. I, March 2002,

2-6 [ FINAL COMMENT
pp- 4-10.

At the conclusion of a code verification activity follow- [8] Knupp, P. and Salari, K. (2002), Meificatjon of Com-
ing the procedures defined in this section, the analyst will puter Codes in Computational Science aud \Engindering, CRC
have|determined potential code errors. It is assumed then Press, Boca Raton.
that fhese errors have resulted in modifications and en-

hancpments to the computer code to eliminate or fix them.
Oncgq a verified code is achieved for the application of in-
teres}, then a solution verification effort following the pro-
cedufes defined in this section will result in an estimate of
the yncertainty (u_ ) associated with a simulation result.
In mpny applications in engineering and scientific prac-
tice, [these two procedures, code verification and solution
verififation, may be all that is required for the application
of inferest as dictated by project requirements or may be
all thiat is possible due to a lack of appropriate experimen-
tal data for validation. If that is the case, then successfully
comppleting a solution verification effort (which assumes
that |t was preceded by a code verification effort) for the
application of interest will result in a significant step fof?
ward in understanding the accuracy of a given simulation
study in that now it may be reported that the solution is a
valu¢ X with a numerical uncertainty of Y. However, at
this point in this Standard, the user can only state the esti-
mated magnitude of u_ . One can not at, this point assess
overgll model accuracy. That can onlybé done through
validgtion, which requires the material presented in Sec-
tiong|3 through 7 of this Standard.
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Section 3
Effect of Input Parameter Uncertainty on Simulation
Uncertainty

3-1 | INTRODUCTION

Thiis Section is concerned with the estimation of
simullation uncertainty due to uncertainty of the simula-
tion nput parameters, denoted by u,  in eq. (1-5-10),
Sectipn 1.

The validation uncertainty has been previously defined
in Section 1 as being composed of uncertainty in the nu-
merifal simulations u,, input parameters i, and data
u, aijd is given by

2 _ .2 2 2
Uya) = Unum + u; + Up

input

(3-1-1)

Segtion 2 presented techniques for estimating u_
and

m

Section 4 discusses techniques for estimating u,,
The focus of Section 3 is to estimate - the simula-
tion uncertainty due to uncertainty in simulation input
parameters.

Cdmputational simulations usually contain experi-
menfally determined parameters that have uncertainty
asso¢iated with them. The model of the system inay
rangp from an algebraic equation to a system *of par-
tial differential equations. For a heat transferexample,
it might be desired to estimate the uncertainty in the
modgl temperature predictions, given.the uncertainty
in thermal conductivity(s), volumetric\heat capacity(s),
and fonvective heat transfer coeffigient(s). For a fluid
flow|example, it might be desired to estimate the uncer-
tainty in the drag coefficient] given uncertainty in fluid
propgrties.

Two different appreaches for estimating u, ~ will
be ptesented. The tworapproaches depend on whether
one fakes a local ©ryglobal view of the uncertainty esti-
matipn process—JThe local view is concerned with the
resppnse ofytie system in a small (local) neighborhood
of the neminal parameter vector. In the literature, the
local| view’is known by a variety of names: sensitivity

3-2 SENSITIVITY COEFFICIENT (LOCAL)
METHOD FOR PARAMETER UNCERTA
PROPAGATION

NTY

Using a linear Taylor series 'expansion in [parameter
space, the input uncertainty\ propagation equation for
a simulation result S with # uncorrelated random input
parameters is

n >
Wi 23(% ux) (3-2-1)
where
S = simidation result
u, = eorresponding standard uncertainty in input

parameter X,

X, input parameter

For situations in which parameters are obtaiped from a
database, the assumption of uncorrelated errofs is a good
one.

Simulation result S in eq. (3-2-1) could pe a point
value of a simulation variable or an integr3l quantity
such as total drag or heat transfer. The partjial deriva-
tives, 95/0X, are termed sensitivity coeffici¢gnts of the
result S with respect to input parameter, X.{ The term
inside the parentheses in eq. (3-2-1) is oftpn written
as X, % MX—X where X, is the nominal paramgter value.
This ap};roéch makes it convenient to speciffy the rela-
tive standard uncertainty u, /X, instead of the absolute

standard uncertainty uy. The remaining sensitivity co-
efficient X, % is termed a scaled sensitivity [coefficient
and has the units of S. Equation (3-2-1) indicaltes the fol-
lowing two ingredients are required for the yncertainty
propagation equation:

(a) the sensitivity coefficient

(b) input parameter uncertainty

In the material that follows, a discussign of how
to obtain these two quantities in eq. (3-24l) will be

coefftetent ulcthud, ycltulbatiuu ulcthud, reat—vatte
method, first order method, and possibly others. The
global view is concerned with the response of the system
in a large (global) neighborhood of the nominal param-
eter vector. In the literature, the global view is known
by a variety of names: sampling method, Monte Carlo
method, and possibly others. In the sections that fol-
low, a description of the local and global uncertainty
estimation procedures will be presented along with an
example of each.

19

presented.

3-2.1 Estimation of Input Parameter Uncertainty

Ideally, the input standard uncertainty values, Uy,
come from prior experiments. For example, suppose
one has a transient thermal model of a multi-material
system with convective boundary conditions. Labora-
tory scale experiments would have been performed
to determine the thermal conductivity and volumetric
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heat capacity of each of the materials. If property
measurements are performed, the techniques of Section
4 should be used to estimate the experimental uncer-
tainty. A more likely scenario is that one will use “da-
tabase (handbook) property values” and may have to
resort to expert opinion for the uncertainty in property
values. Experimentally determined correlations for the
convective heat transfer coefficient may be used. Again,
it is assumed that the experlmenter reported the experl—

be used fof the uncertainty.

3-2.2 Lotal Techniques for Computing Sensitivity
Copfficients

Many techniques available for computing local sensi-
tivity coeffficients (0S/0X;) include the following:

(a) finit¢ difference (FD) in parameter space

(b) analytical differentiation of analytical solutions

(c) complex step (CS)

(d) software differentiation (e.g. ADIFOR/ADIC)

(e) sensftivity equation method (SEM)

(f) adjoint method

Of the fensitivity methods listed, all generally re-
quire acceps to source code with the exception of FD.
The accesg to source code requirement likely excludes
their use [with commercial software. Consequently,
our focus will be on the finite difference (in parameter
space) method, which will allow the code to be used
in a “black box” approach. The remaining sensitivity
methods dre topics of current research and the reader
is referred|to [1-3].

3-2.3 Co
Fin
A measyre of the sensitivity of the simalation result S

(z, t, X) to phanges in a parameter X, is-termed the sensi-
tivity coefficient and is defined as

putation of Sensitivity Coefficientsby
ite Differences

95(z, t, X)

e (3-2-2)

Sensitivity Coefficient\=

where
t = time
X, = one element of X (thevector of all problem parameters)
z = positipn vectof
In this dection,.it'is implicit that the sensitivity coef-
ficient is evaltiated at the nominal value of the param-
eter vector] The simulation result S could be temperature,

In the simple case of an algebraic model, sensitivity
coefficients 9S/9X, may be computed analytically. How-
ever, a more likely scenario is that the model is a com-
plex numerical simulation for which a finite difference
differentiation is the most practical approach. The term
“finite difference” as used here refers to the parameter
space and not the finite difference in space/time discreti-
zation algorithm for numerically solving partial differ-
entlal equat1ons The procedure is to run the simulation
. sec-
ond run is made with a perturbed value (X, + &X]) for
input parameter X.. A finite difference approximatipn in
parameter space is then used to compute the sensifivity
coefficient from

S _
X
S(X, Xy X, + AXo, X )= 8(X, Xypooy Xy, X
AX:
+0AX) (323

The above process s repeated for each input parpme-
ter. If there are n parameters, then n + 1 runs of the §imu-

lation code will'be required to compute the n first-gprder
sensitivity coetficients. A second-order accurate finite
difference.is
ISo
0X;
X, X, X+ AX,,.. X) S(X1 X, X, —AX,..., X))
+0(AX?)  (3-2-4)

If a second-order central difference is used, thep the
number of simulations goes to 21 +1. The computational
load for the finite difference in parameter space m¢thod
scales linearly with the number of input parametets for
which uncertainty is considered. The primary difficulty
with the finite difference method is choosing an appropri-
ate perturbation size AX. If AX_ is too large, the truncption
error in egs. (3-2-3) or (3-2-4) will be too large. If AX, {s too
small, machine round off becomes significant becayse of
subtractive cancellation in the numerator of eqgs. (3-2-3)
or (3-2-4). Finite difference sensitivity coefficients cqn be
problematic for incomplete nonlinear iteration; se¢ ref-
erence [4] for a discussion of this issue. Some numg¢rical
experimentation is recommended. An example proplem

velocity, heat flux, shear stress, drag, heat transfer, etc.
For a single material heat transfer problem involving
thermal conductivity, volumetric specific heat, viscos-
ity, and emittance, the nominal parameter vector would
be X = {k pc, u &}. Many materials will be present for
industrial heat conduction or conjugate heat transfer
problems. In this case, the thermal properties of all the
materials present will be part of the parameter vector;
consequently, the parameter vector can contain tens to
hundreds of elements.

20
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finite difference (in parameter space) method.

3-2.4 Local Uncertainty Propagation Example

Consider a planar 1-D slab exposed to a constant
heat flux () on one face, adiabatic on the other face,
and uniform initial temperature (T,). The analytical
solution for the temperature field T(zt) is given in
reference [5] as
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T-T,
¢ = YLk
B
(3-2-5)

where
k = thermal conductivity

L = slab thickness
q= heat flux

Note that eq. (3-2-6) is the scaled sensitivity coefficient for
the thermal conductivity k and has the units of temperature.

While analytical techniques can be used for this
example problem, numerical techniques will likely have
to be used for most practical problems. A significant use
for analytical differentiation is to provide verification
problems for other techniques for computing sensitivity
coefficients. Even if analytical sensitivity coefficients are
available, finite difference methods are often used to ver-
ify the correct implementation of analytical expressions.

z = distance from the heated surface
a (= / pcp) = thermal diffusivity

This example problem was solved numeri¢ally using
a second order in space finite differencexmethod and a
first-order fully implicit time integrator.“The [sensitivity

The sensitivity of the temperature field to the thermal - . . .
- . . . coefficient was then calculated using the first-prder finite
conductivity can be computed by analytically differenti- . . .
. . L difference in parameter space given by eq. (B-2-3). The
ating eq. (3-2-5) with respect to k, resulting in - .
o7 qL( od exampl-e problem parameters, which are repfesentative
k T r ( T q,’)) (3-2-6) of a stainless steel, are as follows:
Wg“;e } g=4X10Wm2k=10Wm 'K, L=001m
I _ at — at z -
“aa_ﬁ 1+2,1§1 exp( n?ar? Lz)cosnwL] (327) p=8000kgm*3,cp:500]kg*1 K—llTi + 300K
t,=208,at/L? =05, a At/Az? =25 (3-2-8)
Fig. 3-2-1 Relative Error in Finite Difference Computation 6fka@T/dk Using a Backwards Difference
1 1
O F | | ! | | ]
B OAt/AZ2=25 ]
| 11 nodes |
R
c 10° — —
~F .
© B i
~ B _
S i
xS)
< = —]
£
S = _
ﬁ First order
2 reference line
2,07 — —
v — —
m | —
— A —
Subtractive - Space/time - Parameter
B cancellation T discretization "~ “discretization ]
102 I I I I I I I
1075 1073 10" 10° 107 10° 1073 107
Ak/k

GENERAL NOTE: Numerical discretization algorithm was second order spatial finite difference with a first order implicit
time integrator and the space/time grid refinement maintained aAt/AZ> = 2.5.
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The relative error in this numerical solution for the
scaled sensitivity coefficient kdT/ok was computed
with the analytical solution from eq. (3-2-6) taken as the
exact answer. The computational domain was spatially
discretized into uniformly spaced nodes. Figure 3-2-1
presents the computational results for the error in
thermal conductivity sensitivity coefficient for grids
of 11, 21, and 41 nodes. During the space/time grid
refinement, aAt/Az*>was kept fixed; if Az was reduced

viewed as fuzzy. If either the precision or word length
is changed, these boundaries are likely to change. For
Ak/k > 1073, the parameter discretization errors dominate.
For the relatively flat portion of the error curve in
Fig. 3-2-1, the space/time discretization dominates. In
this region, the results are relatively independent of
Ak/k; this is the region in which one wants to be operating.
For Ak/k < 107°, subtractive cancellation dominates and the
errors can actually increase as Ak/k is made smaller.

ches

by a factopof 2, then Af was reduced by a factor of 4 The range of Ak/k for which the error in kaT/dk re
For a given spatial discretization (number of nodes or  a stable minimum depends on the number of nodes
elements),|the results can be divided into approximate  range is broader for a coarse grid than for a.fine
regimes inf which different effects dominate the relative = Hopefully this example will provide someé)impet

error in th

P sensitivity coefficient:

parameter discretization Ak/k > 107
spacel/ time
discrdtization 10° < Akk < 1073

subtr

hctive cancellation Akk < 107° (3-2-9)

The abofe boundaries were determined using double
precision drithmetic on a 32 bit computer and should be

Fig.3-2-2 Estimated Uncertainty in Model Temperature Due to Uncertainty in g, k, and pc,

perform numerical experiments when-fising the
difference method in parameter space,

If the second order finite difference (in parameter s
given by eq. (3-2-4) is used, then similar results w
obtained with the exception that.the results will foll

second order reference linednstead of a first order lind.

decision of first order vétsus second order will like)

This
grid.
l1s to
finite

bace)
11 be
ow a
The
ly be

made based on whethef.the computational budget cgn af-
ford 2n +1 simulations as opposed to 1 +1 simulatiofs.

700 T T T [ T T T T [ T T T T T T T [ T T T
T )47(
600 = ZL=0 ]
- J_ —]
9 | _
g = _
2
S 500 [— —
(0]
o
E | —
@
400 [—
300 L1 1
0

ot/L?

GENERAL NOTE: All relative standard uncertainties were 0.05. The mean value method, eq. (3-2-1), was used.

22


https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

ASME V&V 20-2009

Using eq. (3-2-1), the uncertainty in the computed
temperature due to input parameter uncertainty was
computed for the above constant heat flux example. The
parameter vector for this example is

X ={qkpc,|

The relative standard uncertainty values were all taken
tobe u, /X, = 0.05. The property values were those given

(3-2-10)

and uncertainty propagation because the function
evaluations are in a small (local) neighborhood of the
mean parameter value. This approach will not capture
highly nonlinear behavior in the parameter space; sam-
pling based methods (Monte Carlo) will address this
deficiency.

The most reliable sampling technique for uncertainty
analysis is to sample the parameter space using the

probability

deviation
W/m-K,

statistical

case, sam-
rorrelation

in eq. (3-2-8). The nominal temperature response and the
corrgspornchnguncertaimty-—ts—giverrrHig: —Fro —— -
the (estimated) input parameter uncertainty, the stan-  ties in each parameter. A representative DabliIt
dard|uncertainty in the front face temperature may be as ~ distribution function for the thermal-conductivity is
much as 20 K. This £20 K range characterizes standard shown n F}g. 3"3'1; the mean and standard
uncetainty of the model output due to uncertainty in the ~ ©f the distribution of are 10 W/m:K and 0.
modpl input parameters. respectively. A random sampleyis drawn fromn each pa-
rameter’s distribution function;“and standard
3-3 | SAMPLING (GLOBAL) METHODS FOR techniques are used to compute the mean and variance
PARAMETER UNCERTAINTY PROPAGATION of the simulations. If patameters are correlated, joint
probability distributions'are required; in this
The sensitivity coefficient method presented in the  pling methods shéuld properly account for
preceéding section has been termed local sensitivity = between input parameters.
Fig. 3-3-1 Representative Probability Distribution Function for Thermal Conductivity
S 1 I O
e -
7= —
3 6 —
c — —]
o = .
s Lk i
8 - —
O 5| —
s ]
g -
c | —]
S 4 _
gk .
= (B _
3 -
2 = —
1 -
) S BRI I IR B B | I
6 7 8 9 10 11 12 13 14

Thermal Conductivity, W/m-K

GENERAL NOTE: The mean and standard uncertainty are 10 W/m-K and o.5 W/m-K, respectively.
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The term “function evaluation” is applied to running
the simulation for one value of the parameter vector. The
number of function evaluations required for statistical
convergence (results independent of number of function
evaluations) may lie in the range of tens to thousands,
depending on the degree of convergence required. The
full Monte Carlo approach is cpu intensive. An alterna-
tive to the full Monte Carlo method is the latin hypercube
sampling (LHS) method presented in reference [6]. In the

Table 3-3-2 LHS Samples for the Three Parameters

LHS method, the cumulative probability distribution of

iable is divided into n,, (=n +1, generally

rmal conductivity, heat capacity, volumetric
source, etct The matrix of 1, ¥ n, values is represented
-1. The columns in Table 3-3-1 represent the
LHS samplles for a given variable while the rows repre-
sent the model parameter vector for a given probability
band. To ehsure full coverage, the model parameters are
combined fin a random fashion in a process described by
references|[7] and [8] as follows: “The n, . values thus
obtained fpr X, are paired at random and without re-
placement| with the n . values obtained for X,. These
1, ,,; pairs gre combined in a random manner without re-
placement|with the 1, . values of X, to form n_ triples.
This process is continued until a set of 1, n -tuples is
formed.” The above methodology has been documented
in referencps [9] and [10] and is implemented in reference
[11]. Sectidn 1 of reference [10] contains a very readablé
descriptiof of LHS. The LHS method will capture non-
linear behgivior over the sampled parameter space-pro-
vided the humber of samples is adequate for statistical
convergente, and the distribution functions are known
with suffidient accuracy.

Once th¢ simulation has been run for the n . param-
eter vectotls, standard statistical techniques can be used
to process| the results. Estimates™gf“the expected value
(mean) angl variance of resporis¢)S are given by

(3-3-1)

(3-3-2)

g, k,and C
Sample g, W/m? k, W/m-K pc, =G, )/m*-K
1 378378 9.6984 3828080
2 407452 9.4573 4271520
3 438268 9.8618 4092520
4 368497 10.5484 4196800
5 399413 10.3684 4021160
6 386260 9.8795 3948668
Z 403336 Q9L Q 380913 |0
8 391985 9.9936 3850160
9 412212 11.1242 41383P0
10 417844 10.2519 3634980

GENERAL NOTE: The parent distributions.weére log-ngrmal
with relative standard uncertainty of 0.05.

If the mean response and its,uncertainty are the[only
things of interest, then the t¢émputational process is
complete. From the LHS results, the distribution funjction
of S can be estimated. Sinee the distribution functipn of
the input variables is-often assumed, the sensitivity of
uiipm to this assumption can be explored.

With samplingjbased methods, there may be §ome
question if the/number of samples was adequate|{One
way of answering this question is to perform fgepli-
cates. With' the LHS procedure, this is accomplished
by stafting the random number generator with a
different seed. The entire analysis is then repgated
aird the results are compared for the different fepli-
cates. The replicates can be processed individually or
as a group.

The above LHS methodology has been applied tp the
constant heat flux problem used throughout thiq sec-
tion. Ten LHS runs were made with the finite dfffer-
ence numerical code; the model contained 11 eqgpally
spaced nodes. The three variables {g k pcp} werp as-
sumed to have independent log-normal distribufions,
each with a relative standard uncertainty of 0.05; the
corresponding LHS parameter vectors are givgn in
Table 3-3-2. Equations (3-3-1) and (3-3-2) were [used
to compute the average and standard deviatign of
the nodal temperatures; the results for z/L = 0 and 1
are shown in Fig. 3-3-2. For comparison purposeg, the
sensitivity coefficient (mean value) results are|also
presented. The two methods are in agreemenf for
z/L = 1 but there is some disagreement for z/L|= 0.
Since both the LHS and mean value methods ar¢ ap-

Table 3-3-1 Matrix Representation of Number of

LHS Samples (n,,) and Number of Parameters (np)

{ Probability Band\Parameters » X, X, e Xy

X, Xo e Xy

2 X, Xy e Xy
nLHS XnLHS1 XnLHSZ o XnLHSnp

proximate, further investigation is required to ascertain
which method is the most accurate for this problem.
The mean value method assumes a linear dependence
in the parameters model; for this example, the model
is nonlinear in k and pc . The LHS method is a small
sample approximation to the full Monte Carlo method;
an adequate number of samples for statistical conver-
gence is required. Conclusions drawn as to the “best”
method for a particular problem may not be valid for
all problems.
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Fig. 3-3-2 Standard Deviation in Temperature at z/L = 0 and 1 for Constant
Heat Flux Example Using 10 LHS Runs and Mean Value Method (With u,/X = 0.05)

15 T T T | T T T T | T T T T | T T T T
— —B
- = LHS, zL =0 . "
20— A LHS, z/L =1 n |
- MV 2/ — 0 " _|
T [ ]
B MV, z/L =1 = ~
— u —
| |
L . _
15— u ]

ug, K

z/L=1

GENE

3-4 | IMPORTANCE FACTORS

assegs the relative importance of the input parameters
on the model uncertainty u, . While importance fac-
tors fire not necessary-for the formal validation process,
they|are extremelyJimportant in that they help the ex-
perimentalisy/analyst in deciding how to best spend
resorrces if\it/is desired to reduce u, . Nonmanda-
tory |[Appendix B presents techniques for computing
impgrtance factors for both sensitivity coefficient and

Iniportance factors are quantities that allow one to
t

10

Time, s

RAL NOTE: The runs were made with‘finite difference (11 nodes) numerical code.
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humber of
pinion be
for which

For those problems with a large ( >> 10)
parameters, it is recommended that expert
used to reduce the number of parameters
sensitivity coefficients are computed.

In managing the large number of simulationp that must
be performed in a computational uncertaintfy analysis,
some kind of scripting language is very helpful. Some
software exists that was designed specifically|to aid this
process; in the literature, this is termed “puttihg a wrap-
per around the analysis code” [11].

The input parameters (u___) uncertainty ig treated as

sampling methods.

3-5 SPECIAL CONSIDERATIONS

All the calculations presented in this section were
performed on a 32 bit computer using double precision
arithmetic. Computer precision will have an impact
on how small one can make the finite difference step
size without encountering subtractive cancellation
problems.

25

independent of the numerical uncertainty (u_). This is
a good assumption for small parameter perturbations
and finite difference sensitivity coefficients. One can
demonstrate that grid errors approximately cancel when
computing finite difference sensitivity coefficients. For
sampling methods, u,  , could have dependence on u,
for the case of using a coarse grid for the individual sam-
ples. To avoid this dependency, it is recommended that
u, . becomputed on the finest grid used to estimate u__
if both o and u  are comparable in size. For those


https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

ASME V&V 20-2009

problems in which u  _<<u, put? then the calculations for
U, can be computed on a coarser grid.

If the parameter variation causes a movement from
one flow regime to another, then the methods presented
here for computing u, _  will not work. An example is the
movement from laminar to turbulent flow or vice versa.
This effect is less likely to happen with small perturba-
tion methods than with sampling methods.

Itis reasonable to expecta certam amount of sub]ectlv-

tion for th¢ LHS). 1

3-6 FINAL COMMENT ON PARAMETER
UNQERTAINTY

Atthe cdnclusion of Section 3, one will have determined
the contrifjution of each parameter to u,__ . At this time,
it is appropriate to compare u,__ to S and ask if inpur is
larger than is programmatlcallpy acceptable. This is an
important|question to ask, independent of the valida-
tion process. If the answer to the above question is yes,
then the individual contributors to u,  must be stud-
ied to det¢grmine which parameter uncertainties should
be reduced. Further work may be required to reduce the
uncertaintjes in the dominant parameters, which in turn
will reduce Ui If the answer is no, then one can pro-
ceed with fhe remainder of the validation process given
in Sectiong 4 through 7.
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Section 4
Uncertainty of an Experimental Result

4-1 OVERVIEW

on the measured variable. Those uncertainties from error

Thiis Section presents the basic concepts from
expefimental uncertainty analysis that are used in the de-
termjnation of the uncertainty of the experimental result,
u,, i eq. (1-5-10). The ASME standard [1] on this subject,
PTC19.1-2005, Test Uncertainty, is considered to be a com-
panipn document for V&V 20. This Section provides an
overyiew of the basic methodology in PTC 19.1.

The validation process is dependent upon having an
apprppriate experimental result that has a quantified un-
certafinty estimate, 1. In addition, the experiment will
provide many of the simulation inputs and their associ-
ated |uncertainties. It is critical for the modeler and the
expefimentalist to work together in the design of the
validation experiment. The experiment will be the reality
of inferest that the modeler is trying to simulate. Prelimi-
nary|simulation results can help in the design of the ex-
perirtpent and in the proper specification and placement
of ingtrumentation.

4-2 | EXPERIMENTAL UNCERTAINTY ANALYSIS

The accepted standards for experimental dncertainty
analysis are references [1] and [2]. The progcess used in
expefimental uncertainty analysis is to calculate the un-
certafinties of individual measured variables and then to
use these to estimate the uncertainty of the result(s) de-
termjned from these variables. For a measured variable
X, the total error is caused by miultiple error sources. The
sum fof all of these errorsfQr-a measurement is the differ-
ence|between the valué\of’the measurement determined
in the experiment dnd* the true value of the measured
varigble. In expgrimental programs, corrections to the
meadurements@re made for those errors that are known,
as in| the calibrdtion process. For those errors where the
maghnitude and sign are unknown, uncertainty estimates
are thadeto represent the dispersion of possible values

sources that contribute to the variability of the measure-
ment are classified as random and those\ufjcertainties
from error sources that remain fixed during thp measure-
ment process are classified as systemati¢. The [discussion
below uses the random and systématic classifications to
discuss the uncertainty of a measurement and| the uncer-
tainty of the test result.

4-2.1 Uncertainty of'a‘Measurement

The systematic standard uncertainty of th¢ measure-
ment of a variable is obtained from the square root of
the sum of the squares of the systematic standard uncer-
tainties forall independent error sources. Fo each sys-
tematic €rror source, the experimenter must [estimate a
systematic standard uncertainty, b, . Systematic standard
uncertainties are estimated from previous ¢xperience,
calibration data, analytical models, and the 3pplication
of sound engineering judgment [3]. The systematic stan-
dard uncertainty for variable X is then

b, =\bZ + b7 +...+ b} (4-2-1)

As an example, consider a thermocouple that has been
calibrated against a standard with a systematic standard
uncertainty of 0.10°C. When the calibration c¢rrection is
applied, the fixed error of the thermocouple is feplaced by
the calibration uncertainty and the systematifc standard
uncertainty of the calibration curve — for thjs example
taken to be 0.05°C. If the thermocouple is then used to
measure the mean temperature of a flow fieldl, an addi-
tional uncertainty might need to be applied [to account
for how well the thermocouple measurement actually
represents the mean temperature. If this condeptual un-
certainty (estimated by taking multiple measujrements or
by analytical modeling) were 0.20°C, then the[systematic
standard uncertainty for the thermocouple mgasurement
would be

for the errors. Both references | 1] and [ 2] use the standard
deviation for each error source to calculate the uncer-
tainty in the measured variable. This standard deviation
quantity is called the standard uncertainty u.

In reference [2], these uncertainties are grouped by
the method used to evaluate them. Those that are cal-
culated by statistical means are classified as Type A and
those that are estimated by other means are classified
as Type B. Reference [1] uses this classification but also
includes a grouping of the uncertainties by their effect

b, = (0.10°C)* + (0.05°C)? + (0.20°C)> = 0.23°C  (4-2-2)

Estimates of systematic uncertainties are usually made
at some confidence level rather than at the standard de-
viation level. Typically, these systematic uncertainty esti-
mates are representative of the 95% limits of the possible
values of the systematic error. To obtain the systematic
standard uncertainty, a distribution is assumed for this
95% estimate (i.e. normal, rectangular, triangular), and
the estimate is divided by the appropriate distribution
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factor (2 for normal, 1.65 for rectangular, etc.) to convert
the 95% estimate to a standard deviation [1].

An estimate of the range of random error for mea-
surements of a variable X, is the sample standard de-
viation, s, also called the random standard uncertainty.
Unlike the systematic error, the random error varies
from measurement to measurement. To reflect the en-
tire range of possible measured values of a variable, the
measurements used to calculate the random standard

ditions thdt cover the variations in the variable. For ex-
ample, talfing multiple samples of data as a function
of time wlile holding all other conditions constant will
identify te random variation associated with the mea-
surement $ystem and the unsteadiness of the test condi-
tion. If thelrandom standard uncertainty of the variable
being meakured is also expected to be representative of
other posgible variations in the measurement (repeat-
ability of fest conditions for example), then these ad-
ditional exfror sources will have to be varied while the
multiple data samples are taken to determine the stan-
dard unceftainty. If repeatability of test conditions is not
representgd in the experiment, then this effect will have
to be estifnated as an additional systematic standard
uncertaintyy.

4-2.2 Uncertainty of a Result

Considef an experimental result that is determined
from | medsured variables as

r=rX, Xy,..., X,..., X))

] (4-2-3)

The star{dard uncertainty of the result, u, is found-as

u = b + 57 (4-2-4)

where b, i the systematic standard uncertainty of the re-
sult
L S Xy or
2 r r or
b’ F E, b, 42 ;:1 k:%l X X, b, (4-2-5)

and s, is the random standard\uncertainty of the result

or _)2+2§ 2’: or Jr_

6X1. S =1 k=it1 GX GX %

s) = (4-2-6)

N4

5
=1
1
where
b, = systenratic standdrd uncertainties of the measurements

s, = randomn stafidard uncertainties of the measurements
The termns(b, and s, in egs. (4-2-5) and (4-2-6) are

The covariance term, b,, is determined by summing
the products of the elemental systematic standard un-
certainties for variables i and k that arise from the same
source [3].

Usually the random standard uncertainties are con-
sidered to be independent so that s, is taken as zero.
However, there can be situations where the measured
variables, X, in eq. (4-2-3) can be affected by a common,
t1me-varymg, nonrandom error source, such as a drift in

dom standard uncertainty of the result.\These ca
correlated random errors can easily bethandled [4
calculating the result from eq. (4-2-3)*each time the Xs
are measured and then directly, caléulating the stanidard
deviation, s, of the set of results/and using that s in eq.
(4-2-4) rather than using eq:{4-2-6).

Monte Carlo methods tairbe used to find the starjdard
uncertainty of the restlt [5] instead of the propagption
approach given by/eqs:(4-2-4) through (4-2-6). The Monte
Carlo method isGllustrated in Sections 3, 5, and 7.

4-3 UNCERTAINTY OF VALIDATION EXPERIMENT

The experimental uncertainty, u,, used in the valida-
tiQh process is the u_obtained above,

Up,=1u,

(4£3-1)

Even though the experiment will have both systeinatic
and random errors and associated standard unceftain-
ties, the uncertainty of the experimental result fop the
validation process will be fossilized as a systematic jstan-
dard uncertainty [3]. Thus for the purposes of the vdlida-
tion process, the experimental result has a single value, a
fixed (but unknown) error, and only a systematic coppo-
nent of uncertainty.

4-4 SUMMARY

This section has presented the basic concepts necefsary
to determine the uncertainty of the experimental r¢sult.
As noted at the beginning of this section, the ASME stan-
dard [1] on this subject, PTC 19.1-2005, Test Uncertginty,
is considered to be a companion document for V&)V 20.

the covariance of the systematic and random stan-
dard uncertainties, respectively. When the elemental
systematic errors for two separately measured vari-
ables are related (e.g., when the transducers used to
measure different variables are each calibrated against
the same standard), the systematic errors are said to
be correlated and the covariance of the systematic
errors is nonzero. The significance of correlated sys-
tematic errors is that they can have the effect of either
decreasing or increasing the uncertainty in the result.

28

PTC 19.1-2005 provides detailed examples ol the applica-
tion of uncertainty analysis to the determination of the
uncertainty of test results and gives practical consider-
ations for uncertainty analysis in general.
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Section 5
Evaluation of Validation Uncertainty

5-1 OVERVIEW

the experiment and the measurements of T. and T share

This Segtion describes how the validation uncertainty
u,, is deteymined once estimates of u__ and the uncer-
tamty contributors to u,__ and u, have been made as dis-
cussed in previous sections.

Discussg¢d in this Section are two approaches for deter-
mining u_| that differ in the manner of propagation with
i and u,, are obtained. The first is

1
Hation variable T is directly measured.
2

dation variable g is a result defined by a data
equation that combines variables measured
briment (and no measured variables sharethe
sources).

3

dation variable g is a result defined by a data
pquation that combines variables'measured in

The vali
5-1.2 Cas¢

The vali
reduction
in the exps
same errof
5-1.3 Cas¢

The vali
reduction

Combustion gases

ANV

Fig. 5-1-1_ Schematic for Combustion Gas Flow Through a Duct
With-Wall Heat Flux Being the Validation Variable (Case 4)

.
.

.
>

identical error sources.

In these cases, specification of the validation condition
(set point) requires experimental determimation of the
value of Reynolds number (4pQ/mud, ), andsince thesim-
ulation is performed for actual experimental condifions,
the values of the variables from thé“experiment will be
inputs to the simulation. The erfors in these inpufs are
assumed to be uncorrelated ferall cases, with the excep-
tion of T, and T for Case 3.

The fourth case considers’a combustion flow with the
validation variable being'duct wall heat flux g at a given
location (Fig. 5-1 -}). The experimental g is inferred |from
temperature—tinté\measurements at the outside conpbus-
tor duct wall Gsing a data reduction equation that is fitself
amodel. Thepredicted g is from a simulation using ¢ tur-
bulent chemically reacting flow code to model the|flow
through‘the duct.

52 ESTIMATING u_ WHEN THE EXPERIMENTA
VALUE, D, OF THE VALIDATION VARIABLE |
DIRECTLY MEASURED (CASE 1)

vy

This case is one in which the experimental value D ¢f the
validation variable is directly measured. A key feattre of
such cases is that D and S have no shared variables, which
leads to a straightforward evaluation of u,  and u,} The

~<——+F—— Duct wall
with p, ¢, k

.,
..
S,
.
N

Thermocouple
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analysis is more complex in cases for which D and S have
shared variables as shown in subsection 5-3.

For the finned-tube heat transfer experiment shown in
Fig. 1-4-1, consider a case in which the validation vari-
able is defined as the directly measured downstream
bulk fluid temperature T . Then

The sensitivity coefficient method requires knowledge
about only the nominal values of the input parameters
and their associated standard uncertainties. Knowledge
about the form of the distributions is not required.

Uncertainty exists in the validation condition set point
due to uncertainties in the parameters defining the set
point. Applying the sensitivity coefficient approach to

S=T, (5-2-1)  eq. (1-4-2) leads to
D=T, 622 2 (IR 2y (0Re) 2 (R 2, (ARe) 2 (55 p)
E=5-D=T,-T, (5-2-3) I e AT

The functional dependence of the simulation result is
reprgsented by
Cp by by by b,

=TT, T,Q pmCpyh,h,
kkdd Law w

My Y Mo

T

0,5
) (5-2-4)
whete the simulation models the conditions of the ex-
perirpent, so that values from the experiment are used as
inpufs to the simulation. The expression for the compari-
son grror is then

o Cp Ity Iy 1, B K,
T

E=TJ(T,T,Qp
d d,L,a, w, wf) "D (5-2-5)

k

v

5-2.1

Aq discussed in subsection 1-5, since the validation
varigble T is directly measured, the assumption of effec~
tively independent errors 6inpm and &, is reasonable. The
expression for u_ is from eq. (1-5-10)

Sensitivity Coefficient Approach (Case 1)

2

— 2
Ugal = Unum + M + uTm

input

with|u,__  given by eq. (3-2-1) with its corrélation terms
mput
equal to zero

2 _ 0,5
uir\put - E
i=1

2
9x; ”X.)
whidh for this particular case'yields

u (aT

The derivatives in eq. (5-2-7) can be eyaluated analyti-
cally due to the simple form of Re.

A graphical summary of the procedures used to evalu-
ate u , using the sensitivity coeffi¢ient propggation ap-
proach is illustrated in Fig. 5-2-1-"The procedufes defined
in previous sections are usedto estimate all stgndard un-
certainties and the partial‘dérivatives.

5-2.2 Monte Carlo Approach (Case 1)

Figure 5-2-2 ‘illustrates the Monte Carlo
for this cdse."In contrast to the sensitivity
approach, the Monte Carlo method requires|that prob-
abilityndistributions be assumed for the erfors in the
input parameters. The standard uncertainfies, u, are
génerally taken to be the standard deviatipns of the
assumed distributions. For a given “run” i ¢f the sim-
ulation, a random sample is taken from eagh of these
distributions and the simulation result, 5, experi-
mental result, D, validation comparison erfor, E, and
validation point, Re,, are calculated. This process is re-
peated N times, and the resulting means andl standard
deviations of the N values of E, and Re, evaluated.

Note that since each S. includes (essentially)) the same
o the effect of §_ _is not observed in the vdriability of
the distribution of the N values of S, or E. The effect of
the numerical uncertainty is accounted for when u__ is
included in the calculation of u_.

The number of samples N can be reduced
techniques discussed in Section 3.

approach
roefficient

using the

5-3 ESTIMATING v, WHEN THE EXPERIMENTAL
VALUE, D, OF THE VALIDATION VARIABLE
IS DETERMINED FROM A DATA REDU{TION

aT \Iz ITN\? aT \? aT
> | 05| . 2 0.5 2 0,8 2
S RCi e s E e o L T
Tz )2 aT oT aT .\?
+ L 2 + 0,S 2 + 0,S 2 + 0,S 2
( al-") ul—'- (acp) MCP ahl uh‘ th uh2
+ {aTn’s \2112 + {GTU’S \2112 4+ aTﬂ/s \2112 4+ {aTO'S \|2112
L B T R L A L A
aT . \? aT .\? aT )2 (6T )2
0,8 2 0,S 2 0,5 2 0,5 2
* adl) "\, ”dz“L( oL ) g )
T\ o [Tas)'
+ 5w uwf+ aw, Uy (5-2-6)

The derivatives in eq. (5-2-6) are evaluated using the
procedures of Section 3. The standard uncertainty, u, , is
determined using the techniques discussed in Sectlon 4.

31

When the validation variable is not directly measured but
is determined from a data reduction equation using other
measured variables, the estimation of Uy and u,, (and sub-
sequently u ) becomes more complex. Example Cases 2
and 3 illustrate the application of the validation approach
in such circumstances. The most general form of the sensi-
tivity coefficient propagation equation as it applies to these
cases is presented first, with the form for each of the two
specific cases then presented in the subsections following.
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When

val

the Validation Variable (T) Is Directly Measured (Case 1)

Data

Nominal

Simulation

(measured)

Nominal (measured/tabulated)

Set Point

Nominal (measured/tabulated)

value of T, p valuesof T;, T, ..., Wy values ofp, Q, ..., d;
Estimate ur, Estimate Estimate
uT,-/uToo/"'/uan Up,Uo,...,Ud1
Y Y Y

|D= Top | Simulation— S=T,¢ | JdRe ORe JRe

op ~0a ]0d,
dT,s 9T,s 9dT,s
oT; " oT. " dwyy

* Y Y Y Yy
| uznum | | uzinput | Rezﬂ U Re
Ty |

2 — 2 2 2
Uy =U T°,D+ Uhum+ U input

Fig. 5-2-2 Monte Carlo Approach for Estimating i, When the Validation Variable (T)
Is Directly Measured (Case 1)

Data

Nominal (measured)
value of T,

Y

Estimate parameters
characterizing distr(T )

Y

Simulation and Set Point

valuesof T;, T, ..., Wy

Nominal (measured/tabulated)

{

Estimate parameters characterizing
distr(T;), distr(T. ), ..., distr(w,y)

Y

Sample from.distr(T, p)

Sample from distr(T; ), distr(T.), . . ., distr(w) | -

u?npue+ U?r,, = the variance
of the N'samples of E;
E = the mean of the N
samples of E;

|

: D =N)p); |

: Y :

| Simulation— (T, g); :
|

|

| Si=(To,s)i |
|

| Y |

-Q; |

! Re,_ 2010; !

| Ei=oi=l (N Samples) TLdy,iM; :

Estimate u?,,,,, using nominal
values of T;, T, ...

URe = the standard deviation
of the N'samples Re;

s Why

{

A

4

2 — 2 2 2
| USya =U input+u pt U hum

32



https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

ASME V&V 20-2009

Consider the general situation in which the validation
variable is a result determined from a data reduction
equation containing j variables x, and some of the mea-
sured variables may share identical error sources. The
equation for the comparison error is then [recalling egs.
(1-5-4) and (1-5-6)]

E=5(x,x,.. x) -
=38 +6, . +t6 .,—9

model input D

(x,x,...x].)

(5-3-1)

is not directly measured — it is an experimental result
determined from measured variables and others whose
values are found from reference sources (the properties,
for example). Second, since eq. (5-3-5) is a 1-D statement
of conservation of energy with T, and T taken as the mean
inlet and outlet temperatures, there is no modeling error
for g, incurred when it is used as contrasted with the situ-
ation to be discussed in Case 4. However, there will likely
be spatial nonuniformity uncertainties for T, ) and T, , to
account for how well they represent the mean tempera-

In|this instance, 8, and §, cannot reasonably be as-
suméd to be independent since S and D share a depen-
dence on the same measured variables. Application of
the sensitivity coefficient propagation approach to obtain

an efpression for i yields

= [[28) - ()] e () - ) -
*@W%”Wﬂ%ﬂ%]
<[ - 62

] u et Ui
whete there is a covariance term containing a u,  factor for
each pair of x variables that share identical error sources [1].
Therg is no explicit expression for u”, _ , as its components
combine implicitly with components of u? . Equation (5-3-2)
can He expressed in a form analogous to eq. (1-5-10) as

=

(5-3-2)

Uyt = U+ Uinpuesp (5-3:3)
whete
o) 9O -
L)~ G (5
(5 ) o256
Mgthods for evaluating the sensitivity coefficients of

the simulation predicted value with respect to the vari-
abled (95/dx,) azéxdiscussed in Section 3. The estimate of
u_ 1s madeusing the techniques in Section 2.

num

5-3.1

Sources (Case 2)

Again, using the finned-tube heat transfer experiment
as an example, consider now a case in which the valida-
tion variable of interest is g, the rate of heat transfer given
by the 1-D averaged conservation of energy equation as

q=pQC,(T,—T) (5-3-5)

and no measurements share any error sources. It is impor-
tant to note several points. First, the rate of heat transfer

33

tures. Since there are no error sources shared\ty different
variables, all covariance terms in eq. (5-3-2) gre zero. In
this example, it is assumed that the sirhilation| predicts T,
and calculates q using the input valiies of p, Q,|C,, and T

The comparison error expressionAs

E=S-DXq, -1, (53-6)

where

PQCLs — T, (T, T,, Q, p, i C
hl, W, i, h k., kf, dy,d, L a ww, )] (5-3-7)
and

= pQCT, = T, ,) (53-8)
5-3.1.1 Sensitivity Coefficient Approach|(Case 2).
For this case u_ is given by egs. (5-3-3) and (5{3-4) where

Uy ourp 1S €Xpressed as
-+ -]«
(W apl| T lag) T ag) ) e

s\ (99p\1% aqy\  (9q)\ T’
%ﬁ &ﬁl@*%ﬁ %f

2

Z’linpuPr D ™

2
+ uTi

=19

Qo  E R
+ 2—‘11; ’ iy, + (3—25)2 uy, + 2_37; ’ ul + (Z_[Iicf)z u,
(o 00 g+ (0 i+ (]

+ (asz) : ( qs) ul, (;TL) uf | (5:3-9)

Equation (5-2-7) is used to evaluate the undertainty in
the set p01nt Re Flgure 5-3-1 illustrates the gpplication
Fua - - ase.

5-3.1.2 Monte Carlo Approach (Case 2). The Monte
Carlo approach is illustrated in Fig. 5-3-2. Probability dis-
tributions for the errors in the experimentally measured
variables and the errors in the other input parameters are
assumed; the standard uncertainties u are taken to be the
standard deviations of the assumed distributions, and
the variance of the sample of N values of E, is taken as
the estimate of uiﬁme.
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Fig. 5-3-1 Sensitivity Coefficient Propagation Approach for Estimating u,_, When the Validation Variable Is
Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment (Case 2)

Data Simulation Set Point
Nominal (measured/tabulated) Nominal (measured/tabulated) Nominal (measured/tabulated)
valuesofp, Q,..., T, p valuesof T;p, T..,..., Wy valuesofp, Q, ..., d;
Estimate Estimate
Up,UQ,...,UWm. UDIUQI""ud1
Y Y A\
D={p=pQCp(T;p- T, p) | |Simu|ation—>S=qS 9Re ORe ~\ORe
1 1 op 00 [ od,
9g9p  99p 9gp dgs  dgs dgs
o 0Q " oar, o 0a T ow,y,
Y Yy
\ Y Y

4pQ u?
UZ' D Ll2 Re:L Re
input + num T d1 0}
2 — 2 2
\\|uf = Ufinput + DF U hum

Fig. 5-3-2 Monte Carlo Approach for Estimating u,,, When the Validation Variable Is Defined by a
Data Reduction Equation That Combines Variables Measured in the Experiment (Case 2)

Data Simulation and Set Point
Nominal (measured/tabulated) Nominal (measured/tabulated)
valueofp, Q,..., T,p valuesof Tjp, T, ..., Wy
Estimate parameters Estimate parameters characterizing
characterizing distr(p), .~ \distr(T, p) distr(T; p), distr(T, ), . . ., distr(w,y)
,-—->| Sample from distr(p), . . ., distr(T, p )| | Sample from distr(T; p), distr(T..), . . ., distr(w);) |<__
A A
|Di Fapyi=p; Qi (Cp); (T )i - (To,D)i]| Simulation— (T, s);

|
|
|
|
I
Si=(as)i=p; Q; (Cp)i (T, p)i = (T,,8)i l
|
|
|
|
|
|
|

Re
I Ei=oim b (N Samples) ndy il
e t _____________________________ ¢ _______
u?put +p = the variance Uge = the standard deviation
of the N samples of E; Estimate u?,,,,, using nominal of the N samples Re;
E = the mean of the N valuesof T;p, T ) oo, Wy
samples of E;

Y Y

2 — 2 2
| Uy =U input+D+ U hum
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Fig. 5-3-3 Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation Variable Is
Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment
and Two Measured Variables Share an Identical Error Source (Case 3)

Data Simulation Set Point
Nominal (measured/tabulated) Nominal (measured/tabulated) Nominal (measured/tabulated)
valuesofp, Q,..., T, p valuesof T;p, T, ..., Wy valuesof p, Q, ..., d;
Estimate Estimate
Up,UQ,...,Uan Up,UQ,...,Ud1
Y Y Y
D=qp=pQCp(T;p-T,p) Simulation— S =qs JRe ,dRe JRe
Y { Jd ada '|" ad,
dgp  99p  99p 99s  9gs  99s
op 0Q 9T, ap 20 ow,,
Y Y Y
Y ;Y Y 2
u2- 2 Rex= 4po U"Re
input + D U num TI',d”J.
\|uz:a - UZinPUt+ D+ uznum
5-3.2 Measured Variables Share Identical Error Where the final term in the equation is the povariance
Sources (Case 3) term that takes into account the fact that thel measured
. values of T, and T , share an error from the same source.
N¢w consider that the measured temperatures T, and Si aEn .
. . i ince g does not depend on T, ,, that derivative in the
T sHare an identical error source (such as both~tem-
0 ¢ d bei librated inst th final term is zero.
perajure transducers bemng caubrared agamst e same Equation (5-2-7) is used to evaluate the undertainty in
standlard and therefore, after making the. calibration . . . L
. . . the set point, Re. Figure 5-3-3 illustrates the gpplication
corrgctions, leaving each transducer with jthe error of e .. ) .
. . of the sensitivity coefficient propagation appr¢ach to this
the sfpandard in common). The compagison error expres-
. . . . example case.
siong are as given in eqs. (5-3-6) thrdugh (5-3-8) in para.
5-3.1
5-8.2.1 Sensitivity Coefficient Approach (Case 3). 5-3.2.2 Monte Carlo Approach (Case 3). In the
For this case u_, is given byweds. (5-3-3) and (5-3-4) where Monte Carlo approach, probability distribjutions for
u, |, is expressed as the errors in the experimentally measured variables
" 5 £ ) ) and the errors in the other input paramet¢rs are as-
Mi%lput [, = (&) — ( qD)] ul + [( qs) — ( %)] sumed; the standard uncertainties u are takejn to be the
ap ap aQ IQ standard deviations of the assumed distribdtions; and
g\ (995\]7 . - n 945\ (99:\]* 2 the variance of the sample of N values of F, is taken
ac,) \aC,J| “» - |\eT) \oT)| " as the estimate of u? .. The procedurg is shown
g, \? aq, aq,\? aq,\? in Fig. 5-3-4. In th1s case the error from djstr(8T,) is
]l oo shared fdap exror-dource and
® 1 . .
a0\ a‘is g a0\ 0\ the saI.IJ:e ei.ror ;S a551gned to both (T,,)and (T, ) for a
+ a_hf u,,f-i- 6h U+ W Ui s + 8—kt Uy, given 1teration.
9q,\* 99 (5‘75) 2 (aqs)z 2
+(ﬁ) ”W(ﬁ ui, + \Gr) ut Ga)
+ a_ uZ + S .2 an) M?
awf o awnf o 0T, L °In general, only some elemental systematic error sources
aq aq aq aq will be the same for T,, and T, ,, and the other elemental sources
+2 (G_TS) - (G_TD” ( aT 2 ) - ( BTD ) ., (5-3-10) will not be the same. Such situations are discussed in detail in ref-
i i oD, 0,D, ner erence [1].
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Fig. 5-3-4 Monte Carlo Propagation Approach for Estimating u

When the Validation Variable

val

Is Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment
and Two Measured Variables Share an Identical Error Source (Case 3)

Data

Nominal (measured/tabulated)
valueofp,..., T,p

y

Simulation and Set Point

Nominal (measured/tabulated)
values of T;p, T, ..., Wy

{

Estimate parameters characterizing

distr(37T,), distr(3T; p), distr(3T,

o,p), distr(T.), .

., distr(w,)

Y

r———>| Sample from each of distr(3T}), distr(8T; p), distr(8T, p), distr(T.,), .

 distriw,) <

Y (

Y

Si=(as)i=p; Q:(CR); (T, p)i -

Simulation— (T, g);

(T,D) ID+(6Tb) +(5 D)
(TOD) 0D+(6Tb) + (3T, D) >
Dj=(qp)i=p; Qi (Cp); [(T; p);j = (T;, p)l

uZput+ p = the variance

|
|
|
|
i
(To,8)] :
l
|
|
|
|

(N Samples)

Uge = the standard deviation

of the N'samples of E;
E = the mean of the N

Estimate u?,,,, using nominal
values of T; p, T ), Wye

of the N samples Re;

samples of E;
'L Y

2 _ 2 2
| uval-uinput+D+unum

5-4 EST|MATING v WHEN THE EXPERIMENTAL
VALUE, D, OF THE VALIDATION VARIABLE
IS DETERMINED FROM A DATA REDUCTION
EQUATION THAT ITSELF IS A MODEL (CASE 4)

Considef the case of combustion gases flowing through a
duct, with the validation varialle\of interest being the heat
flux g incident on a particularatea of the duct wall. The situ-
ation is shpwn schematically-in Fig. 5-1-1. The simulation
result g, is [predicted using a code that models a turbulent
chemicallyfreactingflow at the conditions of the experiment.
Inputs wotild be.gedmetry, propellant and oxidizer flow
rates, etc. Tlhe ¢hemical equilibrium code that calculates the
combustion gds properties might be considered to be a part

properties, incident heat flux constant with time, adigbatic
wall aty = L, etc. In this approach, the experimental result,
g, now contains errors from categories analogous to fhose
in the simulation (i.e., the error due to assumptiong and
approximations in the data reduction model is derpoted
8 moae)s the error in the data reduction model outpuf due
to the errors in the inputs (measured and from refefence
sources) is denoted &, put? ; and the error due to the numeri-
cal solution of the data Teduction model is denoted

D,num”

e validation comparison error in this case is givé¢n
Th lidat p th g by

E = S - D = qs - qD = 8S,model + 8S,input + 6S,num

-

D,model -

(F4-1)

D,input - D,num

of the simulation model (similar to the common treatment of
turbulence models and their parameters in a CFD analysis)
or it might be considered to be part of the input parameters
with uncertainty contributions taken into account in (-
The experimental heat flux is determined by measuring
the temperature of the back wall (y = L) of the duct as a
function of time, t. The measured T(t) history is then used
in an inverse conduction data reduction model [2] to infer
the incident heat flux at y = 0. The data reduction model
might assume 1-D conduction, constant or variable wall

If 3, 4q iSOt (Or cannotbe) estimated with an uncertainty,
then the two modeling errors are not distinguishable indi-
vidually and a total modeling error is given by
= (8

S,model - 6D,model)

=E—(8. + 6 -6, ~—0&

S,input Snum D,input

model,total

(5-4-2)

D,num )

Now u  is defined as the standard uncertainty corre-
sponding to the standard deviation of the parent population
of the combination of ( + 6 -5, —9& )

S, input S,num D,input Dnum
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The functional relationships for g, and g, are given by

X.
]

s = Gg(Xy Xy - - - (5-4-3)

)

where the j different x, are the inputs to the simulation
model, and
9o = dp(P ¢, kK, L, T, t) (5-4-4)

Realizing that the simulation is of the flow field and

a%)Z ) (%)2 )
+(6—T ur ) W

the expression for 1 becomes
2 _
Uyl =

Figure 5-4-1 illustrates this case.

5-4.2 Monte Carlo Approach (Case 4)

2 2 2 2
uS,ir\put + uS,num + uD,input + uD,num

(5-4-7)

(5-4-8)

the ¢xperimental data reduction model is of the duct
wallf the expressions for the results g, and g, do not con-

tain $hared variables as in Cases 2 and 3.
5-4.]1 Sensitivity Coefficient Approach (Case 4)
The sensitivity coefficient approach in this case yields
0q.\? aq.\?
2l _ S 2 S 2 2
Ug = (a—xl) u;q +...+ (a_x]) uxj' + MS,num
an 2 2 an 2 2 (an)Z 2 (an)Z 2
+($) u”+(8_cp v k) MG
9g.\? ag9.\?
o () i+ () 2 + (549
Ddfining
aq,\? aq,\?
2 _ S 2 S 2
U input = (a—x]) o (a_x]) Uy, (5-4-6)
and
99,\? 9q,\* aq )2 (3‘7 )2
2 — D 2 D 2 D 2 D 2
e = (87) et (?) o, + (o) v+ Gl

Data

Nomipal (Mmeasured/tabulated)

Fig. 5-4-1 Sensitivity Coefficient'Propagation Approach for Estimating u
Variable Is Defined by a' Data Reduction Equation That Itself Is a Model (Case 4)

As—in-the pvcﬂn-r\11c cases, Pvr\]ﬁq]f\”“-}r distributions of

the errors in the experiment and the error§ il]l the input

parameters are assumed, and the standard-un
u, are taken to be the standard deviations of th
distributions. The validation uncertainty is g
as shown in Fig. 5-4-2.

5-5 ASSUMPTIONS AND ISSUES

A summary of relevant assumptions and {
cerning the tweg ‘tmethods to propagate 1
through the dafa“reduction equations and s
and multipginit model validation follows.

tertainties,
e assumed
etermined

ssues con-
Incertainty
imulations

5-5.1.Sensitivity Coefficient Propagation Approach

Asstumptions and issues associated with tH
ity/coefficient propagation approach, as relate
validation, are summarized below.

(1) While the sensitivity coefficient p
approach generally requires fewer evaluati
simulation model than the Monte Carlo apy

val

Simulation

Nominal (measured/tabulated)

Data Reduction Model —D = qD|

Values of p, ¢,, ..., t values of x7,x,,..., X;
Estimate Estimate
UpUg, s - Uy Uy Uy s oo s Uy
Y Y

| Simulation— S =qgg

When the Validation

e sensitiv-
H to model

ropagation
bns of the
roach, the

dgp  99p 99p Jdgs _ dgg Jgs
o ac, oot ox, ax, ox;
Y Y Y Y Y Y
UZD, num | uzD, input | UZS, input

Y

4

2
AU S, num

Y

2 — 2 2 2 2
| UTya =U D,num+u D,input+u S,input+u S, num |
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Fig. 5-4-2 Monte Carlo Propagation Approach for Estimating u

When the Validation Variable

val

Is Defined by a Data Reduction Equation That Itself Is a Model (Case 4)

Data

Nominal (measured/tabulated)
valuesof p, ¢y, ..., t

Y

Simulation

Nominal (measured/tabulated)
values of xq, Xy, ..., X;

¢ :

Estimate parameters characterizing

Estimate parameters characterizing

distr(p), distr(c,) distr(f) distr(x;), distr(x,), . . ., distr(x)
+->-| Sample from distr(p), distr(c,), . . ., distr(t) | | Sample from distr(x;), distr(x,), . . ., distr(xj) - 1

)

Data Reduction Model — (q;p);

D;=(q;p);

—_—————— e e —— —

'

Simulation — (g;s);
S;=(q;s);

fstimate u?p, ,uy, Using nominal
values of p, cp, ...

u?p input* U2s, input = the variance
of the N'samples of E;
E = the mean of the /\.
samples of E;

Estimate u?g ,m using nominal

values of X1, ;.. .., X;

~

Y

Y

2 — 2 2 2 2
USya =U D, numt U D, input+ u S, input+ u S, num

number of evaluations can be significantqyFor models
with a vely large number of input parameters, some
effort may| be needed to identify thoge parameters that
have a sigiificant effect on the model ptredictions for the
conditions| (set point) of the validation experiment. The
sensitivity| propagation analy$is)can then be limited to
these paraeters.

(b) The method, as présented, assumes that the mean
simulationf model output; mean (S), and the uncertainty
of the modlel outpdt due to the input parameters, u,
can be evdluated from the nominal values of the input
parameterf, and from a first order sensitivity analy-
sis. These [assumptions may not be appropriate if the

deviation) of the model input parameters and |data
be characterized. The Monte Carlo approach reqtlires
the full specification of the uncertainty distribufions
unless one adopts the approach outlined in subpara.
(b) of para. 5-5.2.

(d) One cannot, without further assumption, chiarac-
terize the interval within which §__, . falls, to a fixed [level
of probability. The method characterizes only E and u,
and not the distribution associated with the uncertpinty
in(s_ +8 —35)

input

model is highly nonlinear in the input parameters, over
the parameter ranges associated with the standard un-
certainty of the parameters about the set point. Note
that validation experiments are often performed under
carefully controlled conditions, leading to smaller ranges
for the uncertainties in the input parameters than may
occur in the field.

(c) An advantage of the sensitivity coefficient propa-
gation method is it requires only that the nominal value
(or mean value) and standard uncertainty (standard

38

5-5.2—Monte Carto Propagation Approach

Assumptions and issues associated with the Monte
Carlo approach, as they relate to model validation, are
summarized below.

(a) The Monte Carlo approach requires that the
number of evaluations of the simulation model be suffi-
ciently large [3] such that the mean model prediction and
the standard uncertainty u, _ can be resolved.

(b) The distributions of the important model param-
eters must be specified. If sufficient knowledge does not
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exist to specify any of these distributions, a range of distri-
butions and associated distributional parameters can be
utilized (normal, uniform, etc.) to evaluate the sensitivity
of the validation analysis to the distributional choices.

(c) While the number of simulation evaluations re-
quired by the Monte Carlo approach to adequately es-
timate mean (S) and u,  is at most a weak function
of the number of model parameters (not a function if
the random samples are from independent, identical
distributi . A
the parameters used in the analysis. As in the case of the
unceftainty propagation method, some effort may be
needed to identify those parameters that have a signifi-
cant [effect on the model predictions for the conditions
(set point) of the validation experiment, so that the dis-
tributions associated with those parameters that are not
impqrtant need not be characterized.

(d) The Monte Carlo simulations can be performed on
a cogrser grid if it is established that u_ _ for that grid
is significantly smaller than u, . The use of a simula-
tion pased on grid for which u_, _is on the order of u,
oo WHI significantly increase u, , leading to a situation
whete a significant part of the estimated standard uncer-
tainty, u _ is due to limitations in the computation rather
than|due to uncertainties in the validation experiment
(i.e., [those that are due to uncertainties associated with
meagurements and the parameters used in the simulation
of thp experiment).

(e)] The method provides an estimated distribution for
the yncertainty in . based on the uncertainty in (&,

model input

+ 8. — 6,). The distribution can be used to estimate the
interval in which the §__,, falls, with a given probability.
As the probability increases (say, from 95% to 99%), the
number of simulation evaluations required to resolve the
tails of the distribution increases.

5-5.3

The procedure documented here can be applied to
characterize model error for multiple set points. This
Standard, however, does not provide guidanfe on how
the results can be interpolated (or extrapolated) to other
set points. Several issues arise in inferpolation. These
include the choice of the interpolation functipn and the
characterization of the statistics,of the residudls (i.e., the
form of the distribution, correlation between gesiduals at
different set points, and the-estimation of the distribu-
tional parameters). SuchliSsues are beyond the scope of
this Standard.

Implications for Multipoint Validation
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Section 6
Interpretation of Validation Results

6-1 INTRODUCTION

within which the value of 6, falls with a given prob-

Previou$ sections of this document have presented a
validation[methodology based on determining the vali-
dation comparison error, E, and the validation uncer-
tainty, u_,fand this Section discusses the interpretation of
the compafison of these metrics. Note that once a valida-
tion effort freaches the point where the simulation value,
S, and the pxperimental value, D, of a validation variable
have been (determined, the sign and magnitude of E (= S
— D) are khown.

The valfdation uncertainty u , is an estimate of the
standard deviation of the parent population of the com-
bination of all errors except the modeling error (5 +
8o — 0p)|in S and D. Techniques for estimation of the
uncertainty components u__, U o and u,, that combine
to give u_| have been discussed in Sectlons 2,3, and 4,
respective y. Evaluation of u , from those uncertainty
componenjs has been demonstrated in Section 5 for four
separate cgses that represent practical validation scenar-
ios. For eagh of the cases, the contributions of 1,  and u,,
to u , are Hetermined by propagation of the simulation
input stanflard uncertainties and the experimental stanz
dard unceftainties using two techniques: a sensitivify:co-
efficient (Ipcal) approach and a Monte Carlo (sampling,
global) approach that requires specification of erfor dis-
tributions.

Recalling eq. (1-5-7)

8 odel = E = (8 T 9,

num idput; o 6D) (1_5_7)

model

and considering the definitionof) , it is evident that

(E &

val )

then charafterizes an intetval within which §__,, falls, or

) e[E—u

thodel

al’/ E+ uval]

Thus, E is|an @stimate of §__, , and u_ is the standard
uncertainty of-that estimate. The validation uncertainty

ability cannot be estimated without further assumpgtion.
One can make the following statements, however:
(a) If

lEl>>u (62-1)
then probably 6 . =~ E.
(b) If
|El =iy, (62-2)
{hen probably 6 _ . is of theé same order as or less|than
O T Binput ~ 9%)

From a practical standpoint, in the first case on¢ has
information thdt ¢an possibly be used to improvg the
model (reducelthe modeling error). In the second [case,
however, the'modeling error is within the “noise l¢vel”
imposed by the numerical, input, and experimental un-
certainties, and formulating model “improvements” is
more problematic.

6-3 INTERPRETATION OF VALIDATION RESULT
USING EAND u_ WITH ASSUMPTIONS MADE
ABOUT ERROR DISTRIBUTIONS

To estimate an interval within which §__ . fallswith
a given degree of confidence, an assumption aboyt the
probability distribution of the combination of all efrors,
except the modeling error, must be made. This thgn al-
lows the choice of a coverage factor [1, 2] k such that

u, =ku @3-1)

where U, is called the expanded uncertainty and ong can
say, for instance, that (E = U,,) then defines an intprval
within which §__,  falls about 95 times out of 100f (i.e.,
with 95% confidence) when the coverage factor has|been
chosen for a level of confidence of 95%.

can thus be viewed as the standard uncertainty, U v of

the estimate of §_ .

6-2 INTERPRETATION OF VALIDATION RESULTS
USING EAND u,_, WITH NO ASSUMPTIONS
MADE ABOUT ERROR DISTRIBUTIONS

If one has only an estimate for the validation uncer-
tainty, u , and not an estimate of the probability dis-

tribution associated with (8 ( T+ 8mpm - 6D), an interval

6-3.1 Parent trror Distributions

To obtain a perspective on the order of magnitude of
k, consider the following three parent error distributions
used as examples in the ISO Guide [1]:

(a) a uniform (rectangular) distribution with equal
probability that 6 lies at any value between —A and +A,
so that ¢ = A /3.

(b) a triangular distribution symmetric about § = 0
with base from —A to +A, so that o = A/6.

(c) a Gaussian distribution with standard deviation o.
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6-3.2 Coverage Factor

Choose a coverage factor, k, such that (5, + 8, — &)
certainly (or almost certainly) falls within + k(u__).

(a) If (5, +6, ., —98,)isfrom the uniform distribution,
100% of the popuiation is covered for k = 1.73.

(b) If (5, + 6, . — 6, is from the triangular distribu-
tion, 100% of the population is covered for k = 2.45.

() If B, + 0, 0, is from the Gaussian distri-

i

bution, 95.5% of tﬁg population is covered for k = 2.0,

In the case of the Monte Carlo approach, a direct
calculation of a coverage interval can be performed for
sufficiently large number of samples N using the distri-
bution of the N calculated values of E, if one has suffi-
cient confidence in the choices of the input distributions.
Alternatively, this distribution can also be used to evalu-
ate an equivalent k if the distribution is symmetric.

6-4 REFERENCES

99.79 for k= 3.0,99.95% for k — 3.5, and 99.99% for
k=40
t

Wi
erroy
tions
with
ber i

h these comparisons, one can conclude that, for
distributions in the “family” of the three distribu-
considered, §__, certainly (or almost certainly) falls
n the interval E * k(u__), where k is typically a num-
\ the range of 2 to 3.

[1] Guide to the Expression of Uncertainty ifiMeasurement
(corrected and reprinted, 1995), InternatichalOfganization
for Standardization, Geneva, Switzerland; (1993).

[2] Coleman, HW. and Steele,(W:G., Expetjimentation,
Validation, and Uncertainty Analysis for Engineprs, 3" ed.,
John Wiley & Sons, New York (2009).
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Section 7
Examples

7-1 OVERVIEW

for code verification are developed in Nonmandatory

To den
Standard,

onstrate the validation approach in this
in example problem is presented. The example
applies th¢ approaches described in this Standard to ad-
dress code verification, solution verification, uncertainty
in model ihput parameters, uncertainty in experimental
data, validation uncertainty, and interpretation of the
validation|comparison. The example is based on validat-
ing a modg¢l for the heat transfer rate from a fin-tube heat
exchanger

This Se¢tion is divided into two main subsections
covering the code verification example (subsection 7-2)
and validqtion example (subsection 7-3). The code veri-
fication example includes a description of the problem
(para. 7-2J1), presentation of a manufactured solution
(para. 7-2.2), and discussion of the results (para. 7-2.3).
The validgtion example includes an end-to-end dem-
onstration|of the approach with paragraphs on the ex-
perimental data (para. 7-3.2), simulation (para. 7-3.3),
and validation comparison (para. 7-3.4); an additional
paragraph|(para. 7-3.5) summarizes applying the valida-
tion apprdach to a second simulation model. In the eX:
perimental data section, experimental uncertainty, (para.
7-3.2.1) is pstimated. The simulation section includes a
discussion| of the simulation model (para. 7-3.371), pre-
sentation pf the simulation results (para. 7<3.3.2), and
estimation| of simulation uncertainty (solution verifica-
tion in paifa. 7-3.3.3 and input parametér uncertainty in
para. 7-3.3[4). The paragraph for assessing the validation
comparison presents two approaches for calculating the
validation|uncertainty (propagation equation approach
in para. 713.4.1, and a Monte Carlo approach in para.
7-3.4.2) and discusses (the interpretation of the valida-
tion resuls (para. 7<34.3). The validation approach is
repeated for a secendrsimulation model, with simulation
results and simmulation uncertainty summarized in para.
7-3.5.1 andl the“validation comparison results summa-

jlila)

Appendix A using the method of manufactured polu-
tions. Both solutions are applicable to the simulation
model used in the validation example, but)differ in
the code features that are tested. A variation of MMS
#1 in Nonmandatory Appendix A is used in this| Sec-
tion to demonstrate code verificatien. The solutipn is
briefly described here. The solution was specifically
designed so that the mathemdtical operations reqiiired
for developing the manufdetured solution (MS) qould
be carried out by hand. However, symbolic mathgmat-
ics software can make this task easier and is typikcally
necessary for more cemplex applications.

7-2.1 Problém Description

Linear stéady heat conduction is to be verified for a|two-
dimensional domain. The domain is taken as one-e{ghth
of asqudre (2.7 m X 2.7 m) with a circular hole (1.11jm in
diameter) in the center as shown in Fig. 7-2-1. The bqund-
ary surfaces of the two-dimensional domain are labeled as
5, tos,. Although the two-dimensional domain selectgd for
the verification problem is similar to the two-dimensional
domain used in the validation, this is not required for|code
verification. It is done for convenience here.

The partial differential equation in the code to be vetified
is that for linear steady heat conduction and is given by
9*T

k x?

. (72-1)

82_T]:0

Fig. 7-2-1 Problem Domain With (x, y) Coordindtes
Shown for Domain Corners

(2.7, 2.7

rized in para: =352

7-2 CODE VERIFICATION EXAMPLE

Verification is performed for the code features in the
simulation model applied in the validation assessment.
That simulation model (described later in subsection
7-3) includes numerically solving the partial differen-
tial equation for linear heat conduction with convec-
tion boundary conditions. Two analytical solutions

42

(2.7,0)

(1.11, 0)
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The boundary conditions to be verified are convective
boundary conditions defined on surfaces s, and s, as

)

nc_ n

(7-2-2)

o) =h, (T —T)

n

where 1 is the normal to the surface.

For a specified temperature boundary condition the

value is applied from the analytical solution.
T (r, 0)], = M(r, 0)|,
‘ ’ (7-2-7)
T (r,0), =M(r, 6)|Sq

A specified normal heat flux boundary condition ap-
plies gradients of the analytical solution.

- oM
7-2.2 Manufactured Solution 9,0 0, = K_ - kM
processes described in Section 2 are applied to de- q (r,0)] = -K [3M cos() — oM sin(&)]
rive pn analytical solution using the method of manu- ! N 540
factured solutions and perform code verification. The = _KM [COS(B) + —tan(40 s1n(0)] (7-2-8)
selected analytical solution is A convective boundary condition’can be [prescribed
M(r, 0) = T + cos(46) exp(r) (7-2-3) in two ways. First, a form is selected for the fonvective
" temperature and the required convection copfficient to
whete satisfy the boundary condition is calculated.
(r, 6)]= the polar coordinates _
T |= a constant, nominal temperature hr, G)L. = 4,4 O)Ly / [Tf (r, 6) = M (r, 9)] (7-2-9)
The solution is constructed in polar coordinates, but h(r, ), = g, 0)|. /[T, (r, 6) — M (r,|9)]
the finite element code being verified will solve the prob- :
lem [n the Cartesian coordinate system. Similarly, the where the ngymal flux, q,, is computed from feq. (7-2-8).

solution is developed in dimensionless variables for con-
veni¢nce; the code could be set up to use these or the MS
converted to dimensional variables.

The steady heat conduction equation in polar coordi-

nateg is used to derive the manufactured solution.
T aT \] _
L™ = [r ar (VW) F@(W ” =0 zy

The thermal conductivity is a constant in eq. (7-2:4), k
= K.|Note that a more general analytical solution-is de-
veloped in Nonmandatory Appendix A to verify nonlin-
ear Heat conduction where thermal condtictivity, k, is a
funcfion of temperature.

By| operating on the manufactured: solution, M, in
eq. (¥-2-3), with operator, L, in eql (7-2-4), the following

set of equations can be defined.
dT| 42 aT || =
po= k[r ar( ar) +?_0(_0)] - Q)
Q(t, 0) = KM [1+ ESL8] (7-2:5)
The golution of eq. (/-2-5) is by definition
T(r, 0) = M (r, 6) (7-2-6)

The betrdary conditions are derived from the analyti-
cal splition and discussed next.

Notice thdt for this manufactured solution the convec-
tion coefficient on surface s, will have negativle values if
a constant convection temperature is selected. [This is due
to_ the'sign change in the normal flux on surfade s,, which
cdrl be demonstrated from eq. (7-2-8). Paramgpters taking
nonphysical values should be avoided. In this casd, either the
convection temperature can be made to vary gpatially or
the boundary condition can be specified in ja different
manner, as discussed next. Alternatively, the fonvection
coefficient can be selected, and the convection tempera-
ture to satisfy the boundary condition is calculated.

T/(r, 0)|s‘ =q (, 6)|5‘ / h(r, 0) + M(r, 6
T (r, G)L‘z =q (r, 0)|52 /h(r,0)+M(r,

), (7-2-10)

Because the boundary conditions are deffived from
the analytical solution, various combinatigns of the
boundary conditions can be verified with the[same ana-
lytical solution. Separate verification problems that test
the combinations of temperature, normal hegt flux, and
convective heat flux boundary conditions c¢uld all be
tested with this one analytical solution. In rhost cases,
a general form of the boundary condition, alfowing for
spatial variation of the specified quantity, is verified.
Results are presented for one combination [of bound-

The boundary conditions are evaluated Irom the
solution in eq. (7-2-3) at the boundary surfaces of the
problem domain (Fig. 7-2-1). Along boundary surfaces
s, and s,, it can be shown that the normal flux is zero
because the gradient of the MS is zero. On boundary
surfaces s, and s,, temperature, normal flux, or convec-
tive conditions, which are typical in a thermal analy-
sis, could be specified from this manufactured solution.
The analytical forms of these boundary conditions are
given next.

43

ary conditions, that being specified convective heat flux
on both surfaces s, and s,. Convective boundary condi-
tions are applied in the simulation model used in the
validation.

In practice if a particular form of a boundary condi-
tion is not performing as expected, using a different form
of the boundary condition is useful to diagnose whether
the performance is being caused by a particular form of
the boundary condition. Specifying the dependent vari-
able, in this case temperature, is a good starting point in a
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code verification study to debug setting up and running
a code verification problem.

7-2.3 Code Verification Results

An unstructured mesh (grid) heat transfer code ap-
plying the finite element method is used to perform
calculations [1]. A series with four meshes is used in
the code verification study. The meshes are refined in
an unstructured manner on the interior of the domain;

software it may be easier to obtain a series of meshes
refined in an unstructured manner. The series of meshes
used in the example is shown in Fig. 7-2-2. The mesh
is refined such that the total number of elements over
the domain increased by approximately a factor of four
with each mesh refinement. A characteristic mesh size,
h, based on the edge length of the average element (dis-
cussed later) is reduced by approximately a factor of two
in each refinement.

A finite element computer code is set up to solve the

the bound@aty of the domain 15 refined in a structured
manner. The unstructured refinement gives meshes that
do not haye common nodes on the interior of the do-
main. An [unstructured refinement is not required for
code veriffcation. However, in general, an unstructured
refinement is a more rigorous test of the code verifica-
tion proceflure than a structured refinement, the reason
being that|an unstructured refinement does not have a
uniform r¢finement factor over the mesh while a struc-
tured refihement does. Furthermore, for commercial

Mesh 4
39 elements

Mesh 2
680 elements

Fig. 7-2-2 Finite Element Meshes Used in the Code Verification Refinement Study

previously described differential equation with¢th¢ ad-

dition of a source term on the right hand side.The|code

solves the following differential equation
= k[9T T _ b-

Ln =k G5+ S5 =qew P

with the convective boundary conditions.

~k 8L = g, ¢, O & (T), — T)

(7-2-12)
T
an

s = 6In (r’ e)ls = ho (Tls - Tx)

Mesh 3
173 elements

IRRARES

Mesh 1
2,769 elements

s

%
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The code is required to have functionality for applying
a spatially varying source term, Q(7, 6), in the differential
equation. The functional form of the source term in polar

Table 7-2-1 Parameter Values Used for the Code
Verification Example

coordinates is given in eq. (7-2-5). The convective bound- Input Parameter Value
ary conditions are specified with constant convection  Thermal conductivity (k = K) 5W/mK
coefficients, h, and h, and the convection temperature Convection coefficient, h, 200 W/m2K
calculated from egs. (7-2-10) and (7-2-8). Convection coefficient, h, 10 W/m?K
q,(, ) KM(r, 0)|,
T,(r, 0 =——F— M )= —————+ . S -
f o h, k h, (v O\ should be studied when possible, in a code verification
ST activity. As a demonstration, code verificatjon results
T (r] 0)] = 9, (r, 0) |sz + M, 0)| (7-2-13) are shown for the temperature at two locatiot|s, the inte-
” £ h, T, grated heat flux along surface s, (the output fised in the
KM (1, 0)|. A V'alidation study) and for the L, norin,of the tgmperature
4, [cos() + % tan(d6) sin(®)| + M (1, 0)),  field.
0 . L . ) ) Code verification using the“temperature at two loca-
Bepause the code. is solving in Carte.)smn coordinates (X, tj,nq on surface s, is considered first. The lofations are
y), the polar.coordmates for computing the source term near the midpoint of suzfade s, and have the (3} ) coordi-
and fonvection tgmperatures are calculated from stan- nates listed below:
dard|transformations. g y
r=q+ 2 Location 1: ~ %0.990131, 0.5044969
6 = tan-(y/x) (7-2-14) Location 2¢, “1.056862, 0.3433951
The differential equation defined in egs. (7-2-11) to Note that/the mesh sequence was defined| to have a
(7-2-13) is solved in a thermal analysis code [1]. This code, node-at both these locations in all four meghes. If the
and jmost commercial codes, uses an iterative method  mesh sequence is not defined with a node dt these lo-
(e.g.| conjugate gradient method) to solve a linear sys- _cations, the code output must be interpolategl from the
tem pf equations. The tolerance for the iterative method *modal solution to give the solution at the [prescribed
needk to be set appropriately for a verification study. Thet locations. Comparison with the analytical dolution in
tolerpnce should be set small enough so that the approxi#  this case will include mesh discretization |error and
matipn error in the linear system is less (2 to 3 prdérs  interpolation error. Generally, it is preferred to study
or mhpgnitude; see Section 2) than the error obtained by  the discretization error separately from the|interpola-
comparing the code’s solution to the analytical;solution.  tion error. As long as the dependence of the interpolation
If thg problem were nonlinear, the tolerance,for the non-  error on the discretization is of equal or higher|order than
linear solution would similarly need to be appropriately ~ the mesh discretization error, the two errors can be stud-
set. The tolerance for the linear solution was set to 1le-8  ied simultaneously. However, only the lowgr ordered
using a generalized minimum residual (GMRES) method  error will be observed in the code verification
in these calculations. Integrated code outputs are also of interdst in code
Fopur code solutions of egs.\(7:2-11) to (7-2-13) were ob-  verification. In this example the integrated| heat flux
taingd using the paramefervalues in Table 7-2-1 and the ~ along surface s, is considered. This output [is used in
meshes shown in Fig, 7-2-2. Code verification evaluates  the validation example. The code’s solutions ¢f the local
the efror through coparison of the code’s solutiontothe ~ temperature and the integrated heat flux fdr the four
analytical solutiofi in‘eq. (7-2-3). Code verification canbe ~ meshes are listed in Table 7-2-2 with details [of the ele-
perfermed for different code outputs. When verification =~ ment count in the meshes. The analytical soutions are

is bejng condficted as a precursor to validation the out-
put qlrsed invthe validation activity is of primary interest.

Other Godeé outputs could also be studied, and in general

listed at the bottom of Table 7-2-2. The analytical solu-
tion for the temperature is obtained from eq. (7-2-3). The
analytical solution of the integrated flux is optained by

Table 7-2-2 Code Verification Results

Total Number of

Temperature at

Temperature at Integrated Flux Along

Solution Elements Elements Along s, Loc1,°C Loc 2, °C s, W
Mesh 4 39 5 99.03772 100.96471 3.126 e-3
Mesh 3 173 10 99.05491 100.94549 6.123 e-4
Mesh 2 690 20 99.05954 100.94048 6.903 e-5
Mesh 1 2,769 40 99.06078 100.93926 1.571e-5
Analytical 99.0611593 100.9388433 0.0
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integrating the analytical expression for the normal flux
in eq. (7-2-8) along surface s,.
The error in the code’s solution is defined as

E, = flh) — foact (7-2-15)

where
feet = analytical solution
f(h) = code solution for that mesh
h = characteristic mesh size

like tempefature at selected locations or integrals of out-
puts. Norms of the error are also of interest, as theoretical
proofs of fhe error’s dependence on mesh are typically
in terms of norms of the error [2]. For example, the L,
norm is th¢ integral of the error over the problem domain

(A).

1
13 = 4| EMA,

0 Ao

(7-2-16)

Other grror measures are the H, semi-norm that
integrates fhe error in the gradient and L norm that is the
maximum/|error over the domain [2]. As an example, the
L, norm off the temperature is evaluated in this example.
To evaluafe the norm the error is integrated over the
domain. (fauss-quadrature has been used to calculate
the L, north here. Other numerical approximations could
be used, bjut the approximation error in evaluating the
integral shiould be relatively small compared to E,.

The dependence of the error on a characteristic mesh
size is studied. The characteristic mesh size in this study
is taken ag the edge length for an average element area
(for this two-dimensional problem)

N,

elements

24

elements

h= (7-2-17)

where

A, = the area of element i

The totdl area of the domain (A;) is 3.16 m?* for the
domain inf Fig. 7-2-1. Other chardacteristics of the mesh
are the dfagonal length aeross the element with the
maximum|area (volume.in'3-D) in the mesh [2].

The errdr in the code-solutions for local (point) tem-
peratures,|integrated: flux, and L, norm are listed in
Table 7-2-B as a. function of the mesh and character-
istics mesh size"All three code outputs demonstrate

convergence to the analytical solution. The errors
are decreasing monotonically as the code’s solution
converges to the analytical solution. The absolute value
of the error is plotted as a function of characteristic
mesh size in Fig. 7-2-3. The error (on log scale) in
Fig. 7-2-3 demonstrates approximately a linear depen-
dence on log(h) for all three code outputs considered.
As discussed in Section 2, for consistent numerical
solution methods (like finite element) on well-behaved
i ion i ically

proportional to #?, and
E, =flh) — f><=Ch + HO.T (7-p-18)

where

H.O.T = higher order terms

In addition to checking that the code is convergihg to
the correct solution, code verification checks the rdte of
convergence of the error. A reference line (Ch?) is plptted
in Fig. 7-2-3. The error in tetaperature at locations 1 gnd 2
and the L, norm are visually parallel to the referenc¢ line
(Ch?) indicating thesecerrors have a second order d¢pen-
dence on the mesh(size (h). The integrated flux appeqrs to
decrease at a higher rate than second order (p = 2).

The observed order of convergence can be estinjated
from the error on any two meshes (see para. 2-4.1)

h

E
In||—

Eh
In(r,,)

pobs -

where

E, =E(h)

1, = h/h, withh <h,

The observed order of convergence is listed in Table -2-4.
In the table the observed order of convergence between
subsequent meshes from eq. (7-2-19) is listed in thq first
three rows. The coarsest mesh (mesh 4) may not be in the
asymptotic region for the local temperature; the higher
order terms (H.O.T) in eq. (7-2-18) may not be negligible
in comparison to the first-order term. Convergence |rates
involving Mesh 4 are slightly less than 2, but incredse to
values near 2 as the mesh is refined. The convergenc¢ rate
for the integrated flux along surface s, is slightly larger
than 2 for the results from meshes 3 and 4 and meshes 1
and 2. It is not clear why the rate increases to more than 3
for meshes 2 and 3. The errors are so small for this ljnear

Table 7-2-3 Error (Eh) in the Code Simulation During Mesh Refinement

Characteristic Refinement Temp Error at Temp Error at Integrated Flux L, Norm Temp
Mesh Mesh Size, h, m Factor, h,,/h, Loc 1, °C Loc 2, °C Error Along s, W Error, °C
4 0.2847 —2.343 e-2 2.586 e-2 3.126 e-3 3.175e-1
3 0.1352 2.11 —6.249 e-3 6.647 e-3 6.123 e-4 6.642 e-2
2 0.0677 2.00 —1.619e-3 1.636 e-3 6.903 e-5 1.717 e-2
1 0.0338 2.00 —3.793 e-4 4.167 e-4 1.571 e-5 4.366 e-3
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Fig. 7-2-3 Error as a Function of Characteristic Mesh Size
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fernately, the convergence rate for the sequence of
es can be estimated with standard regression on
bserved [log(h), log(E,)] data. The coefficients C and
L be estimated from eq. (7-2-18) while neglecting
br order terms. The observed convergence rate for
pur meshes using regression on the results from all
meshes is listed in the last row of Table 7-2-4. The
ved convergence rate is approximately two (seconid=

whe

) for the local temperature and L, temperaturenorm
estimated from the results with meshes 4 to"L.

code verification results support that fhie com-
putef code gives (at least) second order accuracy in the
localf temperature, the L, norm of temperature, and the
integrated flux along a surface. Note that this is a rela-
tively easy problem. Even for the coatsest discretization
4), the code is very accuraté. The numerical error
at lofations 1 and 2 is less_than' 0.026°C (out of 100°C)
and the L, norm of the erxor less than 0.32°C. In this case
of an unstructured refinement, the refinement factor is
not yniform over the domain. The characteristic size of
eachlelement in the\coarse mesh is not uniformly halved
when the element is refined to produce the subsequent
mesh). However, the numerical error convergences in a
mongptonicand consistent manner and convergence rates

The results haye(established that the com
is verified to (atleast) second order accuracy
temperature;d., norm of the temperature, and
flux along a/surface. An additional step can |
confirn that code is converging at an observe
that:rate is correct. The additional step inv
paring the observed convergence rate to the §
convergence rate, with the objective being t
that code is free of coding mistakes (for the co
tested in the verification problem). The diffi
identifying the anticipated rate. Under certain
the convergence rate for selected error meast
theoretically determined. For example, the cg
rates for various norms of the error with a fin
method can be theoretically derived [2]. Th
cal convergence rates, however, are derived
fied cases, typically linear differential equatig
norm-based error measures. In the absence of
convergence rates, judgment is required. Ba
numerical algorithms in the code there may b
tation for the order of a code output. If code ¥
indicates the observed order is less than exp
the results should be communicated to the cod
ers.

For the code verification results obtain

buter code
n the local
integrated
e taken to
d rate and
lves com-
nticipated
b establish
He features
culty is in
conditions
Ires can be
nvergence
te element
e theoreti-
for simpli-
ns and for
theoretical
bed on the
b an expec-
rerification
bcted, then
e develop-

bd in this

study, the L, norm of the temperature cafj be theo-

baseql on:an average refinement factor do not appear to  retically shown to be second order, and th¢ observed
be affected: COTTVETZETICT Tatecorfirmrs-thatsecordorde accuracy
Table 7-2-4 Observed Order of Convergence (p°>*) From Mesh Refinement
Meshes Temperature at Loc 1 Temperature at Loc 2 Integrated Flux on s, L, Norm of Temperature
3and 4 1.77 1.82 2.19 2.10
2and3 1.96 2.03 3.16 1.96
land2 2.07 1.97 2.13 1.97
All (1 to 4) 1.93 1.94 2.55 2.01
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is obtained. There is not a known theoretical basis
for the convergence rates of the local temperature or
the integrated surface heat flux (for a finite element
method). Given that both outputs demonstrate sec-
ond order convergence, there is little concern that
a code mistake may be degrading the (order of) ac-
curacy of the code. If, however, the convergence
rate of local temperature was first order, further
investigation may be warranted to understand why
first order convergence was obtained. Paragraph

the experimental data is also estimated in this Section.
The model is discussed in para. 7-3.3, including the ef-
fects of uncertainty in the model input parameters and
solution verification. The validation uncertainty and
interpretation of the comparison are discussed in para.
7-3.4. Both propagation equation and Monte Carlo ap-
proaches are applied for computing the validation
uncertainty. Paragraphs 7-3.2 through 7-3.4 apply the
validation approach of this document from begin-
ning to end on the example problem, In para, 7-3.5 the

2-3.3.3 prpvides additional discussion on possible
causes for[lower than expected convergence rates.

7-3 VAL|DATION EXAMPLE

In this pection, the validation procedure presented
in this dgcument is demonstrated through its appli-
cation to fin example problem. The example involves
quantifyinig the accuracy of a model to predict the heat
transfer rdte in a fin-tube heat exchanger. Each aspect
of the validation procedure is demonstrated. The steps
in the progedure are demonstrated with the example of
this Sectiop for

(a) estimating uncertainty in experimental data

(b) estilr']:ating uncertainty for the numerical error in a
simulation| (solution verification)

(c) estimpating uncertainty in the simulation due to
input parameter uncertainty

(d) evalpating the validation uncertainty

(e) interpreting the validation comparison

True valjdation requires experimental data. However,
the example validation exercise presented here uses-syn-
thetic dataf for good reason. The validation procediire is
presented [without ambiguities, clearly described with
controlled[sources of error, and the parameters can be
manipulatpd to elucidate behavior of inferest.

The renfainder of this Section provides an overview
of the exarpple problem. The expetfimeéntal configuration
and meastired experimental data/for validation of the
model arel described in the para. 7-3.2. Uncertainty in

T

Fig. 7-3-1 Schematic of Fin-Tube Heat Exchanger Assembly

assessment of a second simulation model is surhma-
rized. The second model has been updated te_inqlude
additional physics that the first model didnot include.
Model updating is not considered part of the validation
approach. However, if additional information becpmes
available and an update to the model is proposed, the
validation procedure can be,repeated to asses§ the
updated model.

7-3.1 Validation Problem Overview

The objective of this exercise is the validatiop as-
sessment of a simulation model for predicting the[heat
transfer rate fromn’a horizontal fin-tube heat exchanger.
A schematic¢ of the fin-tube heat exchanger assembly is
shown intEig. 7-3-1. A heated fluid is circulated thrpugh
the tube, with attached fins. Heat from the flufjd is
exchanged with cooler ambient air surrounding the fin-
tube heat exchanger. The fluid flows with a volume|flow
rdte Q, enters with a bulk temperature of T, and exits at
a bulk temperature of T. The tube has a circular gpom-
etry defined by an inner radius (r,), outer radius (r,), and
length (L). The fins have a thickness w, and are equally
spaced along the length of the heat exchanger at 4 dis-
tance w, . The ambient air temperature is constant 4long
the length of the heat exchanger with value T_. Th¢ fins
are square in profile with an edge length of a.

A simulation model of the total heat transfer rqte is
compared to experimental data in the validation agsess-
ment. The total heat transfer rate is simulated with an
energy balance on the fluid and requires numerjcally

A

Wf—>

Tube

6/2

|
Y
__TO
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solving the partial differential equation for linear steady
heat conduction with convective boundary conditions.
Total heat transfer rate in the experiment is calculated
from measurements of the fluid flow rate and bulk
fluid temperatures at the inlet and outlet through a data
reduction equation.

7-3.2 Experimental Data

The experimental data are based on a fin-tube heat
exchfger wi
heat¢d water as the working fluid. Synthetic experimen-
tal data are generated based on the materials, dimensions,
and hominal settings listed in Table 7-3-1. The synthetic
procgss to generate the experimental data represents
building an experimental apparatus and conducting the
expefiments.

A guite of 10 repeat experiments is conducted on a sin-
gle fin-tube heat exchanger. In each experiment the bulk
fluid| temperatures at the inlet and outlet, the volume
flow|rate, and ambient air temperature are measured.
The pmbient air temperature, while not needed to ex-
perithentally calculate the total heat transfer rate in the
experiment, is needed to simulate the total heat trans-
fer rate with the model. It is important that the modeler
cominunicate with the experimentalist to ensure that all
COHII tions necessary for modeling the experiment are
meagured (such as the ambient temperature). The total

heat transfer rate in the experiment can be calculated as
9, = pQC,(T,~ T) (7381
whete
C = specific heat
(5 = volume flow rate
= overall heat transfer rate, W
(T|- T ) = bulk fluid temperatures«drop along the heat

exchanger
p = density of the fluid
The measured data for the suite of 10 experiments and
the dalculated total heattransfer rate in the experiment

Table 7-3-1 Deétails of the Fin-Tube Assembly
and Flow Conditions

are given in Table 7-3-2. The average of the measurement
over the 10 experiments is given in the last row of Table
7-3-2.

There is variation in the measurements and total
heat transfer rate derived from the 10 experiments in
Table 7-3-2. The experiments were (synthetically) run
on the same fin-tube heat exchanger. Thus, no varia-
tion is due to changes in the heat exchanger materials
or geometry. The variation is due to

(b) random measurement error

The 10 experiments had nominally identical flow con-
ditions. However, the driving flow céndition, the inlet
fluid temperature, volume flow rate)and ambient tem-
perature, are replicated betweenyexperiments fo the accu-
racy that they are controlled and'measured. Fdr example,
the inlet temperature was specified to be nomihally 70°C.
The true inlet temperatufe’for one experim
70.1°C. The measured.inlet temperature is
measurement errof_lir validation applicationd where the
driving conditionis vary due to lack of repeatalpility of the
experiment,#hisvariation can be accounted f¢r by using
the measufed driving conditions of the experiment in the
model. If{the experimental conditions can be|effectively
replicated (i.e., the same driving conditions fqr repeated
experiments), the effect of the random contribiition to the
nieasurement error can be reduced by avergging over
multiple experiments.

Several measurements are used to compute tHe total heat
transfer rate and all measurements have an asspciated un-
certainty. Uncertainty estimates for measurements may be
obtained from the manufacturer’s specifications|or through
device calibration. For physical properties, such} as density
and specific heat of water, judgment may be reqpired. With
uncertainty estimates for the random and syst¢matic con-
tributions to the measurement uncertainty, the yincertainty
in the total heat transfer rate can be estimated| Estimates
of the experimental standard uncertainties are provided in
Table 7-3-3. The bulk fluid temperatures and [volumetric
flow rate have random and systematic uncertajnties asso-
ciated with the measurements. The sensors for|measuring
the bulk fluid inlet and outlet temperatures havp been cali-
brated to provide the accuracy listed in the table. Further-
more, the calibration was performed to the sanfe standard
for the inlet and outlet bulk fluid temperature $ensors. By
calibrating with same standard, the systemati¢ errors for
the inlet and outlet fluid temperature are idehtical (per-

Materral Value
Interrtl fluid Water

Tube material Copper

Fin material Aluminum
Tube inner radius, r;, m 1.03e-2
Tube outer radius, r,, m 1.11e-2

Fin edge length, a, m 5.40e-2

Fin thickness, w, m 2.54e-4

Fin spacing, w,,m 4.8e-3
Number ofﬁns N 500

Length, L, m 2.54
Volume flow rate, Q(m?3/s) 6.34e-6 (nominal)
Fluid inlet temperature, T, °C 70 (nominal)
Ambient temperature, T, °C 22 (nominal)
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fectly correlated). In this case, the covariance of the system-
atic uncertainty [i.e, b, in the propagation equation shown
in eq. (7-3-2)], for the inlet and outlet bulk fluid tempera-
tures is the product of the systematic uncertainties, b, of the
two measurements. The other systematic uncertainties are
uncorrelated, b, = 0. Properties of water are taken from a
database [3] and estimated to have standard uncertainties
of 0.5% and 1% for density and specific heat. Uncertainties
in the dimensions of the physical hardware are considered
to be negligible.
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Table 7-3-2 Measured Flow Conditions and Calculated Total Heat Transfer Rate

Experiment p, kg/m? Q, m’/s Cp, J/kg°C T,°C T,°C T_,°C q, W
1 990 6.21 e-06 4,180 70.09 67.21 21.66 74.0
2 990 6.24 e-06 4,180 70.14 67.22 22.31 75.4
3 990 6.21 e-06 4,180 70.09 67.17 22.02 75.0
4 990 6.24 e-06 4,180 70.01 67.25 22.14 71.3
5 990 6.22 e-06 4,180 70.12 67.29 21.99 72.8
6 990 6.25e-06 4,180 70.02 67.04 22.10 77.1
7 990 6.22 e-06 4,180 70.19 67.11 21.88 79.3
8 - e SERR - i SR 72.2
9 990 6.23 e-06 4,180 70.17 67.25 22.08 V5.3
10 990 6.26 e-06 4,180 70.17 67.23 22.11 V6.2
Average 990 6.23e-06 4,180 70.10 67.20 22.02 V4.9
7-3.2.1 Experimental Uncertainty, u,. The effect of For the simple data reduction equation in eq. (7-3-1f), the
uncertainty in the values used to calculate the total heat partial derivatives needed in eqs. (Z-8-2) and (7-3-3) cfin be
transfer rate from eq. (7-3-1) can be estimated with the  analytically derived (other appréaches for obtaining partial
propagatiqn equation. The approach to estimate experi-  derivatives for more complexeases are discussed in Sqction
mental unfertainty in the total heat transfer rate due to  3). The sensitivities of the, tofal heat transfer rate to egch of
uncertainty in the measurements used to compute it is the five inputs needed to calculate it are as follows.
presented |n Section 4. The propagation equation for sys- 04"~ c
tematic unjcertainties is OT PQ »
] , J-1 ] FYN
b+ > (% bl +> > 9y 9p b, (7-3-2) A - -pQC,
i\ aX, i=1k=i+1 90X, 9X ggo
where | 5 5 is the number of uncertain variables in —L2 = PCP(Ti -T) (73-4)
the experijmental data reduction equation. Terms for qu
independgnt and correlated systematic uncertainties 2= QCV(Ti -T)
are includpd in eq. (7-3-2) because the experiment has 59 p
correlated [systematic input uncertainty in the measured Mo _ pQ(T, — T)
bulk fluid femperatures. JC,
The propagation equation for random uncertainties-is As discussed in Section 3, multiplying the pprtial
. Lo (ag, \2 derivatives by the parameters to give scaled sensifivity
Sq, = E (_ SI) (7-3-3) coefficients is useful. Numerical values of the scaled sen-
i=1 E)X . cge = . . . .
) ] P sitivity coefficients are listed in Table 7-3-4, and fhese
The propagation equations require were computed using the average of measurements|over
(a) partial derivatives (sensitivity Coefficients) of the e 10 experiments (last row of Table 7-3-2). Because the
total heat fransfer rate with respecttq the measurements partial derivatives depend on the magnitude of the mea-
used to compute it surements, the magnitudes of the partial derivative$ will
) (b') estinmates of the randontand systematic uncertain-  yary between the experiments. However, given the $mall
ties in thoge measurements differences in the measurements between experimjents,
As discyssed later in/this Section, the effect of random 4}, magnitudes of the partial derivatives for pther
uncertainty on the total’heat transfer rate can also be experiments are within 1% of the values (evaluated|with

estimated firectly from the 10 experiments.

Table|7-3-3 Estimates of the Experimental

the average measurements) listed in Table 7-3-4.

Measurement Standard Uncertainties

Uncertainty (Standard)

Variable, X, Random, s, Systematic, b,
T,°C 0.05°C 0.1°C

T,°C 0.05°C 0.1°C

Q, m3/sec 0.5% 1.0%

p, kg/m? 0.5%
C,)/kg°C 1.0%

T_,°C 0.22°C

Table 7-3-4 Sensitivity Coefficients for
Average Conditions

X X;% Standard Uncertainty
X Random, s, Systematic, b,
T, 1,808, W 0.07 % 0.14 %
T, —-1,734, W 0.07 % 0.14 %
Q 74.9, W 0.5 % 1.0%
p 74.9, W 0.5 %
Cp 74.9,W 1.0 %
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The magnitudes of the scaled sensitivity coefficients
can be compared to identify the parameters that have the
largest impact on the total heat transfer rate. The inlet
and outlet fluid temperature are seen as the parameters
that have the largest scaled sensitivity coefficients and
hence will have the largest impact on the total heat trans-
fer rate.

The uncertainty in the total heat transfer rate derived
from the experiment can be estimated with eqs. (7-3-2)
and (7-3-3) using the partial derivatives and the uncer-

Table 7-3-5 Experimental Values of Total Heat
Transfer Rate and Its Standard Uncertainties

Experiment g, W s, W b ,W u = V;;_+ b; , w

74.0 Y
75.6
75.1
71.4
72.8
77.0

2.39 2.65

tainty estimates (repeated from Table 7-3-3) in Table 7-3-4.
[Notp that the uncertainty estimates are provided in rela-
tive magnitudes so that the propagation can be readily
evalflated with the scaled sensitivity coefficients. While
genefally not a good practice to provide uncertainty in
(nonpbsolute) temperature measurements in relative
, it is done here for convenience.]

random and systematic uncertainties in the

randpm contribution to the measurement uncertainty
can glso be estimated from the 10 experiments directly
instepd of using the propagation approach. The random
unceptainty is estimated as the standard deviation in
the fotal heat transfer rate from the 10 experiments.
The fandom contribution estimated from the variation
among the 10 experiments is shown near the middle
of Tgble 7-3-5. Estimating the random uncertainty di-
rectly from multiple experiments assumes that random
meagurement error is causing the variation between.the
expefiments. The random uncertainty estimated_from
the 10 experiments is about 30% larger than thé.random
unceftainty estimated from the propagation-equation.
The pystematic uncertainty can only be estimated with
the gropagation equation.

The random and systematic ,eontributions to the
unceftainty in the total heat transfer rate are listed

Fig. 7-3-2 ~Experimental Total Heat Transfer Rate and Its Standard Uncertainty, u,

79.3
72.1
75.1
0 76.2 4
Average 74.9

= 0 00 NNV B~ WN P

1.84 17

separately in Table 7-3-5. The uncertainty valugs are based
on using the sensitivity eoéfficients evaluated gt the aver-
age of the measurements over the 10 experimjents. If the
sensitivity coefficients‘are evaluated at the mgasurement
values of each experiment, the uncertainty valpies change

less than 1%, The overall uncertainty in the| measured
total heat transfer rate is
Uy = \s. + b2 (7-3-5)

The" measured total heat transfer rate with standard
unhcertainty limits of u, are plotted in Fig. 7-3;2. The un-
certainty in each experiment and the average of the 10
experiments (dash line) and its uncertainty arg shown in
the figure. The standard uncertainty on the g¢xperimen-
tally measured total heat transfer rate is appfoximately
3% and has a larger contribution from the rgndom un-
certainties than from the systematic uncertainfies. An ad-
ditional step could be taken to identify the parameters
that are the main contributors to the uncertainty in total
heat transfer rate using importance factors. Importance
factors are discussed in Nonmandatory Appendix B.

< il [ 4]
i ]
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7-3.3 Simulation 3 oT 3 oT 3 oT
. . . =k, — |+ = [k,— |+ =k, —| =0 tube
7-3.3.1 Simulation Model. The model to simulate the ax ( t ax) dy ( t 8}/) oz ( ! Bz)
total heat transfer rate from the fin-tube heat exchanger
is summarized here. Details of the model development (7-3-9)
are given in Mandatory Appendix I. The model of the
total heat transfer from the fin-tube heat exchanger is 3 an 3 an 3 an
b TR N
95 = pQC, (T, = T,) [exp (ﬁ) —-1| (7-3-6) dx\’ ox/ ody\ 9y odz\’ oz
P The thermal properties and convection coefficient are
where constant Perfectcormtactis illlpUbed attheimterfaceof the
A, = wetted area of the tube’s inner surface (A, = 27r,L) tube and fin
C, = spgcific heat aT, aT,
_k b = -k 2
Q = volume flow rate Loar b e (7-B-10)
g, = overall heat transfer rate, W _ .
T = bulk fluid temperature at the outlet T(r,0) = Tfr2,6)
T, = ambient air temperature Boundary conditions are applied at the inner sufrface
U, = aally averaged overall heat transfer coefficient of the tube and at outer the edge/of the fin. The bourjdary
p = density of the fluid condition form at the inner Sutface of the tube is
The axidlly averaged overall heat transfer coefficient
is computpd from the heat transfer coefficients on the —k % = [T, - T (r,0)] (7-B-11)
finned (subscript f) and unfinned (subscript nf) portions Corkn T
of the tube where
_ Uw,+U ,w r, = inner radius'of the tube
o, = (7-37) T, =bulk fltid
1 w + w = bulk fluid temperature
foo 6 = traditional polar coordinate for cylindrical geonjetry
The expfession for the overall heat transfer coefficients )
through the unfinned region of the heat exchanger is The front and bac.:k su.rfac:es of the fin (s) fhave
i 738) conyection to the ambient air.
u, = -3- T
1, ninG/m) —ka‘ = h(T,|s,— T) (7-b-12)
h, 2k, h,r, on i
In eq. (7}3-8), h, and h, are the convective heat transfer
coefficient$ on the inside and outside of the bare tube,
respectively, k, is the thermal conductivity of the tube, Fig. 7-3-3 Heat Transfer Model for the
and r, and| 7, are the inner and outer radius of the tube, Fin-Tube Assembly
respectively. The heat transfer coefficienton the unfinned
region (U} ) is calculated with the thérmal properties
and dimensions of the tube and_convection coefficients St
on the insjde and outside of the.tube. Convection coef-
ficients ard estimated based on‘empirical correlations for Front and back
flow in a pipe and naturallconvection from a horizontal surface of fin
cylinder. o7 |
The ovefall heat transfer coefficient for the finned re- Py 0 - ]
gion (U,) Js calculated by solving for the heat trans- _\
fer through arsection of the fin-tube heat exchanger. (g, vi)
The heat [tfansfer model for the finned region of Ein ——
the heat exchanger is shown Il Fig. 7-3-3. Symine-
try is applied so that one-eighth of the cross section Tube
is modeled. The model is three-dimensional with a
single element through the thickness of the fin and
tube.’ The partial differential equation for steady i
heat conduction is numerically solved over the cross |
section. (r, 0 [ ] |
[T T 1]
10 An equivalent two-dimensional model of the heat transfer could aa—: =0

also be developed for the configuration.
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The form of the boundary condition at the edge of the
finis
LT

P on oy w N hf [Tf (xb’ yh) -T]

(7-3-13)

where
n = outward normal at this surface
(x, y,) = boundary surface of the fin (fin edge opposite
the tube)
Adjiabatic conditions are applied along the lines of

in the experiment are applied in the model. The uncertain-
ties assigned in the example are realistic, but should not be
taken as universally applicable to other situations.

The simulation value for the total heat transfer rate is
calculated as follows. The two-dimensional heat transfer
in a fin-tube section, defined by egs. (7-3-9) to (7-3-13),
is solved, and the overall heat transfer coefficient for the
finned region of the heat exchanger, U,, is calculated with
eq. (7-3-14). This solution is done in a ﬁmte element code
’rha’r directly computes the integral of the flux in eq. (7-3-

symmnl—vy
The heat flux over the inner surface of the tube is
integrated to calculate the overall heat transfer coefficient.

u-—*4
' 'n'(Tﬂ -T)0"

The model for simulating the heat transfer rate
requjres 10 parameters for eqs. (7-3-6) to (7-3-14). The
valug¢s and standard uncertainty for parameters used
in thp simulations are listed in Table 7-3-6, and all other
paraneters (associated with the geometry) are held con-
stanff with no uncertainty. Thermal conductivities of the
tube|and fin are taken from database values for copper
and pluminum [3]. Uncertainty (systematic) in the ther-
mal ¢onductivities is assigned a 5% standard uncertainty.
Conyection coefficients are estimated for the conditions
of infernal flow in a pipe and for natural convection from
a cylinder and fin. Convection coefficients are assigned
a 10fo standard uncertainty. The ambient temperature,
fluid| temperature (taken as the inlet bulk fluid teng=
perafure), and flow rate are measured in the experiment
(valges are given in Table 7-3-2). Uncertainties iri.these
paraneters are assigned from the measuremeft uncer-
tainty in Table 7-3-3. Density and specific.heat of water
are taken from database values. The same valtes and stan-
dardjuncertainties for computing the total heat transfer rate

W[T, = T(r, 0)]d0 (7-3-14)

Taljle 7-3-6 Simulation Model Input Parameters

and Standard Uncertainties

Uncertainty (Standard)

14). The overall heat transfer coefficient on(thf unfinned
region of the heat exchanger, U . , is calculat¢d with eq.
(7-3-8). The overall heat transfer coeff1c1ents gre used in
eq. (7-3-7) to calculate the axially dveraged operall heat
transfer coefficient and the simulatéd value ¢f the total
heat transfer rate is calculated from eq. (7-3-6)

7-3.3.2 Simulation Results. Ten experinjents were
conducted in this validation activity. Simulafion results
could be generated for€ach experiment, or a representative
simulation could-be generated for the set of experiments.
Deciding whdt simulation results are needed d¢pends on
(a) what is*varying in the experiments and what im-
pact doésthe variation have on the model
(b) ‘what is feasible given the computationpl expense
of the'simulation
The experimental outcome may vary due fo random
measurement error, variation in the driving conditions of
the experiment, and variation in the physical hardware
(e.g., experiments conducted on different phyfsical hard-
ware). In this example, only the first two sotirces exist.
As a demonstration, two approaches are congidered for
simulating the experiments. First, a simulation is gener-
ated using the measurements from each experjment. Sec-
ond, a single simulation is generated using the average
of the measurements from each experiment. Additional
comments are provided below on the issue.
In experimental applications where the iritiating or
driving conditions vary due to lack of repeatpbility, but
these conditions can be measured, each experfment may
be simulated using the measured conditions. pimulating
each experiment at the measured conditions gligns each
simulation with each experiment. This may ot always
be feasible given the computation expense gr may not
be needed. In some cases, the variation in the driving
experimental conditions may have negligible|impact on
the simulation. The sensitivity to the experimental condi-

Paranjeter Value Random, s,  Systematic, b,
k,(W/m °C) 386 5%
kf W/m 0 204 5%
h, (Wm> Q) 150 10%
h, (W m22€) 6 +6%
h,(W/m?°C) 6 10%
7.(0 Measured 1%
T, (| Measured, T, 0.05°C 0.1°C
Q (m3/ sec) Measured 0.5% 1.0%
p(kg/m?) 990 0.5%
C,(J/kg Q) 4,180 1%
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tions can be studied by running the simulation at bound-
ing values of the experimental conditions or through an
uncertainty analysis.

The simulation values of the total heat transfer rate are
listed in the second column of Table 7-3-7 for individually
simulating each experiment in the suite of experiments.
In addition, the simulation using the average measured
conditions is shown in the last row. In this case, noting
that the variation among the individual simulations of
total heat transfer rate is small, it is concluded that the
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Table 7-3-7 Simulation Values of Total Heat

Table 7-3-8 Solution Verification Results for Total

Transfer Rate Heat Transfer Rate
Experiment q,W Mesh h-Tube (Relative)  h-Fin (Relative) q, W
1 97.9 1 0.125 0.119 97.89981
2 96.7 2 0.25 0.239 97.89765
3 97.2 3 0.5 0.477 97.88894
4 96.8 4 1 1 97.85440
5 97.3
6 96.9
7 577 Transter rate had a MONOTONIC dependence On the chjarac-
8 7.1 teristic mesh size. The procedure outlined in para. 2.1 is
9 97.2 . . . .
10 97.2 applied to estimate the numerical uncertainty\The piroce-
Average 97.2 dure uses a sequence of three meshes. The.nurhericgl un-

variation ip the experimental conditions that are input to
the model jhad a small effect on the simulation.

7-3.3.3 |Solution Verification, u . The simulated
total heat tfansfer rate has a dependence on the mesh used
in solving for the heat transfer in the fin-tube cross section.
All simulations were run with the mesh shown in Fig. 7-3-
3. This megh was the second mesh from a series of meshes
generated [for the simulation. The series started with a
coarse mesh and approximately doubled the mesh density
three timeq in an unstructured manner to create the series
of four meghes. The series of meshes is used to estimate the
numerical uncertainty in the simulated heat transfer rate.
The numetical error could have been estimated prior ¢@
selecting a|mesh to simulate the experiments. In this man-
ner, the meph required for a numerical uncertainty thatas
negligible Jompared to other uncertainties (e.g., expéerimen-
tal uncertainty or input parameter uncertaintyy) could be se-
lected. If nfimerical uncertainty is to be madesmall relative
to the unceftainty due to input parameter tmcertainty, some
iteration mpy be required to select the réquired mesh. This
is because g mesh is needed to evaltiate the uncertainty due
to input pafameter uncertainty:

The appjroach described in\subsection 2-4 for solution
verificatiof is used to estimate an uncertainty for the
numerical [error. The ‘simulation was run for the mesh
series that[successively refined the finite element mesh.
The refinegl mesh sequence doubled the mesh density in
the tube ahd approximately doubled the mesh density
in the fin.|The simulation was run for each of the four

certainty is estimated with two sequences)of three meshes
from the four meshes. First, uncertaintyis estimated fising
the sequence of meshes from Mesh 2 (fine) to Mg¢sh 4
(coarse). Then, the estimates aré-calculated using the se-
quence from Mesh 1 (fine) teMesh 3 (coarse). With fhese
two sequences the constariey) of the convergence ratf can
be checked.

The results of the(solution verification are list¢d in
Table 7-3-9. The otder of convergence is listed in th¢ sec-
ond column, representative error estimates are listpd in
columns three ‘and four, and the numerical uncertpinty
estimate from the Grid Convergence Index (GCI) is listed
in the final column. The observed order of convergence
is 2 for both mesh sequences. The relative differencgs are
order 10 or smaller. The GCI is order of 10 and 10 for
the two mesh sequences. From eq. (2-4-12), the dimen-
sional numerical uncertainty estimate, u__, is relatpd to
the dimensionless GCI as

num’

21
= CCline (7-B-15)

num S

where the dimensional scaling value g, = 97.2 W is faken
as the simulation of the total heat transfer rate aft the
average conditions. The magnitude of u__is given in the
final column of Table 7-3-9.

Mesh 3 was used to generate the simulation results in
the previous section. The numerical error estimate [from
the first mesh sequence (in Table 7-3-9) is applicable for
Mesh 3. The magnitude of the numerical uncertpinty
could be argued as negligible given the magnitude ¢f the
experimental uncertainty. The numerical uncertairjty is
over an order of magnitude smaller than the experimental
uncertainty. For completeness, the numerical uncertpinty
value is included in the remainder of the analysis.

meshes. The relative characteristic mesh size in the tube
and fin and the simulated heat transfer rate are listed in
Table 7-3-8. The average element edge length is selected
as the characteristic mesh size. This mesh characteristic
is halved as the mesh is refined in the tube and approxi-
mately halved in the fin. The characteristic mesh size for
the combined fin-tube assembly is within round-off of
the characteristic mesh size for the fin.

The simulated total heat transfer rate as the mesh was
refined is plotted in Fig. 7-3-4. The simulated total heat

7-3.3.4 Simulation Input Parameter Uncertainty,
u,,» The parameters required to simulate the total heat
transfer have uncertainty in their values. Estimates of
the standard uncertainty in the parameter values are
provided in Table 7-3-6. Both random and systematic
uncertainties are present. The effect of uncertainty in the
values used to simulate the total heat transfer rate can be
estimated with the propagation equation. The approach
discussed in Section 3 is applied to estimate the effect of
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Fig. 7-3-4 Mesh Refinement Study for Solution Verification
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inpu} parameter uncertainty. The propagation equation
for systematic uncertainties is
.\
=2 (—5 bi) (7-3-16)
=1\ 0X
The propagation equation for random uncertainties is
s2= i (% s.)2
REEET I ) O
The propagation equation requires partial derivatives
of the simulated total heat transfer rate with-respect to
the yncertain parameters. These partial derivatives are
calcylated with a second order central.finite difference

(7-3-17)

apprpximation.
7 X + 6X) — g(X)*= 86X
N _ 94X, )~ A& ) (7-3-18)
X, 26X

The simulation is run while individually perturbing
each|parameter to approximate the gradients. The central
diffefence approximationi requires a positive and nega-
tive perturbation in.éach parameter. The total number of
additional simulations needed for this approximation is
2 tims the ndmber of parameters. Alternatively, a forward
or backwatd difference could have been used and required
one—r]L\alf as/many additional simulation. The advantage of
a central difference approximation is that

h-relative

Although not shown in the document, thq total heat
transfer was closely approximated as linea with re-
spectto’ the parameters over the range of thp standard
uncertainty. The values at the nominal, forwgrd pertur-
bation, and backward perturbation were plotted for each
parameter, and adherence to a linear relatiopship over
the three values was observed. The magnitudg¢ of the pa-
rameter perturbation was equal to the standard uncer-
tainty in each parameter. This gives an approjimation to
the partial derivative over the range of the standard un-
certainty. If the heat transfer rate is approximgtely linear,
the partial derivative is independent of the [parameter
perturbation magnitude.

The partial derivatives (sensitivity coefficiefits), which
are computed using a central difference apprpximation,
are listed in Table 7-3-10. The derivatives are| evaluated
using the average measured input conditjons (inlet
temperature, flow rate, ambient temperaturg) over the
10 experiments. The simulation partial deriyatives do
vary with experiment because the input varfables vary
between experiments. The variation in inpuf variables,
which is due to the measured inputs used ir| the simu-
lation, is not significant, and partial derivatiyes for the
average measured conditions are representatiye of those
for the individual pxpprimpnk If the variatidn in simu-

(a) itis a second order approximation
(b) the linearity of the simulation (in parameter space)
can be checked

lating the separate experiments is significant, the partial
derivatives may need to be computed separately for the
simulation of each experiment.

Table 7-3-9 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer Rate

Mesh Sequence p(observed) e, % esn% GClir. % u, W
Mesh 2 to Mesh 4 1.99 3.530e-4 4.718 e-4 1.416 e-3 0.07
Mesh 1 to Mesh 3 2.01 8.898 e-5 1.183 e-4 3.550 e-4 0.02
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Table 7-3-10 Partial Derivatives of the Total
Heat Transfer Rate for the Simulation Model With
Respect to Uncertain Model Inputs for the Average
of Measured Experimental Conditions and Standard
Uncertainty for the Inputs

Uncertainty (Standard)

The standard uncertainty in the total heat transfer
rate due to input parameter uncertainty is approxi-
mately 6.6%. The contribution of each parameter to the
uncertainty in the simulation can be identified with im-
portance factors. Importance factors are discussed in
Nonmandatory Appendix B. Importance factors indicate

buter

s of

X aq, W that the convection coefficients on the inner surface of
X, o’ Random, s, Systematic, b, the tube (%,) and outer surface (h,) account for 99% of the
k W/m"0) 0.015 % simulated systematic uncertainty in the totf’ﬂ heat trans-
k.(W/m °C) 645 59 fer rate. The convection coefficient on the inner surface
hfl (W/m2°C) 48.21 10% accounts for about 57%, and the coefficient on thie
h, (W/m2°C) 41.16 10% surface accounts for about 42%.
h,W/m?"C) 3.77 10%
T_(0 -44.53 1% 7-3.4 Assessing the Validation Comparison
T.(°C 141.72 0.07 % 0.14% . . . . .
2 () At this point in the analysis, the magnituds
Q (m*/ sec) 3.91 0.5% 1.0% difference between the simulation and experimental
p (kg/m?) 3.91 0.5% measurements are known
¢, (J/kg"0) 3.91 1%

The stappdard uncertainty in the parameters for the
simulation| is propagated through the simulation model
with egs. {7-3-16) and (7-3-17) using the partial deriva-
tives and [input parameter uncertainty in Table 7-3-10.
(Note that|these standard uncertainties are the same as
the valueq listed in Table 7-3-6 and repeated here for
convenienge.) The random contribution to the uncertainty
can be estimated by propagation through the model or in
the case that a simulation is computed for each experi-
ment by gstimating the standard deviation among the
10 experinjents as was discussed for the experimental un*
inty il para. 7-3.2.1.
itudes of the random and systematic(standard
ffes in the simulation of total heat transfer rate are
bottom of Table 7-3-11 from the‘propagation
approach. [f a single simulation at the average conditions
and its uncprtainty due to uncertain inptits were estimated,
the values|at the bottom of the table-would be obtained.
If, howeve}, a simulation were/generated for each experi-
ment, the random contributionto6 the uncertainty could be
estimated from the uncertainty in the 10 simulations. The
random uncertainty listed for the individual experiments
is the stanglard deviatioh among the simulated total heat
transfer of the 10 éxpériments.

The effdct ¢f-random uncertainty is relatively small
compared [to\the systematic uncertainty. The uncertainty

E=S-D=9q,—q, (7-B-20)

The validation uncertainty 1, is an estimate of the[stan-
dard deviation of the parent population of the combination
of all errors exceptthe modeling error in S and D. Starjdard
uncertainty compenents u, u. ., and u, that combine to
give u _ havebeen estimated. If the uncertainties in tHe ex-
periment‘dnd simulation are effectively independent, then
combining the uncertainties is simple.

— 2 2 2
uval - \/uD + uinput + Unum

(7-B-21)

However, in this example the uncertainties in thie ex-
periment and simulation are not independent. The rgason
that the uncertainties are not independent is discussed in
the following section where the approach for comptiting
u_,is presented.

7-3.4.1 Propagation Approach for Evaluating the Valida-
tion Uncertainty, v . The simulation and experimjental
uncertainties are not independent because parameteys are

common between the simulation and experiment.| This

Table 7-3-11 Simulation Values of Total HeIt
Transfer Rate and Its Standard Uncertainty Fr¢gm
Input Parameter Uncertainty

Uncertainty (Standard)
w

b ,W ul

Experiment q, W s o

gs’ nput?

due to model input uncertainty is computed by combin-
ing the random and systematic contributions.

\sqzs+b;5

The simulation of the total heat transfer rate and
the uncertainty in the simulation due to model input
uncertainty is shown in Fig. 7-3-5. The uncertainty in the
simulation of each experiment and the uncertainty in
the simulation using average inputs from the 10
experiments (dashed line) and its uncertainty are shown.

u =

input

(7-3-19)
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Fig. 7-3-5 Simulation Values of Total Heat Transfer Rate and Its Uncertainty, u
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s that the simulation and experiment share identi-
rror sources. The uncertain experimental variables
7-3-3) and uncertain simulation input variables
b 7-3-6) contain several common uncertain variables.
Incertain parameters that impact the difference E &
are listed in Table 7-3-12. The second column identifies

whether the (uncertain) parameter affects the simtilation

),
eters
ume
fluid
the ¢
and

late 1
val

exprd

2
Uyl T

gxperiment (D), or both (D and S). Uncertiih-param-

that impact both are inlet bulk fluid temiperature, vol-
flow rate, density of the fluid, and specific heat of the
For cases with common shared identical error source,
ropagation equations for the simulation uncertainty
bxperimental uncertainty mist;be combined to calcu-
. This example is Case 37in Section 5 and the general
ssion for computing u( is given in para. 5-3.2.1.

(oo Gt (G0l

Ug

+

£ (%\2”2 + {% \uz aqs

Exponential Number

2

"”’j (%) [ %95\ _ [%0)],
T, aTI aTo,D (aTo,D)
The general expression has been simplified
ample. Contact conductance () and viscosity
included in the simulation. Also, uncertainties
with the geometry (d,, d,, L, a, w, and w, ) are

After removing terms associated with these p
eq. (7-3-22) can be simplified.

() -2
ap ap aQ aQ

T:Tn,l

P

J J 2 9 9 2

" 15\ _ [%p uE - 95\ (99, u? +
ac,| \oC, ©o|T) \eT)|
ag.\? a9g.\? g \2 90\2

T [Hs h"‘&uzi‘f‘iuf-f-&ukz—}
6}11 1 ah ) 8hf i kl £

a9, \?
+ (D) Up A+ Um

(7-3-22)

for this ex-
(w) are not
associated
neglected.
arameters,

(7-3-23)

Bl

R« B Bl

Vo | = o |7 \ah } -
d aq.\? d d
P90 2+ (20" 4 (29 2+ (22
oh, ah, ok, ok,
9 a9g.\? 9g.\? d
+ oag* dz+&u§+(i)uf+(i)ua2
ad ad oL da
9 g, \? aq. \2
+ & ufv + s ”5v,,, + o uT + unum
B aw,, aT, ,
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There are several notable issues concerning eq. (7-3-23).
The first four terms and the last term in eq. (7-3-23) rep-
resent the contribution from uncertain parameters
that impact both the simulation and experimental

values of the total heat transfer rate. The co
of these parameters to u , depends on the

ntribution
difference

in the partial derivatives from the simulation and ex-
periment (squared). The uncertain parameters that
only impact the simulation are included in term five
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Table 7-3-12 Parameters Included in Evaluating u_, Parameter Standard Uncertainty Estimates, and
Parameter Sensitivity Coefficients
Standard Uncertainty Scaled Sensitivity Coefficients
. 3q, 3g;
Parameter Impact Random, s, Systematic, b, Total, u; X—W —, W
X, X,
7.CO DandS 0.07% 0.14% 0.16% 1808 141.72
7.0 D 0.07% 0.14% 0.16% —1734
Q(m?/s) DandS 0.5% 1.0% 1.12% 74.9 3.91
p(kg/m3) D andS 0. 5% 3.59 Z4.Q 3.91
Cp(]/kg ‘0 DandS 1.0% 1.0% 74.9 3.91
k,(W/m Q) s 5% 5% 0.015
kf (W/m °C) S 5% 5% 0.19
h, (W/m?°C) S 10% 10% 48.21
h, (W/m2°C) S 10% 10% 41.16
hf(W/mZ °0) S 10% 10% 3.77
T.(C0O S 1% 1% —44.53
through t¢n. The fourth line has a term for the uncer- In this example, though-the simulation and thg ex-
tain paratheter that impacts the experiment and the  periment have shared<error sources, the magnitugle of
numericall uncertainty. The final term of the equation  u_ is negligibly different from the values obtained [from
accounts for correlated bias errors between the input assuming independence and using eq. (7-3-21).|This
and outpitt fluid temperatures that impact both the  outcome depénds’on
simulation and experiment. (7) the magnitude of the difference in the sgaled
The parpmeter uncertainties and parameter sensitiv-  sensitivitjcoefficients in the simulation and experiment
ity coefficints (from Table 7-3-4 and Table 7-3-10) for the  for the SHared parameters
simulatior] and experiment that are required for evalu- (b)™he relative importance of the shared parametgrs to
ating u_ qre listed in Table 7-3-12. (Note that relative  the uncertainty in the simulation and experiment
uncertaint]es should be used with the scaled sensitivity This outcome is problem specific and other prollems
coefficients.) could have a larger difference.
The resylts listed in Table 7-3-13 summarize the {otat
heat transfer from the experiment and its uncertainty,the
simulatior} result and its uncertainty from inp{itjuncer- 7-3.4.2 Monte Carlo Approach for Evaluating the
tainty and|{numerical uncertainty, the comparison error, Validation Uncertainty, u,. The validation uncertpinty
and the vjlidation uncertainty u_, from ®q"(7-3-23). A can also be computed with a Monte Carlo approagh. In
sing]e valtie of U, is calculated and-~does not depend this example, the simulation and the experiment have
on whethdr each experiment is modeled or the average identical error sources and correlated errors (in thefinlet
experimenft is modeled. In both~eases, the sensitivity and outlet fluid temperature). This is Case 3 in Sectjon 5,
coefficienty were evaluated at/the‘average conditions of ~ and the procedure for evaluating u , by Monte Catlo is
the 10 exp¢riments. discussed in para. 5-3.2.2.
Table 7;3-13 _[Experimental and Simulation Values of Total Heat Transfer Rate and Associated Standard
Uncertainties
Experiment a, W u, W q, W Ui W u, W E,W u,,W
1 74.0 1 97.9 1 23.9 3
2 75.6 96.7 21.1
3 75.1 97.2 22.1
4 71.4 96.8 25.4
5 72.8 97.3 24.5
6 77.0 2.65 96.9 6.38 0.07 19.9 6.69
7 79.3 97.7 18.4
8 72.1 97.1 25.0
9 75.1 97.2 22.1
10 762 97.2 | 22.3
Average 74.9 2.17 97.2 6.37 0.07 22.3 6.69
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A Monte Carlo procedure involves sampling over
range of uncertain parameters that are inputs to
the simulation and experimental data reduction
equation. The simulation model and experimental
data reduction equation are evaluated with samples
of the parameters to estimate the effect of parameter
uncertainty. A Latin hypercube sampling (LHS) pro-
cedure is applied in this Section to evaluate u . The
LHS procedure is discussed in Section 3 as applied

LHS parameter sample sets is given in Table 7-3-15.
The LHS samples of total heat transfer rate are also
plotted in Fig. 7-3-6. The samples of the total heat
transfer rate are analyzed with standard statistics to
get uncertainty from the LHS samples. The mean and
standard deviation are listed at the bottom of the table
for each column. The means are the nominal (expected
value) of the simulated (q,) total heat transfer rate,
experimental (q,) total heat transfer rate, and differ-

to the simulation model for T and in Section 4 for ence (E). The estimated standard deviations (of col-
the ¢xperimental uncertainty, u . Because the simu- umns 3, 4, and 5) are the standard uncertairties in the
lation and experiment have shared error sources, the  simulation due to input parameter uneettainty (u,,,),
sampling of parameters in the experimental data re-  the experimental uncertainty due(t0” mepsurement
ductfon equation and parameters for the simulationis ~ uncertainty (u,), and contributions of Hoth these
dong jointly to evaluate u . In cases that do not share ~ uncertainties to u_.
errof sources, the Monte Carlo sampling can be done The nominal values of g.and g, and their standard
independently on the simulation and experimental  uncertainty estimates compurted with an LH$ approach
datajreduction equation. can be compared to thetpfetvious estimates fr¢m a prop-
Al of the parameters required for calculating the total ~ agation approach (imparas. 7-3.2.1 and 7-3.34). A fun-
heat transfer rate in the experiment and simulation and ~ damental differende-between the LHS and pfopagation
their|standard uncertainties are listed Table 7-3-14. When  approaches is the assumption of linearity i a propa-
applying a sampling-based procedure, in addition to  gation appreach; which is not necessary in an LHS ap-
specifying the standard uncertainty of each parameter,  proach. Seme'insight into the impact of this assumption
a (prpbability) distribution function is required for each  canbe obfained through comparing the resultg of the two
parapneter. For example, the uncertainty in the param-  approaches. The comparison is not solely dug¢ to the as-
eter might be distributed as a Gaussian function defined =~ sumption of linearity because the LHS apprpach has a
by a mean and standard deviation. In most cases thereis  \dépendence on sample size. The comparison is shown in
not dufficient data to assign a distribution function and  “Table 7-3-16. Note that in the example u__is of negligible
judgment is required. For this demonstration example@,* magnitude and u , only has contributions frgm simula-
Gaugsian distribution function is assigned to all inpiits.  tion input uncertainty and experimental medasurement
The mean of the Gaussian distribution is taken. @ the  uncertainty.
nomjnal parameter value (averaged over the 10 experi- The results in Table 7-3-16 indicate that the LHS and
ments for measured inputs), and the standard-deviation = propagation approaches give consistent fesults for
is thp standard uncertainty; these values_are listed in ~ the nominal total heat transfer rates and pncertain-
Tablg 7-3-14. ties. The values for the experiment should be in close
Twenty LHS samples of the inputsare generated for =~ agreement because the experimental data|reduction
the ¢xample. Two of the LHS/parameter sample sets  equation is a linear function of the paranjeters [see
(from 20) are listed in last two columns of Table 7-3-14. eq. (7-3-1)]. The difference between the vdlues from
The pimulation and experintental values of total heat ~ the LHS approach and propagation equatidn is small
trangfer rate, and their(difference, for each of the 20  and only due to the sample size dependerfce for the
Table:7-3-14 Parameter Standard Uncertainty and Example Latin Hypercube Samples
Standard Uncertainty Latin Hypercube [Samples
Parameter Impact Nominal Random, s, Systematic, b, Total, u, 1 2
T.CO DandS 70.01 0.07% 0.14% 0.16% 70.183 70.116
T.(0 D 67.20 0.07% 0.14% 0.16% 67.288 67.072
Q (m*/ sec) DandS 6.23 e-06 0.5% 1.0% 1.12% 6.334€-06 6.265 e-06
p (kg/m?) DandS 990 0.5% 0.5% 984.5 992.0
C, (J/kg Q) DandS 4180 1.0% 1.0% 4118 4211
k, (W/m°C) ) 386 5% 5% 391.1 388.9
kf(W/m°C) ) 204 5% 5% 239.7 215.9
h, (W/m*C) S 150 10% 10% 140.8 160.7
h, (W/m*C) ) 6 10% 10% 7.008 4.760
hf(W/m2°C) ) 6 10% 10% 6.732 5.886
T7_(CO S 22.02 1% 1% 22.02 22.19
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7-3-6 LHS Samples of Simulated and

Experimental Values of Total Heat Transfer Rate
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rate, with LHS estimating a larger standard uncer-

tainty than the propagation approach. The co

nsis-

tency between the LHS and propagation approaches
addresses concerns that may arise in the applicability
of the linear assumption required for the propagation
approach. Agreement between the two approaches is
problem specific, and the other problems may demon-

strate a larger difference.
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LHS Sample Number

bimulation has approximately a linear depen-
the parameters. The two approaches give

the same fhominal value of the total heat transfer rate,

but the es
(6.6%) for
proach. T
for the tw
nominal ¢

Table 7
and

fimate of the standard uncertainty is larger
the LHS than that for the propagation ap-
he estimates of the validation uncertainty
p approaches are similarly consistent in the
alue of the difference in total heat transfer

-3-15 LHS Samples for the Simulated
Fxperimental Values of the Total Heat
Transfer Rate

7-3-4-3-nterpretation-of-the-ValidationResutts—
previous sections have presented the approach
determining the comparison error E and_the-'va
tion uncertainty u_,. (The experimental® juncert
and simulation uncertainty due to imput parar
uncertainty and numerical uncertainty ‘were also
mated.) The validation uncertainty, u  is an estima
the standard deviation of the parent population g
combination of the errors (§, "% 6inpm — 8,) where
has been excluded. The expression for §__, , the erro
to modeling assumptions”and approximations, wa

rived in Section 1.
SN=E -

medel)

+ 6

input

©

num

_ BD)

Thus, E # u}, defines an interval within which
falls withianrunspecified probability, or

=9

(7-

E-u, =E+u, (7-

fhe comparison is interpreted in two ways. First,
1no assumptions on the distribution of parent popul|
of the errors (5 + Binput - 8,), the magnitudes of A
u , can be compared to make approximate inferg
about §_ ... Second, by making an assumption of
distribution of the parent population of the errors
+ 8input —§,), an interval can be estimated within W
8, .. falls with a specified probability. Section 6 disc
interpreting the validation results.

1 model 1

The
for
lida-
pinty
neter
esti-
te of
f the
3model
due
de-

I
o}

B-24)
B

model

B-25)

with
htion

and
brices
h the
(5,
rhich
1Sses

Sample Numper 9> W 90 W £=4,— 9, W With no assumptions on distributions, the magnifudes
1 94.08 74.33 19.74 of E and u  can be compared to indicate if §__,, might
2 91.58 79,66 11.92 be present. The values for E and u_ in Table 7-3-13indi-
3 85.06 74.25 10.81 cate that E is approximately a factor of 3 larger thap u_,
g 1832: ;2?8 ;;;; over the suite of experiments. A magnitude of E t}[lat is
6 9433 74.49 20.84 a factor of 3 larger than u_ is in the range that E cqn be
7 95:60 73.09 22.51

8 96.73 78.49 18.24

9 89.02 76.84 12.18 Table 7-3-16 Comparison of Nominal Values

10 103.17 75.00 28.16 and Standard Uncertainties Computed With the

n 29.16 71.57 27.39 Propagationand LHS Approaches——

12 100.27 75.84 24.43 r

13 94.46 73.90 20.56 Quantity Simulation LHS Propagation

14 107.69 74.39 33.30

15 91.49 70.91 20.58 q, \ 97.2 97.2

16 97.33 76.24 21.09 Uy W 6.79 6.37

17 105.41 74.12 31.28 Experiment

18 94.27 75.66 18.61 q, W 74.9 74.9

19 109.94 75.09 34.85 u, W 2.08 2.17

20 86.83 72.79 14.04 Difference

Mean 97.18 74.88 22.03 E=q,—q,W 22.3 22.3
Standard Deviation 6.79 2.08 7.03 u W 7.03 6.69

val®

60


https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

directly related to &

model”
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Given the difference in magni-

tudes of E and u_, E probably includes a contribution

from &

model”

By assuming a probability distribution for the

combination of all errors except the modeling error &

model”

an interval can be estimated within which §__,, falls. With
an assumed distribution for the combination of all errors
except the modeling error, a coverage factor, k, can be speci-
fied to define an expanded uncertainty, U, =k u_, that

def;

esthe interva mall

interyal within which &
E * 2u_,is plotted in Fig. 7-3-7. In the case that a single sim-
ulatign is generated at the average conditions the dashed

line
expe

the mpagnitude of 8

certa
for &

TH

com
is a

cura

mate

as to

hodel

model

model

re discussed in subsection 6-3 for various probability
butions and confidence levels. For a Gaussian
bution with o = 95% confidence level, k is 2.0. The

falls with ~95% probability,

s obtained with shown bounds [10.4, 37.3]. If each
iment were individually simulated, the variation in
can be observed. If the expanded un-
Inty is for a 99% probability (k = 3) the average interval
expands to [3.7, 44.0] W.

e validation procedure outlined in this document is
lete at this point. The approach in this document
rocedure to objectively assess and quantify the ac-
y of a simulation. The approach resulted in an esti-
d range characterizing the error &
whether the simulation model is adequate depends

The question

model”

on the accuracy required for an application. Given-ihe

outc
may

ig. 7-3-7

Interval for 6

model

me or the validation procedure, however,(there
be a desire to improve the accuracy of the model

0-2009

or better understand the source of §__, . What is done

as follow-on to the validation procedure of

this docu-

ment would be considered model development and not
validation. However, as will be seen, the possibility of

improving the model is informed by the va

lidation. If

the originally assessed model is improved or modified
to include additional physics, it can be assessed with the
same procedure. The assessment of a second model with
the same experimental data is summarized in the follow-

updating the model. Additional comments(ar
below on the issue of the next step after)a
assessment.

nvolved in
P provided
validation

The validation procedure can include some insight into

the possible source of §__, .
are discussed next. It would be beneficial t

Potential areas o consider

b consider

these even if the outcome ofthe validation Were favor-

able or acceptable.

(a) The inputs —both the nominal valugs and un-
certainty estimate§ > for the experimental data reduc-
tion equation afidd simulation could be re-evaluated.
The nominal inputs or uncertainty estimates may not

be applicable'to the validation experiment. I

mportance

factors (see Nonmandatory Appendix B) identify the

relative* contribution of each parameter to

the uncer-

tainty in the experimental data reduction eqpation and
uncertainty in the simulation due to input upcertainty.
Obtaining additional data for the nominal vglue or un-

certainty of an input parameter identified as
could impact §__,..

(b) Review the adequacy of the approach
propagate the uncertainties.

(Ex 2uval) Assuming a Gaussian Distribution for the Errors and 95% Pro

important

bs used to

pbability

40 - a
30 ] 1
O]
§ .__(.D____.____G).___.____c.)____ _____ ____(_)___6 [EpEipEny Ryp——
3 | ) ) ]
2 20 ) &
0
10 ] I ) S 1
O 1 1
5 10
Exponential Number
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critical assumptions that form the basis for

the selected simulation model should be reviewed.

Additional

studies (through simulation and/or

experimentation) may indicate that an assumption is not
appropriate.

7-3.5 As

sessing a Second Model

The initial model for simulating the total heat transfer

rate from
contact (a
face betwe
testing has
the fin and
vestigate {
simulated

infinite contact conductance, h) at the inter-
en the tube and fin. Further investigation and
shown that the contact conductance between
tube is smaller than initially believed. To in-
e effect of a finite contact conductance, the
model results including a contact conductance

at the fin/tube interface are calculated. The simulation
uncertainty with contact conductance in the model is
also estimgted. The validation comparison to the experi-
mental data is repeated to assess the model with a con-
tact conduftance.

Once a nodel has been assessed and the experimen-
tal data observed, there are many ways that a model
can be upflated to more closely match the experimen-
tal data. Updates to the model can be physically moti-
vated, butfjust because the updated model more closely
matches ekperimental data does not necessarily mean
the updat¢ to the model physically represents the true
8 4 Somje caution must be exercised in updating a
model and the claims that can be made when the up-
dated model is assessed. The intent of this Section is @

7-3.5.1.1 Code Verification. The code verification
process described earlier did not include the option for
a finite contact conductance. This verification could be
accomplished, using the exact MMS solution including
contact conductance as described in Nonmandatory Ap-
pendix B. The results will not be presented here in the
interest of space.

simulated
ontact

7 3 5.1.2 S|mulat|on Results

The

magnitude of the simulated ‘total heat transfer
contact conductance decreased to 73.8 W from a va
97.2 when perfect contackwas assumed.

7-3.5.1.3 Solution Verification. The simul
model adds the effect of a contact conductance bety
the fin andtube. Given the outcome of the prey

htion
ween
rious

mesh refinement study in para. 7-3.3.3, and further-

more arguing that contact conductance may ha
small ' dependence on the mesh, the solution verific
may not need to be repeated. The previous evig
flay be convincing that the numerical error dt
mesh is negligible. In the interest of demonstratin

ve a
htion
ence
le to
> the

demonstrdte how the updated model can be assessed approach, the solution verification process is repg¢ated
and the oytcome of that assessment. The validatien/ap- f‘?r the second model. Th? same sequence of rnesnes
proach caf demonstrate whether the second (updated) dlscdssed in para. 7-3.3.3 is used to perform S,OI m‘?“
model is thore accurate than the first model, but justi- verification. The results of the study are provid¢d in
fying the dppropriateness of the updatesis an issue to Tables 7—3.-19 and 7-3-20 for the model with contact{ con-
be discussed among the modeler, experimentalist, and ductance included. .
perhaps ofhers. The dependence of the snnulated to_tal heat trapsfer
rate on the mesh is monotonic. The estimated obsdrved
. ) \ convergence rate for the two mesh sequences is 2.0 The
anZi-Bl.lsn.(::le StIaTr:ltl;tIgil:n'l\l’::fiilnwl:ltl:di‘:nta;ﬁ Conduclta:ce uncertainty for the numerical uncertainty is negligibly
[ . e simulation
model is tle same as that\discussed in para. 7-3.3, except
that a confact conductance is defined at the fin/tube in- . .
terface when solvifig for the two-dimensional heat trans- Tr:ralgll’:r7li::;:i zor tsi:?;\lnl:;l:ln ‘R’Iﬁwgf)::;;eczoggttlt a:ce
fer in the fin-tybe-cross section. Instead of perfect contact
at the fin/{ube interface, defined by eq. (7-3-11), a contact Experiment 7. W
conductankelis defined at the interface
: ] an 1 74.3
—k, o o= [Tz, 0) = T2, 0)] = =k, 5| . ; ;gg
(7-3-26) 4 73.5
5 73.8
This is the only change in the simulation model. The same 6 73.5
parameter values and uncertainty values given in Table 7 74.1
7-3-6 are used in the simulation. The contact conductance 8 73.7
in eq. (7-3-26) is h, = 150 W/ m?°C with a standard sys- ?0 ;g:
tematic uncertainty of 20%. Average 73.8
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Table 7-3-18 Simulation Values of the Total Heat
Transfer Rate and the Standard Uncertainty for the

Table 7-3-19 Solution Verification Results for
Total Heat Transfer Rate for the Model With Contact

Model With Contact Conductance Conductance
Uncertainty (Standard) Mesh h-Tube (Relative) h-Fin (Relative) q, W
Experiment qs,W Sy w bqs, w ui"put,W 1 0.125 0.119 74.298318
2 0.25 0.239 74.297087
! 74.3 3 0.5 0.477 74.292162
2 73.4 4 1 1 74.272587
3 73.7
4 7375
5 73.8
6 73.5 0.28 5.18 5.19 random contribution is (over a factor of 3\arger than the
7 74.1 value from the propagation approacly, jthe mggnitude is
8 73.7 negligible compared to the systematig uncertdinty.
io ;gz J The standard uncertainty in the/simulated| total heat
Average 73.8 0.08 5.18 5.18 trans'fer rate dlie to input parameter uncertafinty is ap-
proximately 6.9%. The contribution of each pgrameter to
the uncertainty in the sitMudation can be identified with
small; the numerical uncertainty is two orders of mag- importance factors. Jmportance factors are discussed in

7-3.5.1.4 Simulation Input Parameter Uncertainty.
certainty due to input uncertainty is propagated

rameters are listed in Table 7-3-21. Thé unhcertainty in
ulation of the total heat transfer rate can be estimated

Table 7-3-21. Both the random and systematic contri-
to the uncertainty can be estimated.

Nonmandatory Apperndix B. Importance factdrs indicate
that the convection coefficient on the outer sufface of the
tube (h,), theconvection coefficient on the innef surface of
the tube (/),yand the contact conductance () faccount for
99% of the simulated systematic uncertainty jn the total
heat transfer rate; those parameters account foff 66%, 24%,
and'9% of the systematic uncertainty, respectivly.

7-3.5.2 Evaluating the Validation Uncertpinty and
Interpreting the Validation Comparison

7-3.5.2.1 Evaluating the Validation Uncertainty, u, .
The validation uncertainty is evaluated with [the propa-
gation equation as discussed in para. 7-3.4.1. Compared
to the final equation for u  in para. 7-3.4.1, an|additional
term is included for the uncertainty in the pimulation
input for contact conductance. The propagation equation
for u , for a model with contact conductance is

a3 -6
ap ap a0 aQ

+%_% +%_%2u$+%2u3
ac) ocC, or) \or)|  \on)

22
Ug

2
2
Uc

»

9. \? 9 aq4\? a9q4\* aq.\?
+iu§+iuf+iu;+&u;+iuf
® ) 1 ah 2 ah f a f
o , f) k,
+%2 2

k

t

a 2
+ 5 qD) u% +ul

k, o,D,

total heaf transfer rate of the 10 experiments. 1his esti-
mate for the random standard uncertainty is shown near
the middle of Table 7-3-18. Although this estimate of the

aq) (o 9 9
2|2 - (o || [ — (o] 1,6, (327)
o) \oT,/||\oT,,) \oT,,,

Table 7-3-20 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer Rate for
the Model With Contact Conductance

Mesh Sequence p(observed) e, % e, % GClir., % u, W
Mesh 2 to Mesh 4 1.99 —2.636e-4 3.520 e-4 3.522 e-4 0.01
Mesh 1 to Mesh 3 2.00 —6.629 e-5 8.837 e-5 8.839 e-5 0.003
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Table 7-3-21 Partial Derivatives of the Total
Heat Transfer Rate for the Simulation Model With
Respect to Uncertainty Model Inputs for Model With
Contact Conductance for the Average Measured

that is less than the magnitude of u . The magni-
tude of u_, computed with eq. (7-3-27) is negligibly
different from the summing the squares of the indi-
vidual contributions of standard uncertainty from
the experimental data and simulation, assuming ap-
proximate independence between the two. This is a
problem specific outcome and other cases may have
a different outcome.

Conditions

q, Standard Uncertainty
X ! bX,.' Random, s, Systematic, b,
kt 005 5o/,
kf .06 5%
h, 5.64 10%
h, 42.00 10%
hf .12 10%
T, -B3.79 1%
Tﬂ 07.6 0.070% 0.14%
Q 2.24 0.5% 1.0%
P 2.24 0.50/0
Cp 2.24 1%
h 2.81 20%

o

The addjfitional term for the uncertainty in the contact
conductange is added as the fifth term of eq. (7-3-27).

The dafa required to evaluate u , are listed in
Table 7-3-42. The uncertain parameters, standard uncer-
tainties, ar]d scaled sensitivity coefficients for the experi-
mental angl simulated total heat transfer rate are given
in the tablg.

Validation results for the simulation model with
contact cgnductance are given in Table 7-3-23. The
results lisfed summarize the total heat transfer from
the experiment and its uncertainty, the simulationre-
sult and :I?sl uncertainty from input uncertainty- and
numerical uncertainty, the comparison ertor, and
the validdtion uncertainty u_, from eq.(%<3-27). The
comparisgn error for the simulatiofi yWwith contact
conductaince is demonstrated to Have a magnitude

Table 7-3-22 Parameters Included in Evaluating v, Parameter Standard Uncertainty Estimates, and
Parameter Sensitivity Coefficients for the Model With Contact Conductance

7-3.5.2.2 Interpreting the Validation Comparjson.

As discussed in para. 7-3.4.3, the validation-can be
interpreted in two ways. First, by comparing the
magnitudes of the comparison errorcand the vdlida-
tion uncertainty, approximate inferences can be made
about the presence of §_ . Nating that £ < u_|, the
magnitude of §__,, if it exists, is of the same ¢rder
as the errors in the simulationvand experimental|data
(8pu — 8p)- Second, by making an assumption on the
distribution of the parent population of the errors|(5_
+ 8mpm — 8,), an interyal can be estimated within which
3, .4« falls with aspecified probability. For a Gaugsian
distribution with/ @ = 95% confidence level, k ig 2.0.
The interval within which §__,, falls with 95% pfoba-
bility, E £:2i _, is plotted in Fig. 7-3-8. The range ¢har-
acterizing'§_ . is approximately [-12, 11] at the|95%
probability level.
At this point, the validation procedure indifates
the following. The model predictions are consistent
with the experimental observations for the inod-
eled uncertainty in the validation exercise. If fufther
improvements to the simulation model are requiired
for the engineering application (i.e., the applicfition
requires a magnitude of the average error for thelheat
transfer rate to be less than 11 W), the effectivendss of
any model changes cannot be evaluated with the pres-
ent experiments and present parametric uncertainties.

Standard Uncertainty

Scaled Sensitivity Coefficignts

Parameter Impact Random, s, Systematic, b, Total, u, X, %, w Xif;qf, w
T.CO DandS 0.07% 0.14% 0.16 % 1.808 107.55
T.(0 D 0.07% 0.14% 0.16% —1,734

Q (m3/ sec) DandS 0.5% 1.0% 1.12% 74.9 2.24
p (kg/m?) DandS 0.5% 0.5% 74.9 2.24
Cp (J/kg*C) DandS 1.0% 1.0% 74.9 2.24
k,(W/m"C) S 5% 5% 0.005
k. (W/m’C) S 5% 5% 0.06
h, (W/m*C) S 10% 10% 15.64
h, (W/m*C) S 10% 10% 42.00
hf(W/m2°C) S 10% 10% 1.12
T_(CO S 1% 1% —33.79
h (W/m?°C) S 20% 20% 12.81
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Table 7-3-23 Experimental and Simulation Values of Total Heat Transfer Rate and
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Associated Uncertainties

Experiment q, W u, W q, W Upue w u,mW E,W u,W
1 74.0 74.3 0.27
2 75.6 73.4 -2.17
3 75.1 73.7 -1.36
4 71.4 73.4 2.05
5 72.8 73.8 1.01
p 270 2.65 73s 5.19 0.01 349 5.58
7 79.3 751 —T5.18
8 72.1 73.7 1.61
9 75.1 73.8 -1.29
10 762 73.6 —2.43
Averape 74.9 2.17 73.8 5.18 0.01 —-1.10 5.58
Fig]7-3-8 Intervalforg_ ., (E = 2uval) Assuming a Gaussian Distribution for the:Etrors and 95% Probability for
the Model With Contact Conductance at the Fin/Tube Interface
20
10 _ 7 T
S
5 ¢ 0] ¢
N O P e S N Y .
K;E [0} Nb3 @ [0
O
)
-10 [ | - -
£20 1 1
0 5 10
Exponential Number
The |evaluation of “improved” models will require Sandia National Laboratories, report SANDZ006-6083P,

that the uncertainties in the experiments and the cor-
responding parameters that are utilized by the simu-
lation, be reduced through more carefully controlled
or redesigned experiments.
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MANDATORY APPENDIX |
DETAILED DEVELOPMENT OF SIMULATION EQUATIONS FOR
EXAMPLE PROBLEM

I-1

INTRODUCTION

The purpose of this Mandatory Appendix is to pres-
ent the detailed development of the simulation equations

used

for the example discussed in Sections 1,5, and 7. The

physical problem is a hot fluid flowing inside a round

tube

with square fins on the outside of the tube. It is

desited to validate a model for the bulk outlet tempera-

ture,
heat
cal p|

1-2

AT

T, of the fluid flowing in the tube and for the rate of

transfer, g, from the hot fluid. A sketch of the physi-
roblem is shown in Fig. 1-4-1 in Section 1.

DATA REDUCTION EQUATION FOR
EXPERIMENTAL g

overall energy balance on the fluid inside the tube

of lepgth, L, is

whet

(T

i

Eq
over.

1-3
A

4, =D = pQC,(T,— T (1-2-1)

e
C, = specific heat
Q = volume flow rate
g, = overall heat transfet rate, W
— T) = bulk fluid temperafuredrop (all for the hot fluid)
p = density
uation (I-2-1) is the ddta reduction equation for the
i1l heat transfersate.

SIMULATION MODEL

bnesdintensional steady state lumped mass energy

balauilce1 oh a differential tube length (dz) results in

T = (constant) ambient temperdture
U, = average overall heat transfer coeffidient based
on the wetted area of the tube inner gurface (A,
= 2mr L)
z = distance alofigytube
Before integrating’eq. (I-3-1) over the length pf the tube,

the details of how to calculate Ul will be discussed.

I-4 ASSUMED FORM FOR AXIAL VARIATION OF
OVERALL HEAT TRANSFER COEFFICIENT, U,

Ihe overall heat transfer coefficient variation is as-
sumed in the form of a series of step funftions cor-
responding to the finned and no-finned (pare tube)
sections, as shown in Fig. I-4-1. The subscrigts f and nf
refer to finned and no-finned tube sections, respectively.
The axially averaged overall heat transfer cqefficient is
given by

Z Ufw +U . w

10’ et A At A
sz.ul(z)dz T wFw, U,
where the widths w, and w,, are defined in F
section 1 and ‘

(I-4-1)
g. 1-4-1 in

L= N(wf + wnf) (1-4-2)

where

N = number of fin/no-fin segments

The subscript 1 in eq. (I-4-1) is a remind
U’s are based on area A,. The task of getting
divided into two parts, corresponding to the
fin segments.

T that the
U, will be
no-fin and

pQC AL+ 2mruy(T - T,) = poc AL+

U]Al
T -T)=0
(1-3-1)

where

L = tube length

T(z) = position dependent bulk fluid temperature

!Changes in potential and kinetic energy as well as axial heat con-
duction are ignored.
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Fig. T-4-1 Variation of Local Value of Overall Heat
Transfer Coefficient

w1

Ui (2)

Y



https://asmenormdoc.com/api2/?name=ASME V V 20 2009.pdf

ASME V&V 20-2009

I-5 OVERALL HEAT TRANSFER COEFFICIENT FOR
NO-FIN SEGMENT, u

The no-fin segment is treated as a bare tube with
convective heat transfer on the inside and outside. From
introductory heat transfer texts, the overall heat transfer
coefficient for the no-fin section (for steady one-dimen-
sional heat transfer) is given by

where
n = coordinate (outward) normal to the outer fin
surface
(x,, y,) = evaluated along the outer boundary of the
fin

Because of symmetry, only one-eighth of the cross
section will be modeled; the symmetry boundaries are
treated as adiabatic boundaries. The front and back sur-

_ 1 faces of the fin (s) also have convection to the ambient
unf . r nlr /) - (I-5-1) air. and this boundarv condition is eiven by
T T zk T T hil o &
h 21 N fl —
Where ! ! _ka s/_hf(Tf| sf_Tx) ( -6-6)

h, = conivective heat transfer coefficients on the inside
of the bare tube

h, = coniective heat transfer coefficients on the out-
sid¢ of the bare tube

k, = thegmal conductivity of the tube

1-6 OVERALL HEAT TRANSFER COEFFICIENT FOR
FIN JEGMENT, U,

If the fins on the tube were circular instead of square, a
one-dimenysional result similar to eq. (I-5-1) could be de-
rived analytically. However, the heat transfer in a square
fin on a ropind tube will be addressed using a grid based
computatipnal (finite volume, finite element, etc.) model.

The thrde-dimensional simulation will include the cir-
cular tube pind square fin attached to it and is shown sche-
matically ih Fig. I-4-1 in Section 1. A contact conductance

Axial conduction in the tube is ignored.
The model presented in egs. (I-6-1) through (I-6}6) is
solved using a three-dimensional Galerkin finite element
code, and the overall heat transfer \coefficient for the fin
section is computed by post pfocessing the results| The
overall heat transfer coefficient U, for the fin/tubg sec-
tion is defined through ’
/4

q,= Umdw(T-T,) 28w, [ h[T~T/r,0)rdo (-67)
Solving eq. (I-6-7) for yields
T -6-
ST 1T [T-T (.00 (1-6-8)

where T(¥,6) is the temperature from the simulation
(I-6-1).fhrough (I-6-6).

A’specification of the fluid temperature T, is reqfired
for'the solution of the model given by egs. (I-6-1) thrpugh
(I-6-6). Note that T varies along the length of the fube;

egs.

between tle tube and fin is allowed. The mathematical . .
del i follows: however, for the linear constant property model copsid-
modeLs grven as 1oHows: ered here, it is argued that U, computed from eq. (}-6-8)
P ( aTt) g [, 9T, 9 ( aTt) will be independent of the assumed value for T,
ﬁ k[W T a_y k[ ay + E krﬁ = 0 tube (1'6'1)
a9 (k a_Tf) Lo [T, o ( AL ) _ 0iR (L62) 17 INTEGRATION OF THE ENERGY BALANCE
ax \fox ay\f ay 9z \"f 9z EQUATION
where the [z-axis is directed along the length of the tube. . .
In eq. (I-3-1), th bl ted t I
While the fin and tube thermal conductivities are written n eq. (I-3-1), the variables ian be separated to yidld
inside the flerivatives in eqs. (Is6:3) and (I-6-2) to directly JTO ar _ _ UA, 1 JZO dz (-7-1)
relate the terms to the localheat’flux, both conductivities 7 T-T, pQC, L',
are constamt for this exaniple. At the inner surface of the . . I . .
NS Evaluating the integrals followed by algebraic njani—
tube, the bpundary condition is . .
o pulation yields - TA
ki, = I [T, = T(r,, 0)] (1-6-3) i [ cl) @7-2)
where P P
T, = thebulk fluid temperature In subsection 5-2, the validation variable is T; so}ving
0 = traditional polar coordinate for cylindrical geometry eq. (I-7-2) for the validation variable yields
At the tube/fin interface where a contact conductance A
h_may be present S=T =T+ (T.— T )exp| — —A~ I-7-3
k};Tt ’ h[T(ry,0) — T(ry, 0)] = —k il 1-6-4 e P, ( |
“k—_. = 75,0) — T(ry, 0)] = ~k—= ,  (I-6-
Ty e = T { 71 o (164 The validation comparison error for this case is
where the +/— indicates the outside/inside of the tube/
E=5-D=T,-T, (I-7-4)

fin interface. At the tip of the fin, the boundary condition
is
&

o= 1 Ty, — T (1-6-5)

Xy
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In subsection 5-3, the validation variable is the heat
transfer rate (4) and an expression will now be developed
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for it. Further algebraic manipulation of eq. (I-7-2) yields h, = heat transfer coefficient, inside of tube
a form convenient solving for the heat flux. h, = heat transfer coefficient, outside of tube
— h = contact conductance at fin/tube interface
T-T UA, . .. .
el = exp . -1 (I-7-5) hf = heat transfer coefficient, fin surface
T, pQC, k= thermal conductivity
Algebraic manipulation of eq. (I-7-5) yields k. = fin thermal conductivity
_ k, = tube thermal conductivity
L-1,_° QCT,~T) _ q = exp ua, | 1 L = tube length
T,-T. pQC(T-T) pQC/(TT,) pQC, N = number of fin/no-fin sections
— Q = volumetric flow rate
W70) 4" = heat transfer rate
Solving eq. (I-7-6) for the heat transfer rate yields g, = heat transfer rate from data
e A g, = heat transfer rate from simulafiop
q; =5 = pQC(T,~T,) |exp pQC, -1 @77 Re = Reynolds number, 4pQ / (d i)
o ] ) r = radius
Thee validation comparison error for the heat rate case is : — inner tube radius
E=S-D=g-— (1-7-8) r, = outer tube radius
L T = temperature
T, =bulk fluid temperature, see eq. (I-6-3)
1-8 |EXPERIMENTAL SET POINT T, = inletbulk ﬂulq temperature
T = outlet bulk fluid temperature
The set point in the experiment is the dimensionless T = ambiénttemperature
flow|rate (Re) and is given by U, = overall heat transfer coefficient based pn A,
U, = overall heat transfer coefficient for fin, based on A
pdV  4pQ 4 . . !
Re=-—p—= — (I-8-1) U, .5 overall heat transfer coefficient for nqHin, based
1 *
whete - _onA1 fluid velocity in tub
V ¥ average velocity for the fluid inside the tube - av’fir;gef f‘.Lll Ve'0C1ty in tube
p F fluid density for the fluid inside the tube w B W% dth o f mn ?ectlon?
u § dynamic viscosity for the fluid inside the tube w,; = width of no-fin sections .
x,, y, = coordinates on outer boundary of fin

1-9 [SUMMARY OF SIMULATION PARAMETERS

The parameters in this example can be divided into the
categories of measured (in this experiment) and database
(or hindbook) values.

Meagured:*Q, T,,T,T ,d,, d, L, d, W, w

sy Yor

y (1-9-1)

Database: p, u, C , k, k, hephi/h, hf (1-9-2)

A e e

1-9.1 Nomenclature

T ™ N

= axial coordinate

= angular position

= fluid density

= fluid dynamic viscosity

A, |= 2nr Lgyetted tube inner area

A, |= 2rEE, 'wetted tube outer area

a =finwidth

C — ifaio b Lt of fload s 3 21
b spectficheatef Hutd-insidetube

D = data

d, = inner tube diameter

d, = outer tube diameter

E = validation error

h = heat transfer coefficient

21t is easier to measure a diameter, d, than a radius, r, so diameter
will be treated as the measured value.
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