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NOTICE

All Performance Test Codes must adhere to the requirements of ASME PTC 1, General Instructions. The following infor-
mation isbased on that documentand is included here for emphasis and for the convenience of the user of the Supplement.

Itis expected that the Code user is fully cognizant of Sections 1 and 3 of ASME PTC 1 and has read them prior to applying
this Supplement.

ASME Herformance Test Codes provide test procedures that yield results of the highest level of accuracy consistént-with
the best engineering knowledge and practice currently available. They were developed by balanced committees rep-
resenting all concerned interests and specify procedures, instrumentation, equipment-operating requirements, calcyla-
tion mgthods, and uncertainty analysis.

When tgsts are run in accordance with a code, the test results themselves, without adjustment for uncertainty, yield the
bestavailable indication of the actual performance of the tested equipment. ASME PerformanceAest Codes do not spe¢ify
means fo compare those results with contractual guarantees. Therefore, it is recommended thatthe parties to a comn]er-
cial tesfagree before starting the test and preferably before signing the contract on the method to be used for comparfing

the test results with the contractual guarantees. It is beyond the scope of any code to determine or interpret how sfich
compatfisons shall be made.

vi
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FOREWORD

In March 1979, the Performance Test Codes Supervisory Committee activated the PTC 19.1 Committee to revise a 1969
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t Code Instruments and Apparatus Supplement published in 1985 as PTC 19.1-1985, Measurement Uncertdin
hg with its subsequent editions, was intended to provide a means to standardize nomenclature, symbpls,\an
logy of measurement uncertainty in ASME Performance Test Codes.

Vork on the revision of the original 1985 edition began in 1991 with the two-fold objective of improving its usg
he reader through greater clarity, conciseness, and technical treatment of the evolving subject-matter; and
ing with ISO/IEC Guide 98-3, Guide to the Expression of Uncertainty in Measurement (GUM). ASME publish
1-1998 as Test Uncertainty, the new title reflecting the appropriate orientation of the{doeecument.

'he effort to update the 1998 revision began immediately upon completion of that doctument. The 2005 revis
able for the following significant departures from the 1998 text:

a) ASME PTC 19.1-2005 adopted nomenclature more consistent with ISO/IEC.Guide 98-3. Uncertainties re
ceptualized as “systematic” (estimate of the effects of fixed error not observed.in.the data) and “random” (est

riation level as “standard uncertainties.” The determination of an uncertainty at some level of confidence was
root-sum-square of the systematic and random standard uncertaintiesthultiplied by the appropriate expansi

v nomenclature was expected to render ASME PTC 19.1-2005<and subsequent revisions more acceptable to

b) There was greater discussion of the determination*ef systematic uncertainties.
c) Text was added on a simplified approach to detetmine the uncertainty of straight-line regression.
or this 2018 revision, the significant changes are the.addition of the Monte Carlo method for propagating uncer
the use of multiple test results to obtain an estimate of the random uncertainty of the result. A detailed exam
strates all aspects of uncertainty analysis isincluded as a separate section in the document. This section shows |
rlor series method and the Monte Carlo method for propagating uncertainties. This new section replaces the e
tion that was included in previous vérsions of the document.
'his Standard is available for public review on a continuing basis. This provides an opportunity for additional
iew input from industry, academia; regulatory agencies, and the public-at-large.
ASME PTC 19.1-2018 was approved by the PTC Standards Committee on March 28, 2018, and was approvs
erican National Standard.by-the ANSI Board of Standards Review on September 20, 2018.
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limits of the error observed from the scatter of the test data). Both types of uncertainty were defined at the standard-
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factor

the desired level of confidence (usually “2” for 95%). This same{@pproach was used in the 1998 revision, [but the
racterization of uncertainties at the standard-uncertainty level (“standard deviation”) was not as explicitly stafed. The
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CORRESPONDENCE WITH THE PTC COMMITTEE

General. ASME Standards are developed and maintained with the intent to represent the consensus of concerned

interests, As such, users of this Code may interact with the Committee by requesting interpretations, proposingr

visions

or p case, and attending Committee meetings. Correspondence should be addressed to:

Secretary, PTC Standards Committee

The American Society of Mechanical Engineers
Two Park Avenue

New York, NY 10016-5990
http://go.asme.org/Inquiry

Rroposing Revisions. Revisions are made periodically to the Code to incorporate changes that appear nece
degirable, as demonstrated by the experience gained from the application of the.Code. Approved revisions
published periodically.

The Committee welcomes proposals for revisions to this Code. Such proposals'should be as specific as possibl
thg paragraph number(s), the proposed wording, and a detailed description ofthe reasons for the proposal, includ
petftinent documentation.

an ppproved revision when the need is urgent, or to provide rules.not covered by existing provisions. Cases are €
immediately upon ASME approval and shall be posted on the, ASME Committee web page.

equests for Cases shall provide a Statement of Need and Background Information. The request should ider]
Codle and the paragraph, figure, or table number(s), and be'written as a Question and Reply in the same format as
Cages. Requests for Cases should also indicate the applieable edition(s) of the Code to which the proposed Case

sary or
will be

P, citing
ingany

Rroposing a Case. Cases may be issued to provide alternative ruleswhen justified, to permit early implementation of

ffective

tify the
pxisting
hpplies.

Interpretations. Upon request, the PTC Standatds Committee will render an interpretation of any requirement of the

Codle. Interpretations can only be rendered inutesponse to a written request sent to the Secretary of the PTC St4
Committee.
equests for interpretation should preferably be submitted through the online Interpretation Submittal Fo
form is accessible at http://go.asme.arg/InterpretationRequest. Upon submittal of the form, the Inquirer will re
aufomatic e-mail confirming receipt;

If the Inquirer is unable to use'the online form, he/she may mail the request to the Secretary of the PTC St3
Committee at the above address. The request for an interpretation should be clear and unambiguous. It is furt

ommended that the Inquirer“submit his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry in one or twg
Edition: Cite the applicable edition of the Code for which the interpretation is being requ
Qugstion: Phrase the question as a request for an interpretation of a specific requirement suit

general understanding and use, not as a request for an approval of a proprietary d
situation. Please provide a condensed and precise question, composed in such a w3
“yes” or “no” reply is acceptable.

ndards

'm. The
eive an

ndards
her rec-

words.
ested.

hble for
PSign or
y thata

Prapased Reply(jes): Provide a proposed reply(ies) in the form of “Yes” or “No” with explanation as ne

ded. If

entering replies to more than one question, please number the questions and replies.

Background Information: Provide the Committee with any background information that will assist the Committee in
understanding the inquiry. The Inquirer may also include any plans or drawings that are
necessary to explain the question; however, they should not contain proprietary names or

information.

Requests thatare notin the format described above may be rewritten in the appropriate format by the Committee prior

to being answered, which may inadvertently change the intent of the original request.
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Moreover, ASME does not act as a consultant for specific engineering problems or for the general application or
understanding of the Code requirements. If, based on the inquiry information submitted, it is the opinion of the Committee
that the Inquirer should seek assistance, the inquiry will be returned with the recommendation that such assistance be
obtained.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect
an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not “approve,” “
device, or activity.

» o«

certify,” “rate,” or “endorse” any item, construction, proprietary

Atterjding Committee Meetings. The PTC Standards Committee regularly holds meetings and/or telephone confer-
ences that are open to the public. Persons wishing to attend any meeting and/or telephone conference should contactthe
Secretafy of the PTC Standards Committee. Future Committee meeting dates and locations can be found on the'Gommittee
Page aff http://go.asme.org/PTCcommittee.
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INTRODUCTION

Most sections in this revision of ASME PTC 19.1-2013 [1] have been rewritten to add to the available technology for
uncertainty analysis and to make it easier for the practicing engineer to use. The intent is to provide a standard that can be
used easily by engineers and scientists with interest in the objective assessment of measured-parameter data quality
using test uncertainty analysis.

Xi
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Section 1
Object and Scope

OBJECT

he object of this Standard is to define, describe, and

.1 Objectives

n uncertainty analysis of test measurements, para-
mefters, and methods is useful because it

) provides an objective estimate of the quality of test
dafa and results

) facilitates communication regarding measurement
andl test results

) fosters an understanding of potential error sources
in 3 measurement system, and the effects of those poten-
tial error sources on test results

d) guides the decision-making process for selecting
appropriate and cost-effective measurement systems
and methods

e) reduces the risk of making erroneous,decisions
baged on test results

documents uncertainty for assessing compliance
with test requirements

) substantiates the test uncertainty budget

hen an uncertainty analysis.is.completed, a numerical
chgracterization of the quality ‘of test results is available
with an appropriate level-of_confidence, typically 95%.

1-2 SCOPE

The scope of this\Standard is to specify procedures for
a) evaluation of uncertainties in test measurements,
paametersycand methods

b) prapagation of those uncertainties into the uncer-

1-2.1 Uncertainty Propagation Methods

This Standard incorporates twopinternatjonally
accepted methods of propagating, uncertairties in
measured parameters to a derived‘\tést result.

1-2.1.1 Taylor Series Method{TSM). This mgthod of
propagation is consistent/with ISO/IEC Guide 98-3
(GUM) [2]. The TSM requires the determination df sensi-
tivity coefficients for€ach input variable (how the fesultis
affected by variatigns-in the input variables) and sfandard
uncertainties for,_each error source.

1-2.1.2 _The Monte Carlo Method (MCM). This ethod
of propagation is consistent with JCGM 101 [3]. The MCM
requireS.estimation of probability distributions and stan-
dard\uncertainties (standard deviations) for eadh error
source.

The distribution determined as the output of gn MCM
analysis allows direct determination of the lower and
upper limits of a coverage interval that contains a specified
percentage of the distribution. Thus there are rfo addi-
tional assumptions required to arrive at an “expansion
factor,” as is necessary in the TSM approach, td obtain
a confidence interval estimate.

1-2.2 Uncertainty Propagation Classificatipns

This Standard uses two major classifications fof errors
and uncertainties: systematic and random. The I$0 GUM
uses a different classification for uncertainties: Type A and
Type B.

1-2.2.1 Systematic. Systematic errors, whosd effects
are estimated with “systematic standard uncertainties,”
do not cause scatter in test data.

1-2.2.2 Random. Random errors, whose effgcts are
estimated with “random standard uncertainties|’ cause
scatter in test data.

taipty-.of‘a test result
1 1 1 ity colronc oy
]Lepen-d-mg—e-n—&he—a-p-phea-t—m—&neeﬁ, P SOHreesRayY

be classified either by the presumed effect (systematic or
random) on the measurement or test result, or by the
process in which they may be quantified or their pedigree
(Type A or Type B).

1-2.2.3 ISO GUM Classification. The ISO GUM uses a
different classification: Type A uncertainties are evaluated
with statistical methods and Type B uncertainties are eval-
uated using other means, such as models or judgment. The
terms identify the pedigree of the error sources.

The uncertainty of a test result is independent of
whether the elemental uncertainties are classified as
systematic or random, or as Type A or Type B. Regardless
of the uncertainty classification used, the calculated
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uncertainty of the result will be the same. While this Stan-
dard utilizes systematic and random terms, there may be
situations where it is useful to classify elemental uncer-
tainties by effect, source, or both.

1-3 APPLICATIONS

This Standard is intended to serve as a reference to
other supplements in the ASME PTC 19 Series and to

general. In addition, itis applicable for all known measure-
ment and test uncertainty analyses.

NOTE: The nominal values for the parameters and the uncer-
tainty levels used throughout this Standard are for illustrative
purposes only and are not intended to be typical of standard
tests. Values and uncertainty levels shall be evaluated for the
specific test and measurement system used.

ASME |performance test codes and standards in
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Section 2
Nomenclature and Glossary

2-]
2-]

NOMENCLATURE u = true average of a population (unknojwn)
v = number of degrees of freedom
.1 Symbols o = true standard deviation"ef a popjlation
! . . . nknown
he following symbols are used in this Code: o = E:ue vzriar)we of a population (unkn¢wn)
Bx, = 95% confidence level estimate of the limits - pop
associated with the k™ elemental systematic .
2-1.2 Indices
error source :
bg = systematic standard uncertainty component I'= total number ofvariables
of a result i = counter for vatiables
by = systematic standard uncertainty component J = total numpgr-f sensors .
of a measurand Jj = counte¥ for individual observations of a
bx, = systematic standard uncertainty associated measurand
with the k™ elemental error source for a K = tetal\number of sources of elemental errprs and
measurand uncertainties
bx = systematic standard uncertainty for nonsym- ko =\ counter for sources of elemental errors and uncer-
ns 3 3
metrical systematic error tainties .
byy = covariance of the systematic errors in Xand Y L = total number of correlated sources of sygtematic
N = sample size error .
s, = random standard uncertainty of a result I = counter for correlated sources of systemafic error
R - -
Sy = standard deviation of a data sample-of a M = total nur;lber 0{ Tn;ﬂtlple lresults
measurand; estimate of the standard.devia- m = counter for multiple resu' ts
tion of the population o N = total number of observations of a measyrand
X
Sg T random standard uncertainty.-efithe mean of
N observations of a measurand 2-2 GLOSSARY
SEE = standard error of estimate of a least-squares  calibration: the process of comparing the response of an
regression or curve fit instrument to that of a standard instrument ovdr some
t = Student’s t value @ta specified confidence measurement range.
U= level Vglt(}; v deg}c"e-est of freedom, i.e., tos, calibration hierarchy: the established pedigrge for a
= expanded unceftamnty . measurement based on the chain of calibrations that
J*, U~ = upperandlower values of the nonsymmetrical . o .
ded rtai links or traces a measuring instrument to a primafy stan-
expanded:uince ainty . dard.
u = combined standard uncertainty ) )
X = individual observation in a data sample of a combined standard uncertainty (u): the root-sum¢square
measurand combination of systematic and random standard uncer-
X=\'sample mean; average of a set of N individual tainties for a measurement or result.
observations of a measurand confidence level: the probability that the true value falls
'8 = true cycfpm:\ﬁr‘ error (nnl(nnurn); fixed or withinthe-specifiedtirnd
B c;)nstantt lcomltnonertl-t of § degrees of freedom (v): the number of independent obser-
Pi = elemental systematic error vations used to calculate a statistic.
6 = total error (unknown); difference between
the assigned value of a parameter or a test elemental random error source: an identifiable source of
result and the true value random error that is a subcomponent of total random
€ = true random error (unknown); random error.
component of § elemental random standard uncertainty (s)—(): an estimate
9, = abso!ute sen§1F1Ylty of the standard deviation of the mean of the k™ elemental
6" = relative sensitivity random error source.
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elemental systematic error source (fy): an identifiable
source of systematic error that is a subcomponent of
the total systematic error.

elemental systematic standard uncertainty (bx,): a
constant value that estimates standard deviation of the
k™ elemental systematic error source.

error: the difference between the observed value of the
measurand and its corresponding true value.

sensitivity (0): the rate of change in aresult due to a change
in a variable evaluated at a desired test operating point.

standard error of estimate (SEE): the measure of disper-
sion of the dependent variable around a least-squares
regression or curve.

statistic: any numerical quantity derived from the sample
data. X and sy are statistics.

expanded uncertainty (Ux or UR ): an estimate of the limits
of totallerror, with a defined level of confidence (usually
95%).

influende coefficient: see sensitivity.

mean ([X): the arithmetic average of N readings of a
measurjand.

measurpind: the particular quantity that is being measured
or estithated.

measurpment uncertainty: the uncertainty associated with
a measpirand. It is an estimate of the expected limits of
measurement error.

paramdter: a quantity that can be measured from the best
availabje information—such as temperature, pressure,
stress,|or specific heat—to determine a result. The
value ufed is called the assigned value.

popula]:
populatlion mean (u): the average of the set of all popula-
tion values of a parameter.

on: the set of all possible values of a parameter.

populatiion standard deviation (¢): a value that quantifies
the dispersion of a population.

quantity: the property of a phenomenon, bedy, or
substance that has a magnitude that can be_éxpressed
as a number.

randon] error (€): the portion of total error that varies
randonply in repeated measurements of the true value
througlout a test process.

randon| standard uncertaingy.ef the sample mean (sx): a
value that quantifies the _dispersion of a sample mean as
given by eq. (3-3-3).

result (R): avalue caleulated from a number of parameters.

sample|size (N)i¢the number of observations or values
available for‘a-single measurand.

sample standard deviation (sx): a value that quantifies the

Student’'s t value (t): the coverage factor to calcul te
7 1=}

expanded uncertainty from the combined standard tthder-
tainty at a specified level of confidence with v degrees of
freedom, i.e, tys,

systematic error (f3): the portion of total error, that remdins
constant in repeated measurements of the true value
throughout a test process. It is a fixed or constant compo-
nent of & (unknown).

systematic standard uncertaifty, (bx): a value that quan-
tifies the dispersion of a systematic error associated with
the mean.

test uncertainty: thexuncertainty of a test result.

total error (§)<the unknown difference between the
measurement.of a parameter or test result and its tfue
value.

traceability: see calibration hierarchy.

truevalue: the unknown, error-free value of a measurgnd
or\test result.

Type A uncertainty: a class of uncertainties that fise
measured data to calculate a standard deviation [for
use in estimating the uncertainty.

Type B uncertainty: a class of uncertainties that do not ise
measured data to calculate a standard deviation, tl:us
requiring the uncertainty to be estimated by other
methods.

uncertainty: the limits of error within which the true vdlue
lies.

uncertainty interval: an interval around a measurand or
test result that is expected to contain the true value with a
prescribed level of confidence.

variable: a quantity that can be assigned different valpies
that can be measured or counted. It may be calculated frjom
a number of measurands.

dispersion of a sample of Measurements as given by
eq. (3-3-2). It is an estimate of the standard deviation
of the population o,.
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Section 3
Fundamental Concepts

3

1 ASSUMPTIONS

The assumptions inherent in test uncertainty analysis
include the following:
a) the test objectives are specified
b) the test process, including the measurement
prqcess and the data reduction process, is defined
c) the test process, with respect to the conditions of
the item under test and the measurement system
emlployed for the test, is controlled for the duration of
the test
d) the measurement system is calibrated and all
appropriate calibration corrections are applied to the
regulting test data

) all appropriate engineering corrections are applied
to he test data as part of the data reduction and/or results
anglysis process
IIn this Standard, there is a careful distinction between
the terms “error” and “uncertainty.” Error, discussed in
subpsection 3-2, is the difference between a particular
qufintity that is being measured or estimated, called
thg “measurand,” and its corresponding true value. The
actjual error of a measurement cannot be known but
its [effect may be estimated. This estimate is called the
ung¢ertainty. Uncertainty is an interval arouhd a measure-
ment in which the true value of the measurand is expected
to lie.

ncertainty is not the error of the measurement but an
expression of the expected(limits for the measurement
errpr ata chosen level of ¢onfidence. For expanded uncer-
tainty, 95% level of confidence has been used throughout
this document in aceotdance with accepted practice. Other
confidence leyels may be used, if required (see
NophmandatoryAppendix B).

3-2 MEASUREMENT ERROR

Kvery measurement has error, which results in a differ-

systematic errors. The effect of controlling. thede error
components is highlighted in Figure 3-2¢2.

3-2.1 Random Error

Random error, ¢, is the portion of the total erfor that
varies in repeated measureniénts at a set test copdition.
The total random error in-a measurement is the cqmbina-
tion of the contributions.6f several elemental fandom
error sources. Elemental random errors majfy arise
from uncontrolled’tést conditions and nonrepedtability
in the measurement system, measurement meth¢ds, en-
vironmental conditions, data reduction techniqyes, etc.
Random ‘eryors always cause variability (i.e., scdtter) in
test datd.

3-2.2 Systematic Error

Systematic error, f3, is the portion of the total erfor that
remains constant in repeated measurements at afset test
condition. The total systematic error in a measurgment is
the sum of the contributions of several elemental
systematic errors. Elemental systematic errofrs may
arise from imperfect calibration corrections, mgasure-
ment methods, environmental conditions, data reduction
techniques, etc. Systematic errors are always consfant at a
set test condition and affect the measurand by the same
amount, so their effect cannot be seen in test ddta.

3-3 MEASUREMENT UNCERTAINTY

There is an inherent uncertainty in the use of mjeasure-
ments to represent the true value. Measuremeng uncer-
tainty refers to the estimated effects of errpr. The
combined uncertainty in a measurement is the cqmbina-
tion of uncertainty due to random error and unceértainty
due to systematic error. When these uncertainties are
evaluated at a standard deviation level, they ar¢ called
“standard” uncertainties

ence between the measured value, X, and the true value.
As Figure 3-2-1 illustrates, the difference between the
measured value and the true value is the total error, 6.
Since the true value is unknown, total error cannot be
known and therefore only its expected limits can be esti-
mated. Total error consists of two components: random
error and systematic error (see Figure 3-2-1). Reducing
measurement error requires reducing random and/or

3-3.1 Random Standard Uncertainty of a
Measurand

Any single measurement of a measurand is influenced
by multiple elemental random error sources, €;. In succes-
sive measurements of a measurand, the values of these
elemental random errors change, resulting in the
scatter observed in successive measurements. If an
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Figure 3-2-1 Illustration of Measurement Errors
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infinitejnumber of measurements of a measurand were to
be takepn with the defined test process, the resulting popu-
lation of measurements could be described statistically in
terms df the population mean, y, the population standard
deviati¢n, o, and the frequency distribution of the poputa-
tion. These terms are illustrated in Figure 3-3.1:1 for a
population of measurements that is normally distributed.
For mgasurements with zero systematic(error (see
para. 3}2.2), the population mean is equal, to the true
value df the measurand and the popiJation standard
deviatipn is a measure of the scatter_of the individual
measufements about the population mean. For a
normalldistribution, the intervaly# o will include approxi-
mately p8% of the population;and the interval y + 20 will
include| approximately 95%.'0f the population.

Sincq at a set test ¢ondition only a finite number of
measufements are _acquired, the population’s true
mean, f, and true.Standard deviation, o, are unknown
but cah be estimated from sample statistics. The
sample| mean,*X, is only an estimate of the population
mean andds given by

Possible Values

Thesample standard deviation, sy, is only an estimatg of
the'population standard deviation and is given by

(3-3-2)

For a distribution of measurements, the standard deyia-
tion of the sample mean, S, can be used to define the
probable interval around the sample mean that is
expected to contain the population mean. The standard
deviation of the sample mean is related to the sample stan-
dard deviation and is called the random standard under-
tainty:

sx = % (3-4-3)

In general, increasing the number of measurements
collected at a set test condition is beneficial because
(a) itimproves the sample mean as an estimator of the
true population mean

N
X
j=1
N

(3-3-1)

X =

where
N = the number of measurements in the sample
X; = the value of each individual measurement in the
sample

(b) it improves the sample standard deviation as an
estimator of the true population standard deviation

(c) it reduces the value of the random standard uncer-
tainty of the sample mean
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Figure 3-2-2 Measurement Error Components
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3-3.2 Systematic Standard Uncertainty of a
Measurand

Every measurementis influenced by multiple elemental
systematic error sources, Bx. In successive measurements
of a measurand at a set test condition, the values of these
elemental systematic errors do not change. They are
constant and therefore cannot be observed in collected
test data. If an infinite number of measurements of a

In general, reducing the total systematic uncertainty is
beneficial because

(a) itimproves the sample mean as an estimator of the
true value

(b) it reduces the risk of significant shifts in sample
means from test to test if systematic errors change
(e.g., when equipment is changed out for alternate equip-
ment or is recalibrated)

measufand were to be taken with the defined test
process$, the resulting population mean would still be
in error due to the influence of these constant elemental
systemitic errors. For measurements with zero random
error (see para. 3-2.1), every successive measurement will
be exactly the same but all will be in error by the sum total
of the [elemental systematic errors that affect that
measurement.

Each|elemental systematic error contributes to every
measuffement affected by it in the same way at a set
test copdition. Since these errors are constant for the
test, thg error each imparts to an individual measurement
is equivialent to the error imparted to the average value of
succesdive measurements, X [as given by eq. (3-3-1)]. [)’yk
represgnts each elemental systematic error affecting the
averagle measurement where k denotes a specific
elemenftal error source. While ﬁ}k is unknown, it can

be postulated to come from a population of possible
error vplues from which a single sample (error value)
is drawn and imparted as an unknown and constant
error to all the measurements and therefore to the
averag¢ measurement of each elemental measurand-at
the test| condition. Assuming or estimating the frequeticy
distribytion and standard deviation of this population of
possiblg errors permits estimating the uncertainty of the
test m¢asurement average due to this, single sample
elemenjtal systematic error. The elemiental systematic
standafd uncertainty, by, is defihed as a constant
value that estimates the dispersion of the population
of possjble ﬂ)_(k values at the Standard deviation level.

All of the elemental systematic errors affecting a
measufement combinéito’ yield the total systematic
error, By, in the medsurement’s average. The total
systemjatic standard“uncertainty, by, is defined as a
constant value{(at*a set test condition) that estimates
the dispersion\of the population of possible S values
at the dtandard deviation level.

Typita ol clnall
quantified by

(a) identifying all significant elemental sources of
systematic error for the measurement

(b) evaluating elemental systematic standard uncer-
tainties as the standard deviations of the possible
systematic error distributions

(c) for the TSM, combining the elemental systematic
standard uncertainties into an estimate of the total
systematic standard uncertainty for the measurement

3-3.2.1 Tdentifying Elemental Sources of Systematic
Error. Attempting to identify all of the significant
elemental sources of systematic error for a measurement
is an important step in an uncertainty analysis.'Failur¢ to
identify any significant source of systemati¢ error will lead
to an underestimate of measurand uncertainfty.
Attempting to identify all significaht elemental sourfes
of systematic error requires athorough understandjing
of the test objectives and test, process.

3-3.2.2 Evaluating Elémental Systematic Standard
Uncertainties. Once all,significant elemental source§ of
systematic error areidentified, elemental systematic stan-
dard uncertainties-for each source must be evaluated.
Since the elemental systematic standard uncertainty is
both constant*and unknown at a given test condition,
successive measurements do not provide data ffor
direct ‘computation of it using the standard deviatjon
described in para 3-3.1. Therefore, the evaluation offan
elemental systematic standard uncertainty requifes
that a standard deviation be estimated from published
information, special data, or engineering judgment.

Note that the systematic and random errors in a dpli-
bration result are systematic as to their effect on test djita.
This is called “fossilization.” This allows the calibratjon
standard uncertainty to be one term in the combination
of the test systematic standard uncertainties. (The
random components in the calibration also become
systematic terms in the test process, as these erfor
sources do not add scatter to the test data as they did
to the calibration data.)

3-3.2.2.1 Published Information. For some
elemental systematic error sources, published informa-
tion from calibration reports, instrument specificatigns,
and other technical references may provide quantitafive
information regarding the dispersion of errors for|an
elemental systematic error source. The systematic under-
tainty may be described in terms of a confidence interyal,
i i fa

standard deviation.

If the published information is presented as a confi-
dence interval (limits of error at a defined level of confi-
dence), then the elemental systematic standard
uncertainty is estimated as the confidence interval
divided by a statistic that is appropriate for the frequency
distribution of the error population. The specific value of
this statistic must be selected on the basis of the defined
confidence level and degrees of freedom associated with
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the confidence interval. For a normal distribution, the
Student’st statistic is used. For a 95% confidence level
and large degrees of freedom, the value of the Student’s
t statistic is approximated as 2, and eq. (3-3-4) would

apply.

- 3-3-4
by, = —* (3-3-4)

ofthe elemental systematic error. A population of possible
ﬂik valuesis chosen by the analyst. The standard deviation

of this population is the estimate of systematic standard
uncertainty for that error source.

In certain situations, knowledge of the physics of the
measurement system will lead the analyst to believe
that the limits of error are nonsymmetric (likely to be
larger in either the positive or negative direction). For

whETe
X " the published uncertainty assumed to be repre-
sented by normally distributed errors at a 95%
confidence level
X the systematic standard uncertainty in X for
source k

efer to Nonmandatory Appendix B for values of the
Stydent’s t statistic at other confidence levels and
degrees of freedom. For situations in which the frequency
distribution and degrees of freedom are unspecified, a
uniform distribution and large degrees of freedom are
often assumed. For situations involving other frequency
disfributions, refer to an appropriate statistics textbook.

the published information is presented as an ISO
expanded uncertainty at a defined coverage factor,
thgn the elemental systematic standard uncertainty is
estfmated as the expanded uncertainty divided by the
coyerage factor.
If the published information is presented as a multiple
of 4 standard deviation (e.g,, “2-sigma” or “3-sigma”), then
thg elemental systematic standard uncertainty is-esti-
mated as the multiple of the standard dewiation
diviided by the multiplier.

jen

3-3.2.2.2 Special Test Data. Sometimes a separate,
sp4gcial test is needed to estimate the’ systematic error
caysed by a given source. An example is a nonuniform
floyv effect on the determination\of the average velocity
at 3 given location in a test artiele. In this case, the deter-
mihation of the average velocity from a distribution of
mepsurements at that lecation can be used to estimate
thq error when a smaller (probably more realistic)
number of measGirements is used to determine the
avgrage velocity at that location. Another example is
thq determination of an average temperature of a
sulfface withva limited number of probes. If the surface
temhpefature is almost uniform at the test location,
thegn ‘the average from the separate measurements will

Treatiment of NONSYMIMetric SyStematic uncertaipty, see
subsection 7-2.

3-3.2.3 Combining Elemental Systematic Standard
Uncertainties. Once evaluated, all of the elemental
systematic standard uncertainties influéncing a measure-
mentare combined into an estimate of the total sygtematic
standard uncertainty for thesmeasurement bx. Pfovided
all elemental systematic standard uncertainties afe eval-
uated in terms of their irifluence on the measurangl and in
the units of the measurand, these elemental systematic
standard uncertainties are combingd per
subsection 5-2 (using the TSM). Otherwise} these
elemental systematic standard uncertaintfes are
combined-per subsection 6-4. In some cases, el¢mental
systematic’standard uncertainties may arise frjom the
sameelemental error source and are therefore corfelated.
See stibsection 7-1 for a detailed discussion.

3-3.3 Combined Standard Uncertainty and
Expanded Uncertainty

As previously discussed, the combined standard uncer-
tainty in a measurement is the combination of uncértainty
due to random error and uncertainty due to systematic
error. The combined standard uncertainty of the measure-
ment mean is calculated as follows (for TSM):

2 2 -3-
wg = ()" + (5p) (339)
where
bx = the systematic standard uncertainty| of the

measurand
sy = the random standard uncertainty|of the
measurand mean

The expanded uncertainty of the measurement mean is
the total uncertainty at a defined level of confidence. For
applications in which a 95% confidence level is|appro-
priate, the expanded uncertainty is calculdted as

approximate the true average. It the temperature 1s
not uniform due to heat conduction effects, then a
two- or three-dimensional heat conduction analysis
can be performed to estimate the error.

3-3.2.2.3 Engineering Judgment. It is often neces-
sary to rely upon engineering judgment to quantify the
dispersion of errors associated with an elemental error
source. In these situations, it is customary to use engi-
neering analyses and experience to estimate the limits

follows (for TSM):

Uy = 2uy

3 3 (3-3-6)

where the assumptions required for this simple equation
are presented in subsection 5-4.

Expanded uncertainty is used to establish a confidence
interval about the measurement mean that is expected to
contain the true value. Thus, the interval X + Uy is
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Figure 3-3.3-1 Uncertainty Interval
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expectdd to contain the true value with a 95% level of
confidehce, as seen in Figure 3-3.3-1.

Note|that when using the MCM to determine anuncer-
tainty, the random and systematic error distributions with
the appfopriate standard deviations (standard uncertain-
ties) arg used to determine the combinedidistribution for
the medsurement or result. The combinedstandard uncer-
tainty is then the calculated standard-deviation of that
distribfition and the expanded-uncertainty at a given
level of{ confidence determinedfrom a coverage interval
of the distribution (see para.)6-4.3).

3-4 PRETEST AND-POST-TEST UNCERTAINTY
ANALYSES

Althqugh the analyst may be tempted to conduct an
uncertainty-analysis only once, there are benefits to
condudting-it both before and after the test, and then

Uncertainty Interval

similar instrumentation, prior measurement uncertaipty
analyses, expert opinions, and, if necessary, special tets.

A pretest uncertainty analysis should be considefed
because it allows preventive action to be taken pifior
to expending resources to conduct a test. The benefits
of this proactive effort would be to make modificatipns
to the test process to decrease the expected uncertaipty
to a level consistent with the overall test objectives, of to
reduce the cost of the test while still acceptably attainjing
the objectives. Possible preventive actions include

(a) selecting alternative testing methods that rely upon
different analysis procedures, testing under differgnt
conditions, and/or measurement of different measurands

(b) selecting alternative measurement methods|by
changing test instrumentation (type and/or quantity),
calibration techniques, installation methods, andjfor
measurement locations

(c) changing sample sizes by changing sampljng

comparing the two results.

3-4.1 Pretest Uncertainty Analysis

The objective of a pretest analysis is to establish the
expected uncertainty interval for a test result prior to
the conduct of a test. A pretest uncertainty analysis is
based on data and information that exist before the
test, such as calibration histories, previous tests with

10

frequencies, changing test duration, and/or changing
the number of repeat tests

(d) adjusting or substantiating test requirements

(e) reevaluating the test objectives

Additionally, a pretest uncertainty analysis facilitates
communication between all parties to the test about
the expected quality of the test. This can be essential
to establishing agreement on any deviations from
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applicable test code requirements and can help reduce the
risk that disagreements will surface after conducting the
test.

3-4.2 Post-test Uncertainty Analysis

The objective of a post-test analysis is to establish the
uncertainty interval for a test result after conducting a
test. In addition to the data and information used to
cofau ne pr Uncertainty analysis, 8
un¢ertainty analysis is based upon the additional data
andl information gathered for the test, including all test
mepsurements, pretest and post-test instrument calibra-
tion data, etc. A post-test uncertainty analysis is recom-
mejnded as it serves to
a) validate the quality of the test result by demon-
strating compliance with test requirements

(b) facilitate communication of the quality of the test
result to all parties to the test

(c) facilitate interpretation of the quality of the test by
those using the test result

Additionally, a post-test uncertainty analysis serves to
validate the goodness of the pretest uncertainty analysis. If
the post-test uncertainty results are much larger than the
pretest uncertainty results, this may highlight an over-
i i i instru-
results

mportan >
ments or test processes. If the post-test uncertainty
are much smaller than the pretest uncertainty resylts, this
may highlight far too much conservatisnt in-0ne ¢r more
elements of the pretest analysis informatiopn. At a
minimum, disparities of significance deserve somgdiscus-
sion. There may be sound technical and/or bpisiness
reasons to further evaluate‘the differences a)d then
possibly take corrective action for future tests.

0 proplem A

11


https://asmenormdoc.com/api2/?name=ASME PTC 19.1 2018.pdf

ASME PTC 19.1-2018

Section 4
Defining the Measurement Process

4-1 OVERVIEW

The flrst step in a test uncertainty analysis is to clearly
define the desired result and acceptable level of uncer-
tainty for the result. Typically, the result is determined
from mpltiple measured variables using a data reduction
equation (DRE). Consideration must be given to the selec-
tion of the appropriate “true value” of each measured vari-
able and the time interval for classifying errors as
systematic or random. This Section provides an overview
of how|the measurement process should be defined.

4-2 SELECTION OF THE APPROPRIATE “TRUE
VALUE”

Depending on the user’s perspective, several measure-
ment opjectives or goals and hence corresponding “true
values| (measurements with ideal zero error) of a
measurpnd may exist simultaneously in a measurement
proces§. For example, when analyzing a thermocouple
measufement in a gas stream, several starting points
or “tru¢ values” can be selected. The starting point for
the anglysis could be the “true value” defined\as the
metal femperature of the thermocouple junctien, the
gas stjgnation temperature or junction temperature
correctpd for probe effects, or the mass.flow-weighted
averagg of the gas temperature at the plane of the instru-
mentatjon. Any of the above “true valires” may be appro-
priate. The selection of the “true yalué” for the uncertainty
analysi$ must be consistent with the goal of the measure-
ment [4].

4-3 IDENTIFICATION OF ERROR SOURCES

Oncelthe truevalue for a measurand has been defined,
the err¢rs assoeiated with estimating the true value shall
be identified-Examples of error sources include imperfect
calibration~corrections, uncontrolled test conditions,

(d) data reduction uncertainty
(e) uncertainty due to methods and otherféffects

4-3.1 Calibration Uncertainty

Each measurement instrument may;introduce random
and systematic uncertainties. THesxmain purpose of the
calibration process s to elimipatélarge, known systematic
errors and thus reduce thetmeasurement uncertainty to
some “acceptable” levelrHaving decided on the “accdpt-
able” level, the calibratien process achieves that goal| by
exchanging the largesystematic errors of an uncalibrated
or poorly calibrated instrument for the smaller combiha-
tion of systematic errors of the standard instrument gnd
the random'errors of the calibration. Calibrations are dlso
used to provide traceability to known reference standayds
or physical constants, or both.

Requirements of military and commercial contrgcts
have led to the establishment of extensive hierarcHies
of standards laboratories. In some countries, a national
standards laboratory is at the apex of these hierarchjes,
providing the ultimate reference for every standards lab-
oratory. As shown in Figure 4-3.1-1, each additional lgvel
in the calibration hierarchy adds uncertainty in the
measurement process.

4-3.2 Uncertainty Due to Test Article and/or
Instrumentation Installation

Test uncertainty can also arise from interactigns
between either the test instrumentation and the fest
media or the test article and the test facility.

(a) Interactions between the test instrumentation and
the test media

(1) Installation of sensors in the test media may
cause intrusive disturbance effects. An example is the
measurement of airflow in an air conditioning duct.
Depending on the design, the pitot static probe may

measurement methods, environmental conditions, and
data reduction techniques. Estimates to quantify the
limits of these errors are represented as uncertainties.
These uncertainties in the measurement process can
be grouped by source.

(a) calibration uncertainty

(b) uncertainty due to test article and/or instrumenta-
tion installation

(c) data acquisition uncertainty

affect the measured total and static pressure and thus
the calculated airflow.

(2) Environmental effects on sensors/instrumenta-
tion may exist when the sensors experience environmen-
tal effects different from those observed during
calibration. These may include conduction, convection,
and radiation on a sensor when installed in a gas turbine.

(b) Interactions between the test article and the test

facility
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Figure 4-3.1-1 Generic Measurement Calibration Hierarchy
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(1) Testfacility limitations can affect uncertainty. An
exdmple is an air conditioner bench tested in a laboratory
but used in an automotive mechanics shop. The effect of
thq oily air can influence the quoted rating of the unit. A
sedond example is the testing of a gas turbine aircraft
engine in an altitude facility. The facility simulates altitude
by|lowering the ambient pressure at the test article
exlaust and simulates forward speed by raising the
inl¢t pressure at the engine inlet above ambiehtpressure.
The facility inlet duct is of necessity significantly longer
than the normal aircraft flight intake and‘so its boundary
laypr characteristics are significantly different. The engine
petformance test results must be corrected to account for
thig difference between the inlet diict in the facility and the
intake on the aircraft.

(2) Facility limitatiofis for testing may require extra-
polations to other conditions. An example is the testing of
an putomotive engine:*Although the fuel consumption of
an putomotive engine changes with altitude and speed, an
aufomotive testfacility may only be able to test at specified
altitudes and speeds. Effects at other altitude conditions
maly need-to be extrapolated.

cases, it.is necessary to evaluate each of the el¢gmental
uncertainties and to combine them to predict the
overall uncertainty.

4-3.4 Data Reduction Uncertainty

Computations on raw data are often done to produce
output (data) in a format more easily used in resulfs calcu-
lations or application of calibration corrections. [Typical
error sources in this category stem from curve fits and
computational resolution. With the recent advgnces in
computer systems, the computational resolutiopn error
sources are often negligible; however, curve flt error
can be significant. Other examples of data reduction uncer-
tainty include

(a) the assumptions or constants contained in the
calculation routines

(b) using approximating engineering relationghips or
violating their assumptions

(c) using an empirically-derived correlation puch as
empirical fluid properties

These additional uncertainties may be of dither a
systematic or a random nature, depending ojn their
effect on the measurement.

4-3.3 Data Acquisition Uncertainty

Uncertainty in data acquisition systems can arise from
errors in the signal conditioning, the sensors, the
recording devices, etc. The best approach to minimizing
the effects of many of these error sources is to perform
overall system calibrations. By comparing known input
values with their measured results, estimates of the
data acquisition system uncertainty can be obtained.
However, it is not always possible to do this. In these
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4-3.5 Uncertainty Due to Methods and Other
Effects

Uncertainties due to methods are defined as those addi-
tional uncertainty sources that originate from the techni-
ques or methods inherent in the measurement process.
These uncertainty sources—beyond those contained in
calibration, installation sources, data acquisition, and
data reduction—may significantly affect the uncertainty


https://asmenormdoc.com/api2/?name=ASME PTC 19.1 2018.pdf

ASME PTC 19.1-2018

of the final results. An example is the determination of an
average value of a variable in an environment character-
ized by nonuniform conditions.

Measurement requirements for a performance test
often demand an average measurement of individual para-
meters. Most instrumentation, however, yields a point
measurement of a parameter rather than an average
measurement. While this point characteristic may be

useful forather purpases, it raises a prnh]pm in deter-

4-4.1 Alternate Categorization Approach

An alternate approach, which is used in the ISO GUM,
categorizes the uncertainties based on the method used to
estimate them. Those evaluated with statistical methods
are classified as Type A, while those evaluated by other
means are classified as Type B. Depending on the selection
of the defined measurement process, there may be no
simple correspondence between random or systematic

mining performance level. In many instances, the quantity
measurjed varies in space, making the point measurement
inadequate. Thus, it often is necessary to install several
measuffement sensors at different spatial locations to
account for spatial variations of the parameter being
measufed. Spatial variation effects are considered
errors ¢f method.

If an yrea-averaged value is desired, such as the average
fluid ve|ocity in a pipe ata cross section, then the definition
of the gverage velocity is given by

V= i//V(x, »)dA

and thig is actually approximated using N measured velo-
city valpes V; as

22

| =

v(4),

™

Il
—_

1

The dverage velocity is first determined using a reason-
ably lajjge number of measurement locations for N, and
then fof test operation conditions a smaller number of
locations is used. The error incurred due to method is
the difference in the values of average velocity’ given
by the fwo determinations.

4-4 CATEGORIZATION OF UNCERTAINTIES

This Standard delineates uncertainties by the effect of
the errgr (i.e., systematic and random). This categoriza-
tion approach supports the identification, understanding,
and mapagement of test uhcettainties. If the nature of an
elemental error is fixed)over the duration of the defined
measurement process, then the error contributes to the
systematic unceyptainty. If the error source tends to cause
scatter [in repeated observations of the defined measure-
ment process,then the source contributes to the random
uncertginty-

BecaUSe measurement uncertainties are categorize

y
the effect of the error, the time interval and duration of the

measurement process can be important considerations
and so must be clearly stated. The significance of this
is discussed in para. 4-4.2. In addition, the objective of
the test may affect the categorization, as discussed in
para. 4-4.3.
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and Type A or Type B.

4-4.2 Time Interval Effects

Errors that may be fixed over a short time period may be
variable over a longer time period. Foreéxample, califra-
tion corrections, which are assumed-fixed over the lif¢ of
the calibration interval, can be considered variable if the
process consists of a time interval encompassing sevgral
different calibrations. The tinge interval must be clegrly
specified to classify an erfor, and it may not always| be
the same interval as¢the test duration. For example,
when comparing results among various laboratoriey, it
may be more appropriate to classify an error|as
random ratherthan systematic even though that eryor
may have béen‘constant for the duration of any single tgst.

The effects of a time interval may also be important
when ¢onsidering the stability and control of a tlest
process. The stability of a measurement method is a
géneric concept related to the closeness of agreempnt
between test results. Process stability is estimated
from observations of scatter within a data set and i
treated as a random error. Variability in independpnt
test results obtained under different test conditidns,
varying experimental setups, or configuration chan
allow for additional between-test random errors.

4-4.3 Test Objective

The classification and number of error sources are often
affected by the test objective. For example, if the test objec-
tive is to measure the average gas mileage of model “X)Z”

cars, the variability among or between cars of the same
model must be considered.

Random error obtained in a test from a given car woluld
not include car-to-car variations and thus would hot
represent all random error sources. To observe the
effect of the random error associated with car-to-gar
variability, the experiment would need to be run a

same model (see Figure 4-4.3-1). The total variation in
the test result is greater than that observed from a
test of a single given car. This variation would be more
representative of the total random error associated
with determining gas mileage for the fleet of model
“XYZ” cars. Of course, if the data of interest is gas
mileage of a given single car, then the estimated variation
with testing the representative given car is an appropriate
estimate for the random error. The same short-term and
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Figure 4-4.3-1 “Within” and “Between” Sources of Data Scatter
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long-term effects must be applied for other variables
affecting gas mileage (temperature, altitude, humidity,
rodd conditions, driver variations, etc.).

4-5 COMPARATIVE TESTING

The objective of a comparative test (also known as a
bagk-to-back test) is to determine, with the smallést
tegt uncertainty possible, the net effect of a design
andl/or performance change. The first test is run with
thg standard or baseline facility configuration. The
seqond test is then run in the same facility with the
degign and/or performance change and; ideally, with
insfruments, setups, and calibrations.identical to those
used in the first test. The difference between the
reqults of these tests is an indication of the effect of
design and/or perforniance change. Depending on
ether common instruinentation, setups, and calibra-

A controlled back-to-back test is the ideal case of a

antatiaonic

Experiment Number

change ip-instrument performance due to damage or
other factors between the pre-change test arl;li post-
change tests. This also assumes that the tepts are
performed within a reasonable time of each other such
that the initial instrument calibrations are not [voided.
In this case, all instruments are perfectly corfrelated
and systematic uncertainty for the combined result is
significantly reduced. The random uncertaintie$ of the
two test results then will be important for deteymining
the uncertainty in the comparison.
Another common form of the comparative test{ known
as an uncontrolled back-to-back test, uses the same test
methods for both the pre-change test and post-ch:tTge test
butdoesnotuse all of the same instruments betwe¢n tests.
Use of different instruments could be the result of thultiple
causes, including damage to instruments betwedn tests,
lapse of instrument calibration during thje time
between the pre-change and post-change tests, ¢r engi-
neering judgment. In this case, replacement instrfjuments
chosen should be similar in accuracy and specifications to
the original instruments so that the effects of cofrelated
errors (see subsection 7-1) may reduce the sysfematic
uncertainty of the difference between the test r¢sults.

used for both tests. This assumes that there is no

15
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Section 5
Uncertainty of a Measurement

5-1 RANDOM STANDARD UNCERTAINTY OF THE
MEAN

5-1.1 General Case

For ¥ determined as the average of N measurements,
the appfopriate random standard uncertainty of the mean,
sx, is glven by eq. (3-3-3). This type of estimate is an ISO
Type Alestimate.

In a spmple of measurements, the degrees of freedom is
the sanfple size, N. When a statistic is calculated from the
samplg, the degrees of freedom associated with the
statisti¢ is reduced by one for every estimated parameter
used i1 calculating the statistic. For example, from a
sampld of size N, X is calculated by eq. (3-3-1). The
sample|standard deviation, sy, and the random standard
uncertpinty of the mean, sy, are calculated from
egs. (343-2) and (3-3-3), respectively, and each has N -
1 degrdes of freedom, v:
v=N-1 (5-1-1)
becaus¢ X (based on the same sample of data) is uséd-in
the calqulations of both quantities.

5-1.2 Using Previous Values of sy

In some test situations, the measurement of a variable
may bg only a single measurement.or an average of
measullements taken over a shert“time frame, as with
a computer-based data acquisition system. In this
latter cfise, the time frame over-which the measurements
are takgn may be on the orderof milliseconds or less, while
the ranflom variations‘n-the process may be on the order
of seconpds or minutes or even days. This “short time frame
averaged” value,should then be handled in the same
manner as a.single measurement.

The fandom'standard uncertainty for a single measure-
ment must be estimated from historical or previous data

with the measurement system and the unsteadiness-offhe
test condition. If the sample standard deviation ofthe viri-
able being measured is also expected to be representative
of other possible random variations in the)measuremgent
(e.g., repeatability of test conditions, variation in gest
configuration, etc.), then these additional error sources
will have to be varied while the/multiple data measyre-
ments are taken to determine the standard deviation.
Another situation where-previous values of a variable
would be useful is when a.small sample size, N, is used to
calculate the mean value, X, of a measurement. If a mych
larger set of previous measurements of the same fest
conditions is avdilable, then it could be used to calculate
a more appropriate standard deviation for the currgnt
measurement [5]. Typically, these larger data sets pre
taken in-the early phases of an experiment program.
Oncéthe random variation of the test variables is under-
stood, then this information can be used to streamline the
test procedures by reducing the number or measuremejnts
taken in the later phases of the test.
When N, previous values, Xp, are known for the quantity
being measured, the sample standard deviation for fhe
variable can be calculated as

1/2
Np > 5-1-2
SX = 8x, = Z(XPV‘XP] G2
P—1; J
j=1
where

_ 1 5-1-3

Pj:1

The appropriate random standard uncertainty of the
mean for the current measurement, X, is then

S
5% = —= (5-1-4)

taken over similar test conditions. This protocol is typi-
cally followed when performing a pretest measurement-
uncertainty estimate.

Estimating the random standard uncertainty of a single
measurement must be done by evaluating previous
measurements of the parameter taken over similar test
conditions. For example, taking multiple measurements
as a function of time while holding all other conditions
constant would identify the random variation associated

where
N = the number of current measurements averaged to
determine X

The number of degrees of freedom for this random stan-
dard uncertainty of the mean, sx, is
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v=N, -1 (5-1-5)

This estimate of the random standard uncertainty is an
ISO Type A estimate since it is obtained from data. The case
where the current data sample is only a single measure-
ment is handled with N = 1 in eq. (5-1-4).

5-1.3 Using Elemental Random Error Sources

Another method -of estimating the random -standard
o

uncertainties of the mean by the root-sum-square
method [eq. (5-1-6)], the degrees of freedom, v, associated
with the combined random standard uncertainty is calcu-
lated using the Welch-Satterthwaite formula [6],
eq. (5-1-7).

5-1.4 Using Estimates of Sample Standard
Deviation

ungertainty of the mean for a measurement is from infor-
maftion about the elemental random error sources in the
enfire measurement process. If all the random standard
ungertainties are expressed in terms of their contributions
to the measurement, then the random standard uncer-
taipty for the measurement mean is the root-sum-
sqyare of the elemental random standard uncertainties
of the mean from all sources divided by the square
rodt of the number of current readings, N, averaged to
defermine X:

e 1/2

sY = % 2 (syk)2

k=1

(5-1-6)

whiere
K = the total number of random error (or uncertainty)
sources.

KEach of the elemental random standard uncertainties of:
thgmean, s+, is calculated using the methods describéddn
pafa. 5-1.1 or para. 5-1.2, depending on which is-appro-
pripte. If in each of the N measurements of the yariable X,
thg output of an elemental component is averaged Ny
tinjes to obtain S)_(k' then the method in para. 5-1.2
wopld apply.

The degrees of freedom for the estimated random stan-
dard uncertainty of the mean, 5% is dependent on the

In"a pretest uncertainty analysis, previous infofmation
might not be available to estimate the sample'standard
deviation as discussed in para 5-1.2 orpava. 5-1.3. In
this case, an estimate of the sample standard dgviation,
Sx, would be made using engineering, judgment and the
best available information. This type of uncertaity esti-
mate would be an ISO Type B lestimate.

5-2 SYSTEMATIC STANDARD UNCERTAINT])Y OF A
MEASUREMENT

The systematic Stafidard uncertainty, b, of a measure-
ment was defined in para. 3-3.2 as a value that quantifies
the dispersion of the systematic error associated yith the
mean. The true systematic error, §, is the unknown} but b
is the evaluated so that it represents an estimatg of the
standard deviation of the distribution for the pofsible
valués. It should be noted that while by is an estimate of
the dispersion of the systematic errors in a measufement,
the systematic error that is present in specific measure-
ment is a fixed single value of £.

The systematic standard uncertainty of the mjeasure-
ment is the root-sum-square of the elemental sygtematic
standard uncertainties, bx,, for all sources (TSM).

e 5 1/2
by =X (b%,) (5-2-1)
k=1

infprmation used to determine each of the elemental ~ Where
rarjdom standard uncertainties of the mean and is calcu- bx, = eachestimate of the standard deviation df the k
latéd as elemental error source
D N K = the total number of systematic error s¢urces
2 (SXk)z Note that in eq. (5-2-1), all of the elemental sysgtematic
_ \k=1 (5-1-7) standard uncertainties are expressed in terms pf their
K (SXk)4 contributions to the measurement.
Z For each systematic error source in the measufement,
=1 'k the elemental systematic standard uncertainty fpust be
estimated from the best available information. Usually
where

Ux = the appropriate degrees of freedom for SX, and is
obtained from eq. (5-1-1) or eq. (5-1-5), as appro-
priate

When all error sources have large sample sizes, the
calculation of v is unnecessary. However, for small
samples, when combining elemental random standard
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these estimates are made using engineering judgment
(and are therefore ISO Type B estimates). Sometimes
previous data are available to make estimates of uncer-
tainties that remain fixed during a test (and are therefore
ISO Type A estimates). If any of the elemental systematic
uncertainties are nonsymmetrical, then the method given
in para. 7-2.1 should be used to determine the systematic
standard uncertainty of the measurement.
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There can be many sources of systematic error in
measurement, such as the calibration process, instrument
systematic errors, transducer errors, and fixed errors of
method. Also, environmental effects, such as radiation
effects in a temperature measurement, can cause
systematic errors of method. There usually will be
some elemental systematic standard uncertainties that
will be dominant. Because of the resulting effect of

The general form of the expression for determining the
uncertainty of a measurement is the root-sum-square of
the systematic and random standard uncertainties for the
measurement, with this quantity defined as the combined
standard uncertainty, uyx , (TSM) [2]:

ux =\ (b%)* + (%) (5-4-2)

combi ing the elemental uncertainties in a root-sum- where
squarg manner, the larger or dominant ones will bx = thesystematic standard uncertainty [eq. (5-241)]
control|the systematic uncertainty in the measurement; sx = the random standard uncertainty of the.mean

howevgd
icant s

r, one should be very careful to identify all signif-
urces of fixed error in the measurement.

5-3 CLASSIFICATION OF UNCERTAINTY SOURCES

As discussed in para. 1-2.2.3, the ISO Guide classifies
uncertdinties by source, as either Type A or Type B [2].
Type Aluncertainties are the calculated standard devia-
tions obtained from data sets. Type B uncertainties are
those that are estimated or approximated rather than
calculated from data. Type B uncertainties are also
given ap estimated standard deviations.

In this Code, uncertainties are classified by their effect
on the theasurement, either random or systematic, rather
than by|their source. This effect classification was chosen
since mjost test operators are concerned with how errors
in the test will affect the measurements.

Therg may be situations when it is convenient to classify
elemental uncertainties by both effect and source. Such
classiffjcations may be useful in international test
programs. This Code recommends the following nomen-

clature|for dual classifications:

bx, 4 = elemental systematic standard gngertainty
calculated from data, as in a calibration
process

bx, 3 = elemental systematic standard uncertainty
estimated from the best\available information

$X,,4 = elemental random|standard uncertainty
calculated from data

SX,,p ~ elemental random standard uncertainty esti-

mated fropmbest available information

5-4 COMBINED-STANDARD AND EXPANDED
UNCERTAINTY OF A MEASUREMENT

For dimplicity of presentation, a single value is often
preferrnd to express the estimate of the error hetween

[eq. (3-3-3), eq. (5-1-4), or eq. (5-1-6))as’ apgro-
priate]

In order to express the uncertainty.at a specified copfi-
dence level using the TSM, the combined standard under-
tainty must be multiplied by an€xpansion factor taken as
the appropriate Student’s t value for the required copfi-
dence level (see Nonmandatory Appendix B). Dependiing
on the application, various confidence levels may|be
appropriate. The Student’s t is chosen on the basig of
the level of confidence desired and the degreeq of
freedom. The-dégrees of freedom used is a combined
degrees of fréedom based on the separate degreeq of
freedom-for‘the random standard uncertainty and the
elemental systematic standard uncertainty (see
Nonmrandatory Appendix B). A t value of 1.96 (usually
taken as 2) corresponds to large degrees of freedpm
and defines an interval with a level of confidencq of
approximately 95%. This expansion factor of 2 is ufed
for most engineering applications. For other confidepce
levels or fewer degrees of freedom, dee
Nonmandatory Appendix B.

The expanded uncertainty for a 95% level of confide
and large degrees of freedom (t = 2) is calculated per
TSM:

hce
the
Ux =2uyx G-43)
where

ux = the combined standard uncertainty [eq. (5-442)]

The expression for the expanded uncertainty giver in
eq. (5-4-3) applies only when the measurement X is the
desired result of the experiment. If several variables pre
measured and used in a DRE, then the techniqueq i
Section 6 are used.

For the MCM propagation of uncertainties, the coverpge

the mean value, X, and the true value with a defined
level of confidence. The interval

X + Uyg (5-4-1)
represents a band about X within which the true value is
expected to lie with a given level of confidence (see
Figure 3-3.3-1). The uncertainty interval is composed
of both the systematic and random uncertainty compo-
nents.
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interval 1s determined as described In para. 6-4.3.

5-4.1 Example

A digital thermometer is used to measure the average
temperature of a circulating water bath being used in an
experiment. The experiment lasts a total of 30 min.
Temperature measurements are collected every
minute, resulting in a total of 31 data points, as presented
in Table 5-4.1-1.
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Table 5-4.1-1 Circulating Water-Bath Temperature Measurements (Example 5-4.1)

Measured Measured Measured
Elapsed Temperature, Elapsed Temperature, Elapsed Temperature,
Time, min °C Time, min °C Time, Min °C
0 85.11 11 85.28 21 85.23
1 84.89 12 85.11 22 85.12
2 85.07 13 84.80 23 85.43
3 84.77 14 84.79 24 84.50
4 85.24 15 85.22 25 85.22
5 84.72 16 85.05 26 85.39
6 85.00 17 84.58 27 84.74
7 85.39 18 85.20 28 85.35
8 84.72 19 85.14 29 84.75
9 85.50 20 85.05 30 84.56
10 85.18

du

tur

eq.

a) Uncertainty Due to Random Error. The uncertainty
b to the random error of the average temperature
asurement is evaluated using the steps herein.

7) The sample mean, or average value, of the tempera-

e measurements is determined using eq. (3-3-1).
N
X =—) X;=8504
j=1

(3-3-2).

3) The random standard uncertainty of the sample
an is determined using eq. (3-3%3).

s = =70.05°C

Sx
WA

b) Uncertainty Due to Systematic Error. The uncer-

tai

ty due to the systematic error of the average circu-

lating water-bath temperature measurement is
evdluated by<the steps herein.

1) Idemtify all significant elemental sources of

sygtematic error for the measurement.

') Evaluate elemental systematic standard uncertain-

(3) Combine the €lemental systematic standard
tainties into an estimate of the total systematic s
uncertainty for-the measurement.

For the purpose of this example, a summaryj
evaluation) is presented in Table 5-4.1-2. R
para..3*8.2 and subsection 5-2 for further discu
the process for identifying, evaluating, and corj
elemental systematic uncertainties.

The systematic standard uncertainty of the teg
ture is calculated using eq. (5-2-1).

1/2

k
by =Y b7 =007°C
i=1

Note that because of the root-sum-square coml
of the elemental sources, only two of the five uncer
contribute meaning.

(c) Expanded Uncertainty (TSM). The expanded
tainty (TSM) of the average circulating wat
temperature measurement is evaluated
eqs. (5-4-2) and (3-3-6).

Ug = 24 (bx)* + (s)? = 0.22°C

Therefore, the true average temperature of th|
lating bath during the experiment is expected to li
the following interval with 95% level of confide

uncer-
andard

of this
efer to
sion of
hbining

mpera-

ination
tainties

uncer-
pr-bath
using

E circu-
b within
hce:

X + Ux = 854 + 022°C

tieSas e Standard deviations of the possibie SyStematic
standard error distributions.
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Table 5-4.1-2 Systematic Standard Uncertainty of Average Circulating Water-Bath Temperature Measurement
(Example 5-4.1)

Description of Systematic Elemental Systematic
Uncertainty Source Standard Uncertainty, °C ISO Types
Calibration of digital thermometer 0.05 B
Environmental influences (ambient temperature, humidity, etc.) on digital 0.005 A
thermometer
Effects of conduction heat transfer surroundings 0.0005 B
Uniforfmity of circulating water bath (spatial uncertainty) 0.05
Effecty of radiation heat transfer Negligible B

20
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Section 6
Uncertainty of a Result Calculated From Multiple Parameters

(=2}
1

1 RESULTS CALCULATED FROM MULTIPLE
PARAMETERS

alculated results, such as the determination of effi-
ciegncy, are not usually measured directly. Instead,
mdre basic parameters, such as temperature and pres-
sujle, are either measured or assigned values (such as
properties from tabulated values) and the required
reqult is calculated as a function of these parameters.
The random and systematic uncertainties in these
measurements or assigned values of the parameters
prgpagate through the functional relationship between
the results and the parameters.

R Zf(Xl, Xz, ceey Xi) (6-1-1)
This produces arandom, sg, and systematic, b, standard
ungertainty in the calculated result.

this Section, methods of calculating these uncertain-

choice of approach depends on"whether, at a
n test condition, multiple results are available or
a single result is available. There is no equivalent

easured and-a'single result, R, is calculated for some
n test condition. Examples are sample-to-sample type
tests in whieh'the test sample is destroyed, e.g., deter-
mining theWtltimate strength or the heating value of mate-
ria). In such cases, some of the parameters may be based on
sinkbleimeasurements and others mav be the mean values

N;

_ 1
X = — X
1 I\le l]

j=1

(6-1-3)

where
N; = the number of measurements of X;

In such cases, both sp arid by must be determined using a
propagation method, sine& multiple results at a giyen test
condition are not available for a direct calculatign of sg.

6-1.2 Multiple Results: Test With the Resn.llt
Calculated Multiple Times at a Give
Condition

If multiple results are calculated at a given tes} condi-
tion, then a sample distribution of results is obtaingd. This
typically occurs in one of two ways. In the case of a gample-
to-sample type of experiment, as in para. 6-1.1, repeated
tests on multiple samples of the same material yielfl such a
sample of results. The other common case is the tithe-wise
type of experiment performed over a period of time, e.g., a
steady-state test for turbine efficiency. At a giyen test
condition, a set of parameters, X;, is measured rphultiple
times and multiple results, R,,, can be calculatg¢d from
each set of measurements as

Ry, = R[(Xl)m) (XZ)m) Y (Xi)m] (6-1-4)

In both sample-to-sample and time-wise expeilliments,

the average result is given by
M
2 R
=1

R=m=1_
M

(6-1-5)

where
M = the number of results at the given test cdndition

t=]

based on N; repetitions. N; can be different for each X;. The
result, R, is expressed in terms of the average or assigned
values of the independent parameters, X;, that enter into
the result. That is,

R=f%, %, .. (6-1-2)

o X;)
where the subscript i signifies the total number of para-
meters involved in R, and the average values of the inde-
pendent parameters are obtained as

In such situations, values of sz can be determined from
both the direct method using an equation analogous to
eq. (3-3-2) and one or both of the TSM and MCM propaga-
tion methods. The multiple values of sz can be compared
with one another. The implications of this comparison in
identifying the presence of correlated behavior in the
random errors affecting multiple parameters is discussed
in para. 6-3.1.2.
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As mentioned previously, there is no equivalent to the
direct method for calculating systematic uncertainty in the
result, so bp must be determined from a propagation
method.

6-1.3 Determining Uncertainties in Results
Calculated From Multiple Parameters

The following subsections present details of the tech-

6-2.2 Some Practical Consideration for Multiple
Results at a Given Test Condition

In time-wise type experiments, variations in a “steady
state” condition may lead to correlated variations in
different parameters. An example is a heat exchanger
test to determine heat rate at a constant flow rate condi-
tion, where an uncontrolled upward drift with time of the
inlet fluid temperature would likely result in an upward

niques[used to determine the random and systematic
uncertdinties in results calculated from multiple para-
meters)In subsection 6-2, the direct method of calculating
the random uncertainty of a set of multiple results at a
given tpst condition is presented; this is applicable to
the casgs described in para. 6-1.2.

In supsection 6-3, the TSM of propagation to determine
both th¢ random and systematic uncertainties in aresultis
presenged; it is applicable in both single-result and
multiple-results cases. For the multiple-results cases
discusded in para. 6-1.2, two estimates of si can thus
be made (using the direct and Taylor series methods)
and comnpared.

In supsection 6-4, the MCM of propagation to determine
both the random and the systematic uncertainties in a
result fis presented; this also is applicable in both
single{result and multiple-results cases. For the
multiplp-results cases discussed in para. 6-1.2, two esti-
mates (f s; can thus be made (using the direct and Monte
Carlo njethods) and compared.

6-2 DIRECT METHOD OF DETERMINING RANDOM
STANDARD UNCERTAINTY FROM A SAMPLE
OF MULTIPLE RESULTS

6-2.1 Pirect Calculation of the Random-Standard
ncertainty From a Sample-of Multiple
esults

Follgwing eq. (3-3-2), the estimate of the standard
deviation of the distribution 'of M results at a given
test conpdition is

y 1/2
YR, - R) (6-2-1)
m=1

M-1

SR

The fandom standard uncertainty of the mean result is

drift with time of the outlet fluid temperature. Such eoire-
lations caused by time-varying error sources that.affect
the separate parameter measurements in“the same
way are automatically taken into accounthin the direct
method of calculating the random standard uncertaipty
of the result. This is not the case for calculations of the
random standard uncertainty of the_result using either
the Taylor series or Monte Carlo propagation methdds,
which require inclusion of special terms to account |for
such correlations. In practice, the special correlatjon
terms have rarely been“ificluded in the analysis. Thif is
discussed in detail and With an example in subsection ¢-3.

When tests are répeated under similar operating conjdi-
tions, these genefate multiple data sets for the measufed
parameters:)The statistics found by combining thgese
multiple data sets may be used to estimate the variatipns
in the tesult that might be due to the control of test oger-
atingzeonditions, or use of different test rigs, instrumgen-
tatloh, or test location. Whereas these influences might
normally be considered systematic errors during repeated
tests, the duplicated tests can randomize these systematic
errors, providing error estimates from the statistical
variations in the combined data pool [7]. The ovefall
reported result will usually be combined to provjde
the mean of the multiple results, R.

Careful consideration should be given to designing the
test series to average as many causes of variation| as
possible within cost constraints. The test design should
be tailored to the specific situation. For example, if expgri-
ence indicated that time-to-time and test apparatus
apparatus variations are significant, a test design that
averages multiple test results on one rig or for oply
one day may produce optimistic random uncertainty epti-
mates compared to testing several rigs, each monito
several times over a period of several days. The list of fest
variation causes are many and may include the above fdlus
environmental and test crew variations. Historic data pre
invaluable for studying these effects. A statistical teich-

estimated directly from the sample standard deviation
and is given by

(6-2-2)

<ls

22

TIique cattedamatysis of vartance (ANOVA) s usefutfor
partitioning the total variance by source [8].

When more than one test is conducted with the same
instrument package (i.e., repeated tests), the uncertainty
ofthe average testresult may be reduced from that for one
test because of the reduction in the random uncertainty of
the average. However, systematic uncertainty will remain
the same as for a single test provided the measurement
system and instrumentation do not change during the test,
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Figure 6-3.1-1 Venturi Calibration
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3 TAYLOR SERIES METHOD (TSM) OF
PROPAGATION FOR DETERMINING RANDOM
AND SYSTEMATIC UNCERTAINTIES OF A
RESULT

3.1 Random Standard Uncertainty of a Result
(TSM)

'he random standard uncertainty of a single test result

usipg the TSM is given by

wh

is {
eq.
]

! 1/2
2
_ dom error (6-3-1)
Sp = s ) ran )
R Zl ( 8X) * <correlationterm
i=
ere
O0R
91- = = (6-3-2)
0X;

he sensitivity coefficient for the result R given by
(6-1-1).
'he relative ranndom standard uncertainty is found by

nondimensionalizing eq. (6-3.1) by dividing by the result

SO

that the{TSM gives

SR
R

wh

ere the relative (nondimensional) sensitivity coeffi-

cient ( ) is given by

0R
0/

1

(6-3-4)
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ERAL NOTE: From "Effect of Correlated Precision Errors on the Uncertainty of a Subsonic Venturi Calibration,’, by Hudson, Bord
man [9]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

elon, and

6-3.1.1 Example: Random Uncertainty Deternfination

in Venturi Discharge Coefficient Calibration. As r
by Hudson et. al [9}and shown in Figure 6-3.1-1, a
meter was calibrated in a commercial facility u
ASME nozzle as the flow standard.

The venturi discharge coefficient determined in
is a function of the standard flow rate, Wyg; the
inlet\pressure, P;, and temperature, Ty; the thro
sure, P,; and the venturi inlet diameter, D; ang
diameter, D,. It can be represented as

Cq =f(vvstd) Py, Py, Ty, Dy, DZ)

Values of the discharge coefficient, C;, were detd
in a sequence of 11 different tests at chosen M
Reynolds number conditions. The standard
nozzle was choked at all conditions. At a given tes
tion, ten data scans were taken and average valug
venturi pressures and temperatures calculate
eq. (6-1-3). These average values were used to c
average Mach and Reynolds numbers, and 1
eq. (6-1-2) to calculate a value for C,.

For each test condition, the random standard
tainty of the result, C; was determined using b
TSM and eq. (6-3-1) with the correlated erro
set to zero and the direct method and eqgs. (6-1
(6-2-1). The comparison of the application of {
methods is shown in Table 6-3.1-1.

The random uncertainties calculated by TSM p

bported
venturi
sing an

this test
venturi
ht pres-

throat

rmined
ch and
ASME
L condi-
s of the
1 using
hlculate
sed in

uncer-
oth the
" terms
-4) and
he two

Fopaga-
rmined

tion were from 2 to 51 times larger than those detd

treated

the random uncertainties in the two venturi pressures as
independent. Figure 6-3.1-2 is a plot of these two pres-
sures normalized to the critical flow nozzle inlet total pres-
sure for a particular test that shows the variations of the

two pressures are not independent.

The same trend was seen for all the test conditions. The
fact that the pressures varied was a function of the test
facility control. The variations in the pressure measure-
ments were not truly random; they were correlated. This

23
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Table 6-3.1-1 Comparison of TSM and Direct Method
Values of Random Standard Uncertainty in Cy4

correlated random error effects. Sometimes in time-
wise tests the correlated random errors are not
“random” but rather results from a drift with time of
multiple variables. All time-wise tests should be designed
so that multiple results can be calculated at each constant
test condition if at all possible.

Although the effect of correlated random errors in the
examplein para. 6-3.1.1 caused the propagation technique
estimate to be greater than that of the direct methad the

Test Mach Re x 107° TSM/Direct
1 0.20 1.0 17
2 0.19 1.0 39
3 0.20 1.1 51
4 0.20 2.9 30
5 0.20 6.0 19
6 0.50 1.0 7
7 0.50 3.0 14
8 0.49 5.8 2
9 0.70 1.5 2
10 0.70 3.0 8
11 0.68 5.9 3
correlation was not considered in the propagation method

but wa
method
totally

6-3.1.2 Some Practical Considerations in Deter-
mining Random Standard Uncertainty of a Result.
The direct method is always preferred because it takes
into ac¢ount any correlated random error effects in the
sample|of results, whether these effects are recognized
or not] The only situation in which a propagation
method estimate of random uncertainty should be the
sole esfimate made is one in which only a single test
result is determined and the direct method cannat(be
applied. In all other situations, calculations of random
uncertdinty by a propagation method can be ¢onipared
to that ¢letermined by the direct method, and thé compar-
ison uspd as an indicator of the presence or absence of

5 taken into account automatically in the direct
(even though the test operators were previously
inaware of the correlation).

Figure 6-3.1-2 Normalized Venturi Inlet and Throat Pressures for a Test

opposite can also occur depending on the fotm| of
eq. (6-1-1). This was illustrated by results from ‘a full-
scale rocket engine ground test and also a laboratqry-
scale cold flow facility [10].

6-3.2 Systematic Standard Uncertainty of a Resplt
(TSM)

The systematic standard uncertainty of a single flest
result using the TSM is given‘by

I 1/2
2 systematic 6-3-5
=X (org) | 7 (6-4-5)
R 21 X correlation terms
i=
The relative ‘systematic uncertainty of a result is
P\ 2 . 12
br e Z Y X; + [i) systematic (6-3-6)
R — 'X; R ) \correlation terms
1=

The symbol b is the systematic standard uncertaipty
of the measured parameter (see subsection 5-2).

The correlation terms in egs. (6-3-5) and (6-3-6) wil
zero if all the systematic error sources for all the p3
meters used to determine R are totally independgnt.
However, in many cases, multiple parameters share a

be

o
5
w0
0
o
(=%
=
@
N
g 0.56 Time —»
é 0.558 + Pl Py it
0.556
0.554
0.552 + + t + + + ~—
2 3 4 5 6 7 8 9 10
Data scan

GENERAL NOTE: From "Effect of Correlated Precision Errors on the Uncertainty of a Subsonic Venturi Calibration,” by Hudson, Bordelon, and
Coleman [9]; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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common systematic error source, such as a calibration
standard error. An example would be two thermocouples
calibrated against the same standard. In this case, the
systematic error correlation terms would be nonzero.
Their magnitude can be calculated using the methodology
in para. 7-1.1.

6-3.3 Combined Standard Uncertainty and

The general form of the expression for determining the
cotpbined standard uncertainty of a resultis the root-sum-
sqyare of both the systematic and the random standard
ungertainty of the result:

e = [(hz)z N (sR)Z]l/Z (6-3-7)
whiere by is obtained from eq. (6-3-5) and sp is obtained
from either eq. (6-3-1) for a single-test result or from
eq.[(6-2-1) for a multiple-test result.

The expanded uncertainty in the result at approxi-
maltely 95% confidence is given by
UR,95 = ZuR (6'3'8)
whiere the use of the factor of 2 assumes sufficiently large
degrees of freedom for the 95% confidence level (i.e., tg5 =
2).|This factor can be modified as appropriate for other
comnfidence levels and small degrees of freedom, as
disfussed in Nonmandatory Appendix B.

The interval within which the true result should lie with
a 95% level of confidence is given as R = UR, 95

The methodologies for including correlated systematic
errfors and nonsymmetric systematic unceftainties are
coyered in subsections 7-1 and 7-2, respectively.

jon

(=]
L

} COMBINED STANDARD UNCERTAINTY AND
UNCERTAINTY COVERAGE INTERVAL FOR A
RESULT [MONTE CARLO METHOD OF
PROPAGATION (MCM)]

ith high-speed eomputing capabilities, the MCM has
be¢ome popular_for-determining test result uncertainty
usipg test input'variables and their associated uncertain-
ties [10]. The\Joint Committee for Guides in Metrology
(JAGM) published a supplement [3] to the GUM [2]
pre¢senting the MCM for uncertainty analysis. The
pracessis arandom sampling from assumed distributions

meters. The DRE used can be an analytical expression,
a computer data reduction program, or a simulation.

For each input parameter, the measured average, X, is
used as an estimate of the true value of the variable. The
random standard uncertainty, sy, and the elemental
systematic standard uncertainties, bx,, are input for
each parameter along with an assumed distribution for
each error source. A Gaussian distribution is appropriate
or-therandom—errors—unlessthe numberofmeasure-
ments is small enough for a t distribution te'be used.
For systematic errors, engineering judgment‘is used to
assume a distribution. If the possible systemat]c error
for an error source is likely to be zero but|has an
equal probability to be positive or negative, thenfa Gaus-
sian distribution can be used. However, if the sygtematic
error is likely to be zero but’has finite upper anfl lower
limits, then a triangular, distribution would be|appro-
priate. If the systematie_ error for a given soufce has
finite upper and lower*bounds but is equally l{kely to
be a value betweensthese limits, then a rectangulaf distri-
bution can be used.

Each error, distribution is randomly sampled t¢ obtain
an error value, and these are added to the estimated true
values“o obtain current values of the parametgrs. The
results are then calculated. This sampling prqcess is
repeated M times to obtain a distribution for the test
re'sult. The standard deviation of this distripution,
Smcwm 1S the estimate of the combined standard uncgrtainty
of the result, uz. The number of the samples requirgd, M, is
made on the convergence of sycm. Periodic checkd should
be made of the value of sycm during the Montle Carlo
sampling process. Convergence is a matter or jugigment,
but a value of sy ¢y that has converged to within 196 to 5%
is usually a good approximation of the combined sfandard
uncertainty of the result, ug.

Note that in Figure 6-4.1-1, the correlated systematic
errors are handled directly by assigning thp same
error value for a common error source, 33, to eadh para-
meter for each iteration. This procedure can be usdgd for all
correlated systematic errors. If there are corfelated
random errors, then the direct approach for nultiple
results given herein should be used. The prdcedure
shown in Figure 6-4.1-1 can also be used to[handle
nonsymmetric systematic errors. A distribytion is
chosen that has the upper and lower standard uncertainty
limits as its bounds with zero at the appropriafe place
between them.

for each error source to estimate the distribution of the
determined result.

6-4.1 Single Result at a Given Test Condition

Figure 6-4.1-1, drawn from Coleman and Steele [10],
presents the steps for a Monte Carlo process in a flowchart
format. The flowchart shows the process for a single test
result that is a function of two parameters, but the meth-
odology can be expanded to any number of input para-

6-4.2 Multiple Results at a Given Test Condition

Figure 6-4.2-1 from Coleman and Steele [10] presents
the flowchart for the Monte Carlo process when the
random standard uncertainty for the result is estimated
directly using eq. (6-2-1). A distribution is assumed for
this error source, and the Monte Carlo method follows
the same process as described for a single test result.
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Figure 6-4.1-1 Monte Carlo Method for Uncertainty Propagation for a Single Test Result

Input “true” values
of xandy

Y

Input values of
Sy S, and elemental b;’s

Y

Run simulation
i=11to M iterations

Assume the s’s and b,'s are the standard
deviations of their error distributions and
select an error from each source

N AT LA A

&y

A N

X(7) = Xirue + Ex (1) + Bq(i) + Boli) + Bali) VUGB Virue + Bali) + Bali) + Bs(i) + €, (i)

l

Calculate the(result from the DRE

ron = fix(i), y(il

!

No
i=M? — | ‘
LA
r

Yes

From the distribution of M values of r(i),
calculate the standard deviation (= u,)
and the coverage interval limits

GENERAL NOTE: \'Réprinted by permission of W. Glenn Steele [10].
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Figure 6-4.2-1 Monte Carlo Method for Uncertainty Propagation for Multiple Results

Input “true” values
of xandy
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Input s, for the result and elemental
b's for each variable

Y
Run simulation
i=1to M iterations
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GENERAL NOTE: Reprinted\by permission of W. Glenn Steele [10].
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6-4.3 Coverage Interval at a Given Level of
Confidence

The result distributions from the MCM procedure
shown in Figures 6-4.1-1 and 6-4.2-1 are used to find
the upper and lower bounds for a 95% coverage interval.
The Mresults are sorted from the lowest to highest values.
The bounds on the uncertainty interval are rio,, and rygp
where ry,,, is the 0.025M result value and ry;,y, is the

For another level of coverage, different multiples of M
are used (i.e., at a 90% coverage, the result values 0.05M
and 0.95M are used for rig, and ryjgn).

Figure 6-4.3-1 Probabilistically Symmetric Coverage
Interval

/[

0.975M value (i.e., if M is 1000, then the bounds are
the 25" and 975 value). If the 0.025M and 0.975M
numbers are not integers, then Y is added to each and
the intpger part of the number is used to determine
the coyerage interval limits. If uncertainty limits are
desired, then the resulting nominal value can be used

with rdw and ry;g, to determine U, and Uj'as

U, =r(X, %, - X]) — Tlow
and

Uy = rhigh — (X1, X, -y X))
This fis illustrated in Figure 6-4.3-1.

Frequency

U > <—Uz

Now Thigh

X, Xt X))

Result

Reprinted by permission of W. Glenn Steele [10].
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Section 7
Additional Uncertainty Considerations

7-1 CORRELATED SYSTEMATIC ERRORS (USING

TSM PROPAGATION)

This Section documents how to calculate the uncer-
taipty considering correlated sources of error using
TSM propagation.

7-1.1 Correlated Systematic Errors

The expressions for the systematic standard uncer-
tainty of the result may assume that the systematic stan-
dard uncertainties in each measurand are independent of
ong¢ another. However, as indicated in para. 6-3.2, there
arg many situations where the systematic errors in the
mepsurand quantities may not be independent. Examples
include calibrating different instruments against the same
stapdard or using the same instruments to make different
mepsurements. Some of these systematic errors are said to
be [correlated, and these nonindependent errors must be
conpsidered in the determination of the systematic stan-
dafd uncertainty of the result.

onsider a situation where the result, R, is determined
from three measurands ( Xj, X, X3) that have correlated
sygtematic errors. The result is calculated:as
R = f()_(l: AYZ: )_(3) (7-1-1)
and the absolute systematic standard uncertainty of the
reqult is given as

2 2 P
(o0%)" + (0abg)” + (93173)
+291(92byl)72 | 29193107(17(3 + 2(92(93107(27(3

(7-1-2)

=

The firstthreetéerms under the squarerootineq. (7-1-2)
do [not account for correlation errors, and the last three
terins arethose that account for the correlation among the
sygtematic standard errors in X, X2, and X3 The terms

bx.xraretheestimatesoftheeovarianceof thesystematie
errorsin X;and X (see Nonmandatory Appendix B). These
terms must be included when systematic standard errors
for separate measurands, X; and X}, are from the same
source, making them correlated; thus, their measurement
errors are no longer independent. The units of the corre-
lation terms (covariances), byiyk, are the product of the

units of X; and Xj.

29

The covariance terms in eq. (7-1-2) must.be properly
interpreted. Each by x, term represents‘the sum of the
products of the portions of byi and byk that ofiginate
from the same error source and arée“therefore perfectly
correlated [11]. For instance, if elemental systematic stan-
dard uncertainties 1 and 2 for\measurands 2 and|3 were
from a common error source, then b7(27(3 would bg deter-
mined as

b§2§3 = byzlby:ﬁ + b§22b§32 (7-1-4)

The exampleJin eq. (7-1-2) can be expanded to any
number of\measurands by including the term fpr each
pair of measurands that has correlated systematiq errors.

Therefore, the general form of eq. (7-1-2) is

Z (0h)* + 22 Z 00:bix (7-1-4)
i=1 k=i+1
where
b; = systematic standard uncertainty in the i
measurand
b, = covariance between the systematic sfandard
uncertainties for the i™ and k™ meadurands,
calculated as follows:
L
b = ) biby, (7-1-5)
I=1
I = an index
i = number of distinct measurands
i and k = indexesindicating the i and kK meagurands
L = number of common (correlated) error
sources
6 = sensitivity coefficients

7-1.2 Examples

7-1.2.1 Example 1. The use of back-to-back tests is an
excellent method to reduce the systematic standard
uncertainty when comparing two or more designs.
This method is a special case of correlated systematic stan-
dard uncertainties. Consider a burst test for an improved
container design. The improvement in the design can be
expressed as the fraction
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Table 7-1.2-1 Burst Pressures R = 5
Systematic Py
Back-to- Base Improved Standard
Back Burst Design, Design, Uncertainty, where
TestDesign P;, 10° Pa P,, 10° Pa bp, 10° Pa P, = the burst pressure of the original or base design
Program 1 [Note (1)] P, = the burst pressure of the new design
Meter 40.0 0.2
#1
Metex 520 0.2 Table 7-1.2-1 provides burst tests for two different
# programs. In the first test program, different presspre
Program|2 [Note (2)] transducers were used in the tests on the two.designs.
Meler 42.0 547 05 There were no correlated systematic standard uncertgin-
# ties common between these two transducers. In fhe
NOTES: second program, the same pressure transducer was
(1) Program 1 (no correlated systematic standard uncertainties): used for both tests; therefore, the SyStematiC error was
$2.0 the same and was correlated for,thetwo test measyre-
R = o =130 ments.
0, = =R = _ 00325 (wﬁpa)—l This example demonstrate$ the strength of the backjto-
Py back testing technique using the same instrumentatjon.
6, = R _ 0.0250(1061,;1)_1 Even though the pressure/transducer in Program 2 had
B a systematic standard{uncertainty of more than twjice
bt = |( - oons) (loépa)—l (02) (106Pa)]2 ;cjhat of the tre.msducers in Program 1, the systematic stan-
ard uncertainty‘of the result for program 2 was less than
1 2 half of that for Program 1. In such cases, the random stan-
+ (0-0250)(1061’3) (0-2)(1061’3)] dard uncertainty of the result may be dominant and mjust
includéall'sources that vary between the improved degign
bg = 0.0082 and the base design cases.
(2) Program 2 (zz;related systematic standard uncertainties): 7:1.2.2 Example 2. Consider the piping arrangempnt
R = 20 1.30 shown in Figure 7-1.2-1, which has four flowmetgrs.
6\ From conservation of mass, a balance check would yield
0, = —0.0310(10 Pa) _ _
2 z=my —m —my —m3=0
6, = 0.0238(106Pa)
5 If the errors in the flow-rate measurements are preflo-
o= |(- 0.0310)(1061)3)_1(0.5)(1061)3)] minantly systematic, then for the balance check to be satis-
2 fied the absolute value of z mustbe less than or equal to the
+ (0.0238)(106Pa) 1(0.5)(106Pa)] uncertainty in z:
lz] < 2b,
+2( - 0.0310)(106Pa)—1(0.0238)(106Pa) ' ] ] )
Note that this relationship assumes the degreeq of
x(0.5)(10°P2) (98) (10°Pa) freedom in b, is greater than or equal to 30.
be = 0.0436 Equation (7-1-4), repeated herein, may be used to
derive eq. (7-1-6) for calculating the systematic under-
tainty in the parameter z:
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! 2
b2= (Hmibmi) +
i=1

I
)
i=1k

(7-1-4 repeated)

I
Z Hmlgmkbmlmk
=i+1

2 2 2
b, = [(ermbrm) + (ernobrno) + (Hmzbrnz)

L
+(9 b )2+2e 0,.b, b

my-my mymy my U my

+26,,6,,.b, b, + 20,6, b, b

mpmaTmyms mprmgTmyTmy
+26,,.0,1.010, 0110 + 264,01, 010, b

mym3Tmy T msy my“my=my =y

1/2
+ 20,10, bnbm,

(7-1-6)

Note that for this example, the partial derivatives for

eq|(7-1-6) are
6’m1=6m2=6m3=—1
4nd
9m4 =1

IIn order to illustrate the effect of correlated sources of
errpr, consider the following cases, where the dominant
sydgtematic errors are from the calibration standard and
thg calibration curve-fit. The calibration standard
syqtematic standard uncertainty for each of the three
smpll flowmeters is +1.5 kg/h, and +4.5 kg/h for“the
large flowmeter. The curve-fit systematic standarduncer-
taipty for each meter is 0.5 kg/h.

7-1.2.2.1 Case 1: Each Flowmeter_Js Calibrated
Against a Different Standard. In Case 1, all sources of
sygtematic errors are uncorrelated. The systematic stan-

2 2 2
b, = + (%bml) + (%me) + (0m3bm3)
5 1/2
+ (O, ]
or
2 2 2 22
L,  —
- 1 2 3 4
= +5.29kg/h
The condition of conservation of masswill be validated

provided the following is satisfied:
lz| < 2b, = + 10.6kg/h

7-1.2.2.2 Case 2: Flowmeters 1, 2, and 3 Afe Cali-
brated Against the Same/Standard, and Flowmeter 4 Is
Calibrated Against a‘Different Standard. In Casp 2, the
three small flowmeters in Figure 7-1.2-1 are calibrated
against the same standard. This causes any sysfematic
error for this ‘e@mmon standard to become correlated
for thesethree meters. The systematic standard uncer-
tainty from their curve-fits, however, is not cofrelated
because it is due to the random scatter in the calijbration
linexThe final standard uncertainty in z is obtaihed as

by, = by = by, = £ 1.58kg/h

bm4 = + 4.53kg/h

and

Boymy = bmymy = bmymy = = (1.5kg/h)(1.5kgfh)

Using eq. (7-1-6) with three of four measurandg having
correlated systematic errors causes the systematic stan-

dard uncertainty for the three-small flowmeters in dard uncertainty for z to become
Figure 7-1.2-1 is determined as 2 2 ]
2 271/2 b, = (9’”11””1) + (9m2bm2) + (9’”31”"3)
b (i=1,2,3) = i[(l.s kg/h)? + (0.5kg/h) ] .
=."+1.58kg/h + (9m4bm4> + Zemlemzbmlmz
) ) 1/2]
and the sytc,tematlc standard uncertainty for the large + 20, Omsbmymy + 26m20m3bm2m3]
floywmeteris calculated as
2 271/2 or
it | (4.5kg/)? + (0.5kg/m)?| " =+ 453kg/h
— +[/b \2 3 \2+/b \2 S \P
Having no correlated systematic errors causes the ‘ _l\ m) ) = Oms) )
covariance between systematic errors (bpy b, bm bm, b . b 1/2
bmbmy bm,bmy bm,pm, and by, by ) to be zero. Using + 2bmym, + 2 myms + 2 m2m3]
eq. (7-1-6), the systematic standard uncertainty for z b, = +64kg/h

then becomes as follows:
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] < 2b, = + 12.9kg/h

Note that in Case 2, the signs for all the correlated terms
are positive because all of the derivatives of z with respect
to my, m,, and mj3 are negative. If flowmeters 1, 2, and 3 are
calibrated against the same standard, and flowmeter 4 is
calibrated against a different standard, the systematic
standard uncertainty for z is larger than if all the
meters had been calibrated against different standards

= 2l () () ¢ o)

+ 2y + 2oy = 2bmgmy + 2y

2% ]1/2

- 2bm2m4 - mamy

b, = +1.0kg/h

z

The condition of conservation of mass will be validated

(see Cake 1).

7-1.2.2.3 Case 3: Flowmeters 1, 2, 3, and 4 Are Cali-
brated [Against the Same Standard That Has an Uncer-
tainty Expressed as Percent of Reading. Example 2
began Qy stating the calibration standard systematic stan-
dard uncertainty for each flow meter was + 1.5 kg/h for the
three small meters and # 4.5 kg/h for the large meter. In
Case 3,|each of the four flowmeters in Figure 7-1.2-1 is
calibrated against the same standard that has specified
uncertdinty as a percent of the flow rate.

The gketch of flowmeter arrangement for this example
shows that meters 1, 2, and 3 are parallel and sum to the
flow that is sensed by meter 4. This suggests that, ideally,
meters|1, 2, and 3 each provides about one-third of the
total flpw that is sensed by meter 4. Notice that the
commop systematic source of uncertainty for meters 1,
2, and B is given as 1.5, which is exactly one-third of
the cojmmon systematic source of uncertainty for
meter 4. This proportionality in the systematic uncertain-
ties for the four meters is a result of the systematic uncer-
tainty ih the common standard that is used for all four
meters |being expressed as a percent of reading.

by = by, = by, = + 1.58kg/h

provided the following 1s satistied:
lz] < 2b, = + 2.0kg/h

Note the signs for each of the correlated\terms.

7-1.2.2.4 Case 4: Flowmeters 1, 2,/3,"and 4 Are Cali-
brated Against the Same Standard/That Has an Under-
tainty Expressed as Percent of ‘Full Scale. In Casg 4,
each of the four flowmeters in Figure 7-1.2-1 is calibrated
against the same standard; however, the systematic stan-
dard uncertainty from the standard is a fixed value of 4.5
kg/h across all flow rates.This implies that the calibratjion
standard systematic:standard uncertainty is expressed as

apercentof full scale’The systematic standard uncertaipty
for each flowteter then becomes
1/2
2 2
by Sbyy = by = by, = £ [(45) + (05)°]
= +4.53kg/h
with
bmlmz = bMIM3 = bmerI4 = meWI3 = meM4 = bM3M4
= + (45kg/h) (4.5kg/h)
The systematic standard uncertainty in z per eq. (7-1-6)

is calculated as follows:

and
by, = = 453kg/h 2 2 2 2
my g/ bo = | () + (Bogbmy) + (b)) + (Oongonf)
with +26,1, 00,6 b, + 29m19m3bm1bm3
bidmy = buymy = biymy < 5 (1.5kg/h)(1.5kg/h) +26’m16’m4bm1bm4 + 2¢9m26’m3bm2bm3
1/2
and +20,1, O by sy + 20O s 4]
binfmy, = Prymy & bmgm, = = (1.5kg/h)(4.5kg/h) o
Using eq. (7-1:6) while considering that all four measur- 2 2 2 2
ands hlave‘correlated systematic errors causes the by = % (bml) + (bmz) + (brn3> + (bm4)
systemati¢’standard uncertainty for z to then become o L oh oh +oh
- > > 5 2 LA UL My — MMz LLLRLLR)
— 1/2
b, = L<9f”1bm1) + (9"12bm2) + (9m3bm3) + (9m4bm4) —2byym, — 2bm3m4]
+ zemlemmelme + 26m10m3bm1bm3 bZ = 1906 kg/h
+26,,0,, b,,b, + 20,,.6,,.b,,.b
T 12 12 The condition of conservation of mass will be validated
+20,,,0 4bm2bm s T 20m.0m 4bm3bm4] provided the following is satisfied:
lz| < 2b, = + 18.1kg/h
or
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Note the signs for each of the correlated terms.

The following conclusions can be made from these four
cases:

(a) calibrating all flowmeters against a common stan-
dard that had a percent of reading systemic uncertainty
yielded a systematic standard uncertainty in the result (z)
that was less than the systematic standard uncertainty for
any give flowmeter (Case 3)

(h) correlated sustematic errars hetween measurands
7 4

The next step is to assign the distribution for the
possible nonsymmetric systematic errors. One approach,
as demonstrated in Figure 7-2.1-1, is to assume that x 11,
and x+ Ul represent the plus and minus bounds for a 95%
confidence interval for a Gaussian distribution, with the
probable systematic error at the midpoint of the distribu-
tion (see Figure 7-2.1-1).

Another approach is to assume an equal probability of

do
the

degrease, increase, or have no effect on the systematic
stahdard uncertainty of the result depends on the form
of the DRE and on which measurands have correlated
systematic errors.

nce again, the random standard uncertainty in z may
dominate the combined standard uncertainty and must be
caJEfully determined and included in the expanded uncer-
taifty determination of z.

NONSYMMETRIC SYSTEMATIC UNCERTAINTY
(TSM PROPAGATION)

some experiments, physical models (e.g., radiative
heat transfer models for temperature measurement)
maly be used to essentially replace the asymmetric uncer-
taipties with symmetric uncertainties in additional experi-
mental variables. If this can be done then it should be; if
not, then the method of para. 7-2.1 should be used.

7-3

.1 Nonsymmetric Systematic Uncertainty
Interval for a True Value

his paragraph presents a method for determining
nofsymmetric uncertainty intervals using TSM propaga-
tion [10, 12].

the distribution of the systematic error associated
with a variable is nonsymmetrical, then the overall uncer-
taipty interval for the unkniown true value will not be
cerjtered on the measuped value of the variable. The
following procedurescan be used to construct a nonsym-
meftric uncertaintydnterval for the unknown true value of
the quantity being measured.

he proeédure is based on first establishing a lower
linjit (L&LJ\and an upper limit (UL) for the possible
sygtematic error distribution. For instance, the measure-
ment'of the temperature of a hot gas stream flowing in a

eeetrrereeforany-errorvahte betweer——rr—atd X + UL -

not necessarily reduce the systematic uncertainty in  [p this case, a rectangular error distribution‘wpuld be
result (Case 2 and Case 4) appropriate, as shown in Figure 7-2.1-2. A third approach
In general, the ability of correlated systematic errorsto  would allow for the most probable error to be at ayy value

between x_11,and x+UL . In this case, a triangulalr distri-
bution would be used with a user-defined most pfobable
limit (MPL), as shown in Figuré 7-2.1-3. Note that if the
most probable error is less thah.x , then MPL will je nega-
tive. For the temperatureméasurement example gbove, if
the most likely value of thetrue temperature is 18°C above
the measurement, then MPL = 18.

The following proeeedure gives the option of ch
Gaussian, rectangular, or triangular distribution
nonsymmetfic error:

(a) spécify the lower limit (LL), upper limit (UL), and, if
appropriate, most probable limit (MPL) for the nonsym-
metric'error distribution.

(b) define the offset, g, as the difference betwgen the
nrean of the distribution specified in (a) and the me¢asured
value. The expressions for calculating the offset foy each of
the three distribution types are given in Table f-2.1-1.
Note that the expression for the Gaussian and rectangular
distributions are the same because the means arf in the
centers of these two distributions.

Note that g can be positive or negative depending on the
relative values of UL, LL, and MPL (where MPL{ can be
negative as described in this paragraph). If X is|greater
than the mean of the distribution, g will be n¢gative,
and if X is less than the mean of the distribytion, g
will be positive.

(c) calculate bgns, the systematic standard unc

for the nonsymmetric error distribution, using the
priate expression in Table 7-2.1-2.

(d) combine the systematic standard uncertainjty with
the others for the measurement to obtain by using
eq. (5-2-1).

(e) calculate uy, the combined standard uncerts
the measurement, using the standard formula

osing a
for the

brtainty
appro-

inty for

pipe may have an error due to radiative heat transfer
between the measurement transducer and the pipe
wall. An estimate of the effect of the radiation error
might be that the true temperature could be as much
as 2°C less than the transducer measurement (LL =
2°C) and could be as much as 20°C above the measurement
(UL = 20°C).

33

v = [b2 42

uy = \/bX + 5%

(f) calculate Uys, the expanded uncertainty for the
measurement, using

—9y— =2 [p2 2
U95—2uX—2 b}—(+5X

(7-2-1)
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Figure 7-2.1-1 Gaussian Distribution for Nonsymmetric Systematic Errors
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of Occurrence
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Figure 7-2.1-2 Rectangular Distribution for Nonsymmetric Systematic Errors
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x|

Figure 7-2.1-3 Triangular Distribution for Nonsymmetric Systematic Errors
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Table 7-2.1-1 Expressions for q for the Gaussian,
Rectangular, and Triangular Distributions in
Figures 7-2.1-1 through 7-2.1-3

Distribution q
UL - LL
2
UL -LL
2
UL = LI+MPI

Gaussian

Rectangular

Triangular
(=]

7-2.2 Example 1

Suppose a thermocouple is being used to measure the
temperature of a gas stream, but the user of the thermo-
couple believes there may be a tendency for the thermo-
couple to provide a temperature reading lower than the
actual gas temperature. Due to insufficient information
about the gas stream flow rate, the user is not able to prop-
erly correct the thermocouple reading for these effects,

3

The calculation is based on the assumption that the
degrees of freedom of the combined standard uncertainty
ar¢ large. (For small degrees of freedom, see
Nopmandatory Appendix B.)

Note that if the nonsymmetric systematic uncertainty is
non-Gaussian and dominates the uncertainty determina-
tioh, the Central Limit Theorem (see Nonmandatory
Appendix C) may not apply, and eq. (7-2-1) would not
be [appropriate to determine the expanded uncertainty.
In this case, a Monte Carlo technique would be appropriate
to dletermine a 95% coverage interval [10]. The upper and
lower limits (based on X + q) of this nonsymmetrical
interval from the Monte Carlo technique would then be
cotpbined with g as shown in (g) and (h) to determine
thg nonsymmetric limits for X .

g) calculate an approximate 95% confidence interval
for|the true value using

D_( + q] + U95

(722-2)

h) expressthe final resultas an asymmetric95% confi-
dence interval for the true value with the lewerlimit given

by

but wishes to account for them in an uncertainty gnalysis.
The decision is made to account for heat transfey effects
through the use of a triangular distributign.

From a sample of more than 30 readings tsing the ther-
mocouple, the user finds that x = 5347°C and sx= 2.4°C. If
the user believes that the true gas temperature [may be
between 1°C lower and 10°C higher than x due tp radia-
tion effects, then a nonsyfnmetric confidence interval
accounting for this nonsymmetric systematic uncertainty
may be computed as«ollows:

(a) specify an intefyal for the systematic error |n ques-
tion. In this case, the user of the thermocouple elieves
that the true gas temperature falls within a rangg of 1°C
lower and10°Chigher than the average measured yvith the
thermocouple, X = 534.7°C, with the most likgly true
temperature being 8°C higher. So for this examplefa trian-
gulapdistribution is used with LL = 1°C, UL = 1(°C, and
MPL = 8°C. This distribution is illustrated graphjcally in
Figure 7-2.2-1.

(b) determine g, the difference between the megn of the
distribution specified in (a) and the value measured with
the thermocouple. In this case

10-1+8
q=%=s.7°c

(c) calculate b}m, the systematic standard uncertainty

ilowerlimit =X+ q — Ugs = X\~ U~ (7-2-3) for the nonsymmetric systematic error, as
andl the upper limit given by bX .
X =X =X + 7-2-4 1/2
Xupperlimit = X + {3 Vo5 =X + U 2D 100 + 12 + @ + 10 + )E) - (0)E)
18
whilere =2.4°C
" = Ugs =4
]+ = U95 4 q
Tabte ainties; ir—-for-the-GaussianRee ibutions in
Figures 7-2.1-1 through 7-2.1-3
Distribution bx,
Gaussian UL +LL
4
Rectangular UL +LL
243

Triangular

1/2
UL + LI2 + MPI + (LL)(UL) + (LL)(MPL) — (UL)(MPL)

18
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Figure 7-2.2-1 Triangular Distribution of Temperatures

(d) dalculate by, the systematic standard uncertainty
for the neasurement. For the example, the nonsymmetric
systemitic uncertainty is the dominant systematic uncer-
tainty, $o
by = him.

(e) chlculateuX,the combined standard uncertainty for
the measurement, using the standard formula:

2 2
T E b2 + 52 = /(24°C 2.4°C)” =134°C
wg |2+ 2 J24°C) + (24°C)% =34
(f) cplculate Uys, the expanded uncértainty for the
measurfement, using

Ugs = 2ux = 6.8°C
This |calculation is based-on_the assumption that the
degreeg of freedom for the combined standard uncertainty
are lafge. (For smallNdegrees of freedom, see
Nonmahdatory Appéndix B.)

(g) dplculate ancapproximate 95% confidence interval
for the [true value/using [X + q] + Ugs . In this case, this
95% cdnfidénce interval is given by

[534.7° C+ 5.7°C] + 6.8°C

Temperature, °C

Ll Xaug MPL uL
[0]
(8]
C
o
5
g 1°C
(@]
G
> 10°C \
(8]
C
(]
35
o
o
L 8°
T T T T T T T T T T T 1
533 534 535 536 537 538 539 540 541 542 543 544 (545 546

Xiowerlimit =X — U~ = §34.7°C — 1.1°C = 533.6°C

and the upper limit given by

X@perlimit = X + U = §347°C+12.4°C = 547.1°(

7-2.3 Nonsymmetric Systematic Uncertainty
Interval for a Derived Result

A nonsysmmetric systematic uncertainty in a measu
variable may also result in a nonsysmmetric uncertai
interval for a derived result. The following procedure

>|

standard procedure. If a sensitivity coefficient dependd on
the values of any averages,ie., 6, = 6%, X X, ). then

(h) calculate
U = Uy —q=68°C~—357°C =11°C and

U = Ugs + q = 6.8°C + 5.7°C = 12.4°C
Figure 7-2.2-1 charts the final result, which may be

expressed as an asymmetric 95% confidence interval
for the true value with the lower limit given by

36

it should be evaluated at the point
X + q X + pr -+ X, + ‘1”)

(d) calculate u,, the combined standard uncertainty for
the derived result, using that standard formula

-y

(6114}1)2 + (92,4)—(2>2 + ...+ (gnan)z (7-2-5)
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(e) calculate Ugs,, the expanded uncertainty for the
derived result at a 95% confidence level, as Ugs, = 2u,.

This is based on the assumption that the degrees of the
freedom are large. For small degrees of freedom, see
Nonmandatory Appendix B.

(f) calculate an approximate 95% confidence interval
for the derived result using

(X + ap X + Qyy s X, + qn) + Ugs,, (7-2-6)

1/2
{ (kR)/2(0.0175K /%) (3.4K) }2]

[kR]"/2(0.0596K'/ %)

(e) calculate Ugs ., the expanded uncertainty for the
derived result ¢, at a 95% confidence level, as

Ugs,c = 2u, = 2[kRT'/%(0.0596K'/%) = [kRT'/*(0.119K'/?)

g) express the confidence interval as an asymmetric
o confidence interval for the derived result as follows:

(X, %, .y Xp) £ (Ugs, £ q,) (7-2-7)

95

whiere the lower limit on this interval is given by

Mower limit = (X1, X3, -, X) (7-2-8)
- <U95,r - q,) =r—Uy
and the upper limit on this interval is given by
"upper limit = r(Xp, X, - Xp) (7-2-9)

+ (U95,r + qr) =r+ Uj_
with Uy = Ugs , — ¢, and U;" = Ugs,r + 4,

7-2.4 Example 2

Juppose the user of the thermocouple in Example 1 i1
patfa. 7-2.2 wishes to use this gas temperature to estimdte
thgspeed of sound for the gas using the following relation,
c= [kRT_lVZ, where k, the ratio of specific heats, and R, the
gaq constant for the gas, are taken to be cohstant with
negligible uncertainty, and T is the measured value of
thq absolute temperature in this thermocouple. The
ungertainty interval for ¢ may be_ealculated as follows:
a) determine T, urand qrfor.the measured variable T.
this case, T = 807.9K, ur =3\4K, and qr = 5.7K

b) determine the offset,\q/, as follows:

oT + g )= o«(T)
[kR(813.6)]'/% — [kR(807.9K)]
(R)'/2(0.100k/2)

In

9
1/2

c) determine the sensitivity coefficient, 8, for the

/
megasured variable T. In this case, Or = (l)(ﬁ) .

rees of
m, see

This is based on the assumption that the.deg
freedom are large. For small degrees of'\freed
Nonmandatory Appendix B.

(f) compute a 95% confidence interval for the
result using ¢(T + qr) * Ugs . In thiS\case, this 959
dence interval is given by

(kR)'/2(813.6)1/2 &(kR)'/?(0.119K)!/?

derived
o confi-

(g) express the finalresult asan asymmetric 95% confi-

dence interval using
o(T) + (Ugs,c * q,)
In this{case, this 95% confidence interval is g
(kRYY/2(807.9)1/% + (kR)'/?(0.119K)!/2

+ (kR)'/2(0.100K)!/2
Clowerlimit = (KR)'/2(2842K)1/2 — (kR)!/2(0.019K)!/2

ven by

and whose upper limit is equal to

Cappertimit = (KR)Y/2(28.42K)/2 + (kR)'/2(0.219K)/2
In this example, the uncertainty interval for the §peed of
sound of the gas extends from 0.07% below td 0.77%
above the value for the speed of sound assessefd using
the measured value of the temperature.

7-3 REGRESSION UNCERTAINTY (TSM)

7-3.1 Linear Regression Analysis

Curve-fitting often is used in the calibration prqcess, in
the data reduction program, and in the representption of
the final test results. Least-squares-regression anglysis is
the most popular means of curve-fitting. In many cgses, the
anticipated representation of the datais a straightline, ora
simple (first-order) linear regression. In some othIr cases,

Since this sensitivity coefficient depends on T, it
should be evaluated as T + qr = 813.6K, so that here

Or = (%)[kR/(SB.éK)]I/Z = (kR)1/2[0.0175K_1/2)
(d) estimate the combined standard uncertainty for the
derived results u.. In this case,

37

the data to be curve-fit can be rectified, or transformed,
into linear coordinates [10, 13, 14].

Higher-order linear regressions and other regression
methodologies are discussed in detail in ISO/TR 7066-
2 and in textbooks [10, 15, 16, 17], as is regression uncer-
tainty when X and Y are functions of other variables [10,
17]. An overview of these topics is provided in
Nonmandatory Appendix D.
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The random standard uncertainty for the curve-fit will
be determined using standard least-squares analysis [10,
14, 16] where the assumption is made that there is no
random standard uncertainty in the X values and the
random standard uncertainty in the Y values is constant
over the range of the curve-fit.

In this Section, only a special case is considered for the

systematic standard uncertainty. This special case is
where the systematic standard uncertainty for the Y

7-3.3 Random Standard Uncertainty for ¥
Determined From Regression Equation

The statistic that defines the standard deviation for a
straight-line curve-fit is the standard error of estimate

N 1/2
2z (Yj - mXj - C)Z
i=1

(7-3-4)

SEE— J

values pnd/or the X values is a constant (i.e., percent
of full scale) and there are no correlated elemental
systemftic errors between the X and Y values. A more
generall approach to regression uncertainty is presented
in [10]]and summarized in Nonmandatory Appendix D,
where the methodology applies for variable random stan-
dard uncertainties in Xand Y, variable systematic standard
uncertdinties in X and Y, and correlated systematic errors
betweeh X and Y.

7-3.2 Least-Squares

For g straight-line, or simple linear regression, the
curve-flt expression is
Y=mX+¢ (7-3-1)
where for N data pairs, X, Y}, the slope m is determined
from

N N N
NY XY - D XY
j=1 j=1 j=1
m = 3 (7-3-2)
N N
NY (ij) - X x
]=1 j=1

and the intercept c is determined from

N N N N
2 () Y ¥ X % 3 Ax)

_ j=1 j=1 jeAN =1

N
2 X

j=1

3 (7-3-3)
N
2.
N -
j=il
The |east-sqifates process essentially provides an

averag¢ for-the data so that the regression expression
in eq. ([753~1) represents the relationship between the

N-2 |

For a given value of X, the random standard uncertaipty
associated with the ¥ obtained from the \¢urve}fit
[eq. (7-3-1)] is

. 172
1 (X - X)?
s¢ =SEE| — + ———

N ¥ 2 (7-4-5)
> (% %)
j=d

where
) N
j=1

Itis also assumed that the proper regression expressjion
for the data is a straight line and that the variation of the Y
values around the curve-fit results from the random erjror
in the Y measurements.

If there is no random standard uncertainty in the X; data
or the new X values used in the regression equation, the
random standard uncertainty sy obtained from eq. (7-3-5)
is combined with the systematic standard uncertaipty
(discussed in para. 7-3-4) using eq. (7-3-7) to obtpin
the combined standard uncertainty for the Y vajue
from the curve-fit. For random standard uncertainty in
the X; or X values, the general approach in this Codd or
Nonmandatory Appendix D should be used.

7-3.4 Systematic Standard Uncertainty for ¥
Determined From Regression Equation

There can be systematic standard uncertainty) by
respectively, in the Y; and X; data. There also can|be
systematic standard uncertainty in the X value used in
the curve-fit to find a ¥ value. This curve-fit X will|be
called X, to distinguish it from the X; data points,
and the systematic standard uncertainty for X is

mean Value of Yanmd X. TS mMeans ¢ 15 ot the
average of the Y; data but the mean Y response from
the curve-fit for a given X. Once the slope and intercept
are calculated from eqs. (7-3-2) and (7-3-3), these
constants can be substituted into eq. (7-3-1) along
with several values of X and the resulting straight line
can be plotted over the X}, Y; data. Since the Y-versus-X
curve is a mean value for the data set, the curve
should be a good representation of the data if the
simple linear fit is appropriate.

byx . It is very likely that most, and probably all, of the
elemental systematic standard uncertainties for each of
the Y; data points are from the same error sources,
and are, therefore, correlated. The same is true for the
X; data points. There is also a possibility that the X,ew
values will have systematic standard uncertainties
from the same sources as the X; data, causing these uncer-
tainties to be correlated.
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Only constant systematic standard uncertainties for X;,
Yj, and X .., are considered. All of the by] uncertainties are
assumed to be completely correlated with each other, and
all of the by uncertainties are assumed to be completely
correlated with each other. It is assumed there are no
common uncertainty sources between Y;and X; (no corre-
lation between the by, and by systematic standard uncer-
tainties). Cases are considered where X,,.,, has systematic

standarduncertainty correlated with thatin X. and where

/2
] (7-3-9)

by, = [(mhx)2 + (mbx,.,,)

This would occur if different instruments were used to
measure the X; values and X,cy.

7-3.4.5 Systematic Standard Uncertainty for Y. The
systematic standard uncertainty for the mean ¥ from
the curve-fit will be the appropriate root-sum-square

J
XniN has systematic standard uncertainty not correlated
with that in X;.

7-3.4.1 Systematic Standard Uncertainty in Y; Data. If
eadh of the Y; data points had the same systematic stan-
dafd uncertainty, by, then the resulting elemental
sydtematic standard uncertainty for the mean ¥ from
the curve-fit [10, 14, 17] is
by = by (7-3-7)
7-3.4.2 Systematic Standard Uncertainty in X; Data
With No Systematic Standard Uncertainty in X, ey. If
eadh of the X; data points has the same systematic standard
ungertainty, by, and X, has no systematic standard
ungertainty, then the resulting elemental systematic stan-
daifd uncertainty for the mean ¥ from the curve-fit [10, 17]
is determined as

b)’;;‘ = mbX (7-3-8)
This occurs when the regression equation from a setof
tesfdatais used later in a design or analysis process where
Xndw might be taken as a value that has no uneertainty.

7-3.4.3 Systematic Standard Uncertainty jin X; Data
With Correlated Systematic Standard/Uncertainty in
Xndw- If each of the X; data points had the same systematic
staphdard uncertainty, by, and X, hasthe same systematic
stapdard uncertainty (from the.same sources), then the
reulting elemental systematic.standard uncertainty for
thd mean Y from the curve-fit is zero [10]. This case
wduld occur if the samme instruments are used to
measure X,. as were.used to measure X;. Since all of
thqg systematic standard uncertainties for X; and Xew
arq correlated,(the systematic standard errors are all
thg same. The effect on the curve-fit is to shift it to the
right or léft.depending on the sign of the errors (the
sighs afidmagnitudes of the errors are unknown). This
shift has no effect on the value of Y obtained from the

of the by elemental systematic standard uncerfainties
defined herein and summarized in Table 7-3:4+1.
For systematic standard uncertaintyyin’ Y; pnly or
systematic standard uncertainty in Y with conrelated
systematic standard uncertainty between X; and|Xpew:
by = b}';l (7-3-10)
For systematic standard wnhcertainty in the Y; data and
the X;data and no systeniatic standard uncertaintyfin X,
(7-3-11)

1/2
~=Jp2 2
bY = (b,\l + b,\z)

For systematic standard uncertainty in the Y; data and
the Xjdata and uncorrelated systematic standard uncer-
tainty in X, ew, the systematic standard uncertainty for the
curve-fit value of ¥ is

— 2 2 ot

For no systematic standard uncertainty in the|Y; data,
systematic standard uncertainty in the X; data,|and no
systematic standard uncertainty in Xew:

by = b?z (7-3-13)

For no systematic standard uncertainty in the|Y; data,
systematic standard uncertainty in the X; data, and uncor-
related systematic standard uncertainty in Xje., the
systematic standard uncertainty for the curve-fjt value
of Yis

Table 7-3.4-1 Systematic Standard Uncertainty
Components for Y Determined From Regression Efjuation

curve since the shift In Xpe,y IS the same as the shift In X;.

7-3.4.4 Systematic Standard Uncertainty in X; Data
With Uncorrelated Systematic Standard Uncertainty
in X,ew. If each of the X; data points had the same
systematic standard uncertainty, by, but X,., has a
different (no common systematic error sources)
systematic standard uncertainty, by, then the resulting
elemental systematic standard uncertainty for the mean
yfrom the curve-fit is

Components Equation
Systematic standard uncertainty in Y; b}*,l = by,
data
Systematic standard uncertainty in X; byz = mby
data with no systematic standard
uncertainty in Xpe.
Systematic standard uncertainty in X; 0

data with correlated systematic
standard uncertainty in Xew

Systematic standard uncertainty in X;
data with uncorrelated systematic b?} =

5 2 11/2
(mbx) + (benew) J
standard uncertainty in Xew
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(7-3-14)

For no systematic standard uncertainty in the Y; data
and correlated systematic standard uncertainty between
X; and X e

by =0 (7-3-15)

7-3.5 Uncertainty for Y From Regression Equation

Note that the degrees of freedom for Y is based on the
degrees of freedom for sy, which is N - 2, and the degrees of
freedom for by (see Nonmandatory Appendix B). The use
of the factor t ~ 2 will be appropriate in most cases. The
uncertainty band Uy in eq. (7-3-16) will vary with X (i.e,
Xnew) because of the expression for sy from eq. (7-3.5). As
noted in para. 7-3.3, the uncertainty expression in
eq. (7-3-16) only applies if there is no random standard

uncertaintvin Xand ifthe cycfnma’rir standard uncertain-

The total uncertainty in the Y obtained from the simple
linear fegression expression, eq. (7-3-1), is given by
egs. (643-7) and (6-3-8) for the case where the degrees

of freedom for Y are sufficiently large so that t = 2.
N S;]uz (7-3-16)

— 2
Up = 2[b3 + 52

ties are percent of full-scale values or are fixed and de hot

change across the range of the instrument.

40
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Section 8
A Comprehensive Example

This Section is derive
an

bo

Par

k analysis:

1 | Overview

d from Coleman and Steele [10]

| is divided into the following parts to reflect the text-

Parf 2 | Generic Calibration

Analysis

Parf 3

Design

Determination of the Uncertainty of g for a Single Core

Case A: No Shar

ed Error Sources in Any Measurements

TSM
Analysis

MCM
Analysis

Case B: Possible Shared Error Sources in Temperature
Measurements

TSM
Analysis

MCM
Analysis

Par

Instrumentation

Determination of the Uncertainty in Aq for Two Core Designs
Tested Sequentially Using the Same Facility and

TSM Analysis

No shared error sources-among the T4,
T,, and T3 measurements within a
single test (as'in Part 3, Case A)

Shared errorsources for the Ty, T,, and
T3 measurements within a single
test'(as in Part 3, Case B)

MCM Analy

sis

Ne’shared error sources among the T4,
T,, and T3 measurements within a
single test (as in Part 3, Case A)

Shared error sources for the Ty, T,, and
T3 measurements within a single

8

Ateat—e anger—te
exchanger cores using a

test (as in Part 3, Case B)

1 PART 1: OVERVIEW

hot air-cooling water configura-

tion, as indicated schematically in Figure 8-1-1.

The test facility where the core is installed contains all
required instrumentation; no new instrumentation is nec-
essary for testing different cores. There is one thermo-

couple probe (T;) in a
There are two spatially s
mocouple probe (T, and

well in the water inlet header.
eparated wells, each with a ther-
T3), in the water outlet header. A

41

turbine meter is used to determine water volumetric flow

rate, Q.

The result of interest is the rate of heat transfe

cooling water, which is determined'for'a given s
using the DRE

LT3
e B )

I to the
bt point

where
¢ = the-constant pressure-specific heat of the
water at an average temperature
Q.= the volumetric flow rate of the watef
¢ = therate of heat transfer from the hot ajr to the
cooling water
T, = the water temperature in the inlet hdader as
measured by a single probe
Ty, T3 = temperatures measured by two temperature
probes at different positions in a crossisection
in the water outlet header
p = the water density
Conceptually, this equation assumes a steady state with
T; corresponding to the averaged water temperjture at
the inlet plane of the test core and (T, + T3)/4 corre-
sponding to the averaged water temperaturg at the
outlet plane of the test core.
Figure 8-1-1 Heat Exchanger Cores Using Hot Air-Cooling

Water Configuration

Cooling
water
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8-1.1 Random Standard Uncertainty for the
Result, g

This is a well-established facility with a history that
allows use of prior test data to establish a large
sample estimate, s,, of the random standard uncertainty
in q for a single core tested multiple times at the same
nominal set point and with removal and reinstallation
between tests.

The second of the elemental systematic error sources
for each temperature measurement is due to the bath
nonuniformity. When the bath is held at a supposed
steady state at a calibration set point, it is not at a
uniform temperature. The “error” in this case will be
the difference between the temperature where the stan-
dard is located and the temperature where a probe is
located during calibration. While the bath is at a

cfp:\dy-cfnfp calibration set point traversing the standard

8-1.2 $ystematic Standard Uncertainties
The dystematic standard uncertainties are identified as
follows
for £ = a single elemental systematic error source
with systematic standard uncertainty, b,
for @ = a single elemental systematic error source
with systematic standard uncertainty, b,
for Tj = two elemental systematic error sources with
elemental systematic standard uncertainties,
bri1 and bry;
for T = two elemental systematic error sources with
elemental systematic standard uncertainties,
sz‘]_ and b'[-z‘z
for T = two elemental systematic error sources with
elemental systematic standard uncertainties,
bT3,1 and bT3,2
for p = a single elemental systematic error source
with systematic standard uncertainty, b,
This pumber of elemental error sources is necessary
and sufficient for illustrating all of the facets of this
examplp. In specific actual cases, the number of elemental
systematic error sources may be greater, but no.exténsion
of the gpproaches illustrated would be necéssary other
than simply adding more terms to account for the addi-
tional sources

each temperatufe measurement is from the calibration
standard, and\the associated elemental standard

to different points in the bath and recording the tempgra-
ture differences from some chosen reference~positjon
yields a distribution of temperature differences, 4nd
the standard deviation of this distribution is used| as
the large sample estimate of bry, g D22 = brap =
by Note that although the uncertainties are eqyal,
the errors in each probe due to‘the elemental souT‘ce
are different if the probes areat different positiong in
the bath during the calibgation. For this reason, if is
useful to define

Y

b1v2 = bpath1
b1, bbath,2
br32 = bpath3

8-2 PART 2: GENERIC CALIBRATION ANALYSI$

Consider a generic thermocouple calibration case. The
thermocouple (tc) connected to a data acquisition system
(das) consisting of an electronic reference junction, signal
conditioning, an analog-to-digital converter, and a digjtal
voltmeter. The tc is exposed to some temperature, T,
that one wishes to measure and the system output is the
voltage, E, as shown in illustration (a) of Figure 8-21.

Suppose that the thermocouple is used as supplied 4nd
is not individually calibrated. In that case, as showr} in
illustration (b) of Figure 8-2-1, the voltage, E, is used
in a generic T-vs-E table for the particular type of thermo-
couple, and the corresponding temperature, T, is found.
This is the temperature that is said to be the “measurgd”
value of Tirye-

The uncertainty in this value includes contributi
from the elemental systematic errors.

Paja = theerror from the analog to digital conveqter
Bavm = the error from the digital voltmeter
Pretjunc = the error from the electronic reference junc-

ns

. - . tion
systematic‘wncertainties are designated as Bs/e = the error from the signal conditioner
b bery Br——the-amoun tthis-te-differsfromthe-gereric tc
TTT St T Prc tHe-aRetht C
bro,1 bstd,2 in the table
br3,1 = byd3

For the most general case, the probes could be cali-
brated individually against different standards and this
nomenclature allows for that.

42

Suppose the thermocouple is calibrated as shown in
illustration (a) of Figure 8-2-2, where the thermocouple
and the temperature standard, T, are both exposed to
the same temperature, Ty.. The voltage, E, output by the
thermocouple system (tc + das) and the temperature, Tgq,
indicated by the standard are entered as a data pair into
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Figure 8-2-1 Measurement of a Generic Thermocouple Output

T'(TUE I:> Bref—junc Bs/c Ba/d Bde —> E
(a)
E T
X XXXX| XXK-X
X.XXXX Qxx.2—> Tl
Tirue = Bref—junc Bssc > Bad Bavm p— E
(b)

thecalibration table, which replaces the generic table used
prgviously.

hen the system is used to measure Tye, as shown in
illustration (b) of Figure 8-2-2, the voltage output, E, is
enfered in the calibration table and the corresponding
temperature, T, retrieved is, in effect, what would be indi-
cated by the standard.

he uncertainty in this resulting temperature now
indludes the contribution from the systematic error
Bstd (the amount Ty differs from Ty..), which replaces
thg contributions from the errors B, Bretjunc Bs/cr Bases
an dem-

his shows that some systematic errors can be replaced
by |(hopefully) smaller ones by careful application-of the
cal]bration process.

NO[E: It is critical to identify exactly what i§ being calibrated.

Ifthe tc and the das thatare calibrated together are used
in the test, then the error situation is as previously
degcribed. However, if the das used in the calibration,
dag..), is replaced by another, das.s, for the actual
test, the systematic errar Psq from the standard then
only replaces the errof, contribution ... The uncertainty
in the resulting medsured temperature, T, now includes
contributions frem(the error in the standard, Bsq; those
errprs from thedds used in the calibration (Bret.junc: Bs/c
Ba/ks Bavm)dagicar; and those errors from the das used in the
test (ﬁref—juno .Bs/cr ﬁa/d; ﬁdvm)das-test-

In the)situation stipulated for this comprehensive
example, the same das is used during the calibration

8-3 PART 3: DETERMINATION OF THE
UNCERTAINTY’IN q FOR A SINGLE CORE
DESIGN

8-3.1 Case‘A: No Shared Error Sources in Any
Measurements

This case could occur if there were no common falibra-
tion' of the three thermocouple probes; for instange, if the
probes were from different suppliers. For purposes of this
case, stipulate that there is only one significarjt error
source for each probe (e.g, the manufacturer’s agcuracy
specification), so the corresponding systematic sfandard
uncertainties are by, b7, and brs.

8-3.1.1 TSM Analysis. The following illustrdtes the
TSM approach to Case A:

q= ch<T2+T3 - T1>
(3
op

(i) (e ()]
()

9q
bZ
(0T3) T3
_ 12 2
= bq + 5

8-3.1.2 MCM Analysis. Figure 8-3-1 illustrdtes the
Monte Carlo approach to Case A. First, a single {run” of
the experiment is constructed with a systematjc error

S
)

T1

“q

and the tests, so there are not separate systematic
error sources for calibration and test data acquisition
systems.

drawn from each variable’s assumed error distribution,
having as its standard deviation the estimated systematic
uncertainty for thatvariable. This is shown in Figure 8-3-1,
where uniform distributions are assumed for all
systematic error sources. (This assumption is made in
this example for the sake of simplicity — it is not neces-
sarily a general recommendation.)

For the i™ run, for instance, a “measured” value of each
variable is calculated as
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Figure 8-2-2 Measurement of a Calibrated Thermocouple Output

N

x.xx@éxx.x
yx{xx XX

/

/
= ®_' Bref-junc Bsie = Baa |— B avm —>E

N

E Tstd

X XXXX] XXX.X

7—tTUE
XXXXX]| XXX.X
= | Baa [ Taa
(a)
x.xx@éxx.x
yk{xx X)&\{
—_— J \
[— /
Tirve = B ref-junc /:p's%{ M* Bavm —F
AN _ E T

v XXXXX| XXX.X

\
X.XXXX xxx.x/—>T

B std

(b)
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Figure 8-3-1 Monte Carlo Uncertainty Analysis

8-3.2.1 TSM Analysis.

Assumed error distributions and standard deviations for q= ch( hL+T _ T1>
p Q c T T, 5 5 5
b, bq by b bp brs b2 = 9 b+ 9 b2 + 9 b2 + 99 b2,
I Cw) T e Ll
) ) . . " 2 2
0 0 0 dq 2 0q 2
1 l P l l l + (E) sz + (% st
B, Ba B¢ Bri Br, Brp, ——errors
9q \( 94 9q_\( 94
2l — || —1|b + 2| — | == 1713
(an)(an] T1T2 (aTl or3 ) KITH
9q_\(_9%4
2l — || ==1v
(an)(am) T213
2 2 2,
bT1 = bTstd,1 + bTbath,1
2 2 2
bT2 = bTstd 2T VT bath,2
2 2 2
bT3 = bétd, 3+ bTbath,3
Pi = Prue T (ﬂ/))
! Consider if the thiree thermocouple probes wdre cali-
Qi = Quuet (,BQ)' brated against djfferent standards and were all in different
_ + ! positions in the-bath during calibration. This unlikply case
G T C‘true (ﬁc)i isworth considering in order to see the logical progression
T = (Myye + (br); of the following a;z;)lyses. Tgen ther; wouldObe nd shared
. = (T + ] error,sources an 7172 = D1173 = D273 = UL
i ( Z)tme ('BTZ)I If the three thermocouple probes were caljbrated
I = (TS)tme + (ﬂT3)i against the same standard but were all in differept posi-
tions in the bath during calibration, then
andl the value of the result is calculated as b b b
T T T1T2 Tstd, 19T'std,2
2it 13 b bTsed 1
q; = piQ-ici(T — Tl,i] + (gq)i T1T3 Tstd,19T'std,3
brars = brsed,2bTsd,3
where the random error I the res'ult, (2a)iris drawn. fr.om If the three thermocouple probes were caljbrated
an [assumed error distribution with stanhdard deviation . . .
- against the same standard and were all in the same posi-
equal to s, the random standard uncertainty of q. oo . .
. . 0\ tion in the bath (but at a different location than the stan-
hen thisisrepeated M times, adistribution of M values dard during calibration), then
of ¢ is obtained. The standard deviation of this distribution J ’
is %4, the total standard uncertainty in g. A coverage briTy = sttd,lestd,Z + bTbath,lebath,Z
intprval can be defined and/calculated directly using briT3 = brstd 1PTstd 3 + bThath 1°Tbath 2
thg M q values, with sito~assumption necessary about b - b b
AW T2T3 = bTstd2bTstd,3 + DTbath,26Tbath
thd form of the distribution of the M values. 3 . std,3 bat bath,3
8-3.2 Case B:(Possible Shared Error Sources in The combined standard uncertainty in q is then given by
Temperature Measurements ug = by + sy
his iSithe situation prescribed in Section 8-1, with L . .
The derivatives with respect to p, Q, and c are functions
temmperature measurement elemental error sources o g
of the measured temperatures, but the derivativies with

frola-the-standard(s)}-and-the bath-nonuniformity
b ) J

45

respect to the temperatures are not functions of the
temperatures themselves, and the expression given
herein can be algebraically simplified. The derivatives
with respect to the temperatures are

dq Q
- — _ »)0O¢
JTy P
oq dq 1
L= Sl = pQe
T, 0Ty 2
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Figure 8-3.2-1 Uniform Distributions for ELemental Systematic Error Sources

Assumed error distributions and standard deviations for

P a ¢ Tstd,1 Thath, 1 Tsta,2 Thath,2 Tsta,3 Toath,3
b, bq b bstq,1 bpath,1 bstq,2 bpath,2 bgtq,3 bpath,3

| N N N N ] N ] N |
0 0 0 0 0 0 0 0

Substituting for these derivatives, the equation for b,
can noy be written as

2 9q g 2 9q 2 2 9\ 2 2,2
1 1
+Z(PQC)2b72"2 + Z(PQc)zb%a
1
+2( - PQC)<EPQC)bT1T2 +2( - pQe)
1
(EPQC)bT1T3
1 1
+ Z(EPQC> (EPQC>bT2T3
or
2 2 2
2L (%) ,2, (%] ,2 9\, 2 2,2
1 1
+50Q) bEy + L (pQ0)* b1
= (pQ)*briTa — (PQ)*briT3
1
+ E(pQC)ZszTs
Thus|two of the correlation terms are’negative and one
is positjve. This indicates the possibility of decreasing b,

by proper choice(s) of calibratiemn, forcing correlation of
some efror sources but nof others.

8-3.2.2 MCM Analysis.'As in the Monte Carlo approach
shown |n Case A, first a'single “run” of the experiment is
constrycted with<a“systematic error f§ drawn for each
elemenital source/from an assumed error distribution.
This hps as.its standard deviation the estimated
systemjatie-Standard uncertainty for that elemental

shared error sources and single errors.f would

drawn from each of the distributions inFigure 8-3.2
This gives

Ptrue + (ﬁp>

1

Qtru(-‘: * (ﬂ Q)

G = Cyfe T (ﬁc),
(Tl)true + (ﬂstd,l)i + (ﬁbath,l)i
TZ,i = (Tl)true + (ﬂstd,z)i + (ﬂbath,2>

B = (e + (ﬁstd,3>i + (ﬁbath,3)

i

i
i

and the value of the result is calculated as

(TZ,i + T3

q = /),'Q,'Ci - TI,iJ + (511)1.

where the random error in the result, (g,);, is drawn fx
an assumed error distribution with standard deviat
equal to s, the random standard uncertainty of q.

If the three thermocouple probes were calibra
against the same standard but were all in different p
tions in the bath during calibration, then the error fi
elemental source 1 (the standard) would be exactly
same for each of the three temperature measureme
during Monte Carlo iteration i. This is modeled
drawing a single error fBgq during iteration i from
Tstq,1 error distribution and setting

(ﬂstd,l)i = (ﬂstd,Z)i = (ﬂstd,S)i = (ﬂstd),‘

be
1.

on

fed
Si-

the
nts
by
the

so that

source. Figure 8-3.2-1 1llustrates this with uniform distri-
butions assumed for all elemental systematic error
sources.

Consider if the three thermocouple probes were cali-
brated against different standards and were all in different
positions in the bath during calibration. This is an unlikely
case, but worth considering in order to see the logical
progression of the analyses. Then there would be no

=
|

(Ti)true + (ﬂstd),‘ + (ﬂbath,1>i
i = (Tz)true + (ﬂstd)i + (ﬂbath,2>

Gy = (T3)true + (ﬁstd)i + (ﬁbath,3)

W51
I

i
i

and the value of the result is again calculated as
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(Tz,i + T3

N
q; = P,'Qici - Tl,i] + (gq)i

where the random error in the result, (g,);, is drawn from
an assumed error distribution with standard deviation
equal to s, the random standard uncertainty of q.

If the three thermocouple probes were calibrated
against the same standard and were all at the same posi-
tiopdn the bath (hnf not necessarily the same position as

8-4 PART 4: DETERMINATION OF THE
UNCERTAINTY IN Aq FOR TWO CORE DESIGNS
TESTED SEQUENTIALLY USING THE SAME
FACILITY AND INSTRUMENTATION

Labeling the first design as fand the second design as g,
the DRE for the difference in the rates of heat transfer
determined for the two designs is

thg standard) during calibration, then the error from
elemental source 1 (the standard) would be exactly
thg same for each of the three temperature measurements
during Monte Carlo iteration i, and also the error from
elemental source 2 (the bath nonuniformity) would be
exactly the same for each of the three temperature
measurements during Monte Carlo iteration i. This is
modeled by drawing a single error fsq4 during iteration
i from the Tgq; error distribution and setting

(ﬂstd,l)i = (ﬂstd,Z)i = (ﬂstd,S)i = (ﬂstd)i

and drawing a single error Sy, during iteration i from the
Toam,1 error distribution and setting

(ﬁbath,l)i = (ﬁbath,2>i = (ﬂbath,3>i = (Prawn);
so fthat
,Tl,i = (,Tl)true + (ﬁstd)l + (ﬁbath),
TZ,i = (TZ)true + (ﬁstd)i + (ﬁbath)i
T3,i = (T3)true + (ﬂstd)i + (ﬁbath)i
andl the value of the result is again calculated as
Tzl‘ + T3]‘
q; = PiQiCi(% - Tl,iJ + (Eq)i

whiere the random error in the result, (g,);, is drawn from
an [assumed error distribution with standard deviation
equal to s, the random-standard uncertainty of g.
hen this isrepeated M times, a distribution of M values
of ¢ is obtained. Thestandard deviation of this distribution
is u,, the total(standard uncertainty in g. A coverage
intprval can be defined and calculated directly using
thd M q_values, with no assumption necessary about
the form-of the distribution of the M values.

A
=1 '1f "1g

or

8-4.1 Random Uncertainty for the Result Aq

For this example;.assume that s, is a valid estiate for
both tests fand g, so that the TSM propagation eqyation is
used to estimate the random standard uncertainty of Ag:

2 2
0A 0A
2 _ a2, q

A, = s
Aq 0q ¢ 1 (3qg

52
q

Since the partial derivatives are +1 and -1, th
SAg = J2 5

s gives

8-4.2 TSM Analysis: Systematic Standard
Uncertainty for the Result Aq

8-4.2.1 Noshared error sources amongthe T,,|T,, and
Ts; measurements within a single test (as in Case A). If
there are no shared error sources among the T4, T4, and T3
measurements within a single test (as in Cafe A in
para. 8-3.1), the TSM gives
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2
P = Mq b2 Mq b2
Agq ~ P g
f g
A

0Aq q
+2l—| |—]| b
( o )f[ 9 ]g 1%
2
0Agq dAq) 2
+( Q )bef ( Q ]ngg

+(0A ) bi‘ (()A )Zbé

f g
2] 2,
+ (%)jb%l,f + (%):b%l,g
+2(%)f(%)gbnfng
(502) v + (552 vhas
+2(%)f(%)gbnfng
b (222
+ 2(%)}((%)ng%;ng

the same instrumentation is used in tests fand g,
asured variable in fwill share error source(s) with
responding measured variable_in-g:

erivatives with respect to p,@yand c are functions

of the easured temperatures, but-the derivatives with

respect
temper
can be
respect

to the temperatures-are’ not functions of the
atures themselvesysand the expression herein
algebraically simplified. The derivatives with

to the temperatures are
0Ay
_— = - C
ar, ¥ (PQe) f

dAq dAq _(/)Qc)f

KLY [LRAY]
2 b
Ao
2
+(6Aq) b%f (aAq) bczg
f g
d0Agq 0Aq
+2( dc )f( dc )gbcfcg
+(PQC)5£b12"1,f + (PQC)zb%I,g
—Z(PQC)f(PQC)nglleg

+i(PQC)}b%2,f + i(PQC)zb%z,g
—5(100) (pQ) brayra, + 5 (PQ) b s
$(0Qe)2bEs,

—(pQ9) (pQ) b3 73,

Each measured temperature in test g will have identjcal
error sources to that same temperature measured in tept f;
so that

bagi + bpun i =
brif = brig = \Ystd1 * Obath1 = br1

baas + bty =
braf = brag=1Vstd2 + Obath2 =b12

baas + by =
braf = br3g=0std3 + Obath3 = br3
and
2 2
bri;T1, = bstd,10std,1 + Pbath, 1Pbath,1 = bitd,1 + bbarf1
_ 12
2 2
bragTa, = bstd2bstd2 + Dbath,2bbath,2 = bstd,2 + bbah,2
_ 12
2 2
br3;T3, = bitd,3bstd,3 + bath,3bbath,3 = bitd,3 + bbath,3

dTZ,f dT3,f - 2
0Aq = b3
. - (pQc) g
1, . L. . .
§ (rQ0) For the situation in which the two tests are run at iden-
dAq _ dAq __ r g tical set points,
aTZ, g 6T3yg 2

Substituting for these derivatives, the TSM expression

for by

can now be written as

(PQe) ¢ = (pQe), = (pQr)

and the final nine terms in the equation for by, become
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+(pQe) b ¢ 2 - (0Aq)2b2 [Mq]zbz
q P) P 0 P,
+(pQ02bF ¢ SRR
_ JdAq JdAq
2(pQe) f(pQC)nglleg [?]f(y . Py
1
+Z(PQC)§(b12‘2,f Y SAL
1 2,2 +[ q] bé + q) bé
+Z(ch)ng2,g Q) R
—T YA LAY
Z(pQC)f(pQC)ngZfTZg +2l 0Q th 0Q ngng
1
+1(pQC)§fb%3,f oA A\
!t o{251) 2+ (221)02
+Z(pQC)ng3,g f g ¢
1 +2(0Aq] 0Aq) b
—E(PQC)f(PQC)ng3fT3g o )\, ‘f%
=+ (pQC)Zb%l + (pQC)Zb%l 0Aq 2 ) 0Agq 2 2
~2(pQe)* b7 +[ ozl ]fh“’f * ( oT1 ]gb“’g
1 1
+-(pQe)* b7y + L (PQe) b7, [Mq] (Mq)
4 4 +2 le T1
1 5o 1 5o oaTL )\ oT1 ), 7S "8
=5 (pR)7b1y + - (PQe)7bT3 2 2
1 2,2 +(ﬂ] b2, ¢ + (ﬂ) b2
+, (PQe) b1 or2 ) T2f ™\ o2 ¢ T2
1 2,2 _ A 0A
—=(pQc)*bE; = 0 ( q) [ q)
2 T3 2o AoT2 ngszzg

Therefore, for the stated conditions, the effects of the
temperature elemental systematic error sources from thé
stapdard and the bath nonuniformity totally cancel out
andl the equation for b, becomes

2 2
JdA 0A
R, = [—q] b2 +(—q) b2
Aq o ) o ) e
0Agq 0Agq
{5 (b
dp 7 o g fte
2
0Agq 2 dAgq 2
Rk § )
(e (),

(Mq) (Qq] U

JdAq JdAq
JdA JdA —1 1 =1
+( q] bzf ( q) bzg +2[ oT2 ]f( T3 )beszf
oA ! JdA : +49§ﬂ](§éﬂ)b
+2( ﬁrq] ( ﬁrq] bCng or2 f T g TZleg
’ ° dAq) (0Aq
20— )\ ors ) br2eTs
8-4.2.2 Shared error sources for the Ty, T,, and T; 0T2 J\ 013 )¢ 8
measurements within a single test (as in Case B). If dAq) (9Ag
there are shared error sources for the Ty, Ty, and T3 + 2( aT3) (ﬁ) bT3fT1g
measurements within a single test (as in Case B in f §
para. 8-3.2), the TSM gives +2(5A’1] dAgq brs 1
T3 ) [\ 012 ), fheg
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each elemental source from an assumed error distribution
having as its standard deviation the estimated systematic
standard uncertainty for that elemental source. This is
shown in Figure 8-3.2-1, assuming uniform distributions
for all elemental systematic error sources.

8-4.3.1 No shared error sources among the Ty, T,, and
Ts measurements within a single test (as in Case A). If
there are no shared error sources among the Ty, T»,and T3

If allIT[t-h-Fee-tem-pefa-tufe-pfebes-a-F&ea-Hbﬁ-tcd agatnst
the sanpe standard so that

bstd,l = bstd,2 = bstd,3 = byq

and all three temperature probes are at the same position
in the bath during calibration (so thatthe error due to bath
nonuniformity is identical for all probes)

bbath,1 = bbath,2 = Pbath,3 = bbath

then edch of the (bT,-)2 and by factors is equal to
bF = bgd + bhath

for the [situation in which
(PQe) f =

(PQe), = pQe

Oncel again, the effects of the temperature elemental
systemfatic error sources from the standard and the

bath ngnuniformity totally cancel out and the equation
for byq |becomes

2 2
_ (224) 2 L [284) ,2
i o ) op gﬂg
A

o) e
dp 5 dp

=

measurements within a single test (as in Case A in
para. 8-3.1), the MCM analysis gives

Pif = Pauef t (ﬂp)i

pi,g = ptrue,g + (ﬁp)

1

Qi,f = Q—true,f + (ﬂQ),

Qi,g = Qtru(-‘:,g + (ﬁQ)l
G f = Ctruef * (ﬁc),
Ci,g = Ctrue,g + (ﬁ)

Tlr"»f = (Tl)truef ( Std 1)1 + (ﬂbath,l
),

)
)

Ting™ = (Tl)trueg + ( Pstan ; + (ﬂbathl ;
Dif = (Biyes + ( Pira, 2)1 + (ﬂbath 2)1
Big = By + (Ag z), + (Boa, 2)1
Bif = (T3)truef + ( std, 3)1 + (ﬁbath 3)1
Big = Byyeg + ( ktd, 3) (ﬁbath 3)1

and the value of the result is calculated as

T2 i TS )iy
pl;fQ' lf ’f{ f f ’Iillf]

[TZ,i,g + T3,i,g

> - Tl,i,g) + (SAq)i

- pi,gQi,gCi,g

where the random error in the result, (€5);, is drawn from
an assumed error distribution with standard deviatjon
equal to saq the random standard uncertainty of Ag,

When thisisrepeated M times, a distribution of M valpies
of Aq is obtained. The standard deviation of this distripu-
tion is u,, the total standard uncertainty in Ag. A coverpge

8-4.3 MEM-Anatysis:

As in the Monte Carlo approach in para. 8-3.2.2, first a
single “run,” i, of the experimental determination of Aq is
constructed. Since for this example it is stipulated that
tests fand g are run “back-to-back” using identical instru-
mentation, the same errors will affect the measured vari-
ablesintest fas affect the measured variablesin testg. This
is modeled for run i with a single systematic error, § (the
value of which is used in both test fand test g), drawn for

interval can be defined and calculated directly using the M
Aq values, with no assumption necessary about the form of
the distribution of the M values.

8-4.3.2 Shared error sources for the T,, T,, and Ts
measurements within a single test (as in Case B). If
there are shared error sources for the Ty, T, and T3
measurements within a single test (as in Case B in
para. 8-3.2), it is very simple to take these additional
effects into account in the MCM. If, for instance,
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temperature probes 2 and 3 are calibrated against the
same standard but temperature probe 1 is calibrated
against another standard, those elemental errors that
are shared are all set equal within MCM run i:

(ﬂstd,Z)i = (ﬁstd,S)i

and the equations for calculating T3 ;rand T34 are modi-

fied_ta_bhecome

If the same standard is used for all three probes, then in
all of the temperature equations the error from the stan-
dard for run i will be exactly the same:

(ﬁstd,l)i = (ﬁstd,Z)i = (ﬁstd,3>i = (ﬁstd),‘

Likewise, if all three probes are at the same position in
the bath during calibration, then in all of the temperature
equations the error from the bath nonuniformityv for run i

T3,i,f =(T3)true,f + (ﬁstd,Z)i + (ﬁbath,3)

T3:i!g =(T3)true,g + <ﬁstd,2)i + (ﬁbath,3)

i

i

will be exactly the same

(ﬁbath,l)i = (ﬁbath,z) = (ﬂbath,3> 5 Poath);

i i
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